IZOLAČNÍ PRAXE Úvod TEPELNĚ TECHNICKÉ Ř EŠENÍ OBVODOVÝCH STĚ N S PĚ NOVÝM POLYSTYRENEM. Související vybrané právní a jiné předpisy

Rozměr: px
Začít zobrazení ze stránky:

Download "IZOLAČNÍ PRAXE 9. 9.1 Úvod TEPELNĚ TECHNICKÉ Ř EŠENÍ OBVODOVÝCH STĚ N S PĚ NOVÝM POLYSTYRENEM. Související vybrané právní a jiné předpisy"

Transkript

1 IZOLAČNÍ PRAXE 9. TEPELNĚ TECHNICKÉ Ř EŠENÍ OBVODOVÝCH STĚ N S PĚ NOVÝM POLYSTYRENEM Související vybrané právní a jiné předpisy [1] Zákon č. 183/2006 Sb., o územním plánování a stavebním řádu (stavební zákon) [2] Zákon č. 61/2008 Sb., úplné znění zákona č. 406/2006 Sb. jak vyplývá z pozdějších změn (novela zákona o hospodaření s energií zahrnující [6]) [3] Vyhláška MMR č. 268/2009 Sb., o technických požadavcích na stavby [4] Vyhláška MPO č. 213/2001 Sb., kterou se vydávají podrobnosti náležitostí energetického auditu [5] Vyhláška MPO č. 148/2007 Sb., o energetické náročnosti budov [6] Směrnice evropského parlamentu a rady 2002/91/ES, o energetické náročnosti budov [7] ETAG 004 Řídící pokyn pro evropské technické schválení pro: Vnější kontaktní tepelně izolační systémy s omítkou, EOTA, březen 2000 [8] ETAG 014 Řídící pokyn pro evropské technické schválení pro: Plastové kotvy pro kotvení vnějších kontaktních tepelně izolačních systémů s omítkou, EOTA, leden 2002 [9] ČSN Plasty. Desky z pěnového polystyrenu (zrušena) [10] ČSN EN ( ) Tepelně izolační výrobky pro stavebnictví Vnější tepelně izolační kompozitní systémy (ETICS) z pěnového polystyrenu [11] ČSN Provádění vnějších tepelně izolačních kompozitních systémů (ETICS) [12] ČSN EN ( ) Tepelně izolační výrobky pro stavebnictví Průmyslově vyráběné výrobky z pěnového polystyrenu (EPS) - Specifi kace [13] ČSN Tepelná ochrana budov Část 2: Požadavky [14] ČSN Tepelná ochrana budov Část 3: Návrhové hodnoty veličin [15] ČSN Tepelná ochrana budov Část 4: Výpočtové metody [16] ČSN EN ISO ( ) Tepelně vlhkostní chování stavebních konstrukcí a stavebních prvků Vnitřní povrchová teplota pro vyloučení kritické povrchové vlhkosti a kondenzace uvnitř konstrukce Výpočtové metody [17] ČSN Tepelně izolační výrobky pro použití ve stavebnictví Část 1: Typy konstrukcí a kategorie použití [18] ČSN Tepelně izolační výrobky pro použití ve stavebnictví Část 2: Průmyslově vyráběné výrobky z pěnového polystyrenu (EPS) [19] ČSN EN ( ) Požární klasifi kace stavebních výrobků a konstrukcí staveb Část 1: Klasifi kace podle výsledků zkoušek reakce na oheň Poznámka - Uvedené právní a jiné předpisy platí ve znění pozdějších předpisů. Publikace [20] Izolační praxe 1 - Vlastnosti EPS. Pěnový polystyren pro tepelnou a zvukovou izolaci. Účelová publikace, Sdružení EPS ČR, Kralupy n. V [21] Šála J.: Zateplování budov, Grada, Praha 2000 [22] Šála, J.: Tepelně technický návrh a posouzení obvodových stěn a střech. Doporučený standard technický DOS T 3/09, ČKAIT, Praha 2000 [23] Machatka, M. - Šála, J.: Snížení spotřeby tepla na vytápění obytných budov při zateplení neprůsvitných obvodových stěn. OPET CR, Brno 2001 [24] Řehoř, I. a kol.: Sanace obvodových plášťů panelových bytových domů, SČMBD, Praha 2001 [25] Šála J., Machatka M.: Zateplování v praxi. Provádění vnějších kontaktních zateplovacích systémů, Grada, Praha 2002 [26] Šála J.: Poznámky k navrhování konstrukcí z hlediska prostupu tepla. Sborník 4. mezinárodní konference Tepelná ochrana budov 2002 v Praze [27] Šála, J. Machatka, M.: Tepelně technické vady a poruchy panelových domů a jejich sanace, OPET CR, Praha / Brno 2002 [28] Šála J., Chaloupka K.: Izolační praxe 3 Ploché střechy a pěnový polystyren. Účelová publikace, Sdružení EPS ČR, Kralupy n.v [29] Šála J., Machatka M., Svoboda P.: Tepelně technický návrh vnějších tepelně izolačních kontaktních systémů (ETICS), Technická pravidla TP , CZB ČR, Praha 2007 [30] Střechy, fasády, izolace. Odborný měsíčník, Ostrava, Josef Bordovský - MISE, ročníky od roku 1994 [31] Tepelná ochrana budov. Odborný dvouměsíčník pro úspory energie a kvalitu vnitřního prostředí zateplováním budov, Praha, CZB+ČKAIT, ročníky od roku 1998 [32] Šála J., Keim L., Svoboda Z., Tywoniak J.: Komentář k ČSN Tepelná ochrana budov, IC ČKAIT, Praha, Úvod Tradičně u nás byly prováděny obvodové stěny budov z masivních dřevěných trámů tlustých 15 až 25 cm. Tyto roubené stavby postupně s rozvojem měst nahrazovalo zdivo. Zpočátku převažovalo pro honosné stavby zdivo z kamene a pro chudší výstavbu zdivo z tzv. vepřovic, vzniklých prudkým vysušením nepálené hlíny vyztužené slámou. Mezi nimi se postupně prosadilo zdivo z plných pálených cihel, občas v kombinaci s kamenem. Tato zdiva se běžně omítala a jejich tloušťka se pohybovala od 30 do 80 cm, u spodních pater historických budov i více. V pohraničí bylo zdivo v ranném období kombinováno s dřevěnými sloupky a vzpěrami v tzv. hrázděném zdivu a často zde bylo prováděno tzv. režné zdivo z ostře pálených plných cihel bez omítek. Jako běžný standard se nakonec v našem klimatu k počátku 20. století ustálilo omítané zdivo z plných pálených cihel v tloušťce 45 cm. Od počátku dvacátého století se rozvíjelo odlehčování obvodových konstrukcí se snahou zvýšit jejich tepelně izolační vlastnosti, popř. využít možností daných

2 Tabulka 1 Orientační tepelně technické vlastnosti obvodových stěn [22, doplněno* ) ] Konstrukce a její tloušťka Tepelný odpor R [m 2 K/W] Součinitel prostupu tepla U (dříve k) [W/(m 2 K)] Povrchová kondenzace Min. / Max. Max. / Min. Panel struskobetonový 240 mm Panel škvárobetonový 300 mm Zdivo cihelné CP 300 mm Panel struskobetonový 300 mm Panel křemelinový 200 mm Panel expanditbetonový 270 mm Zdivo smíšené 600 mm Panel expanditbetonový 300 mm Panel keramzitbetonový 270 mm Panel keramický jednovrstvý 300 mm Panel keramický dvouvrstvý 300 mm Zdivo cihelné CDK 375 mm Panel keramzitbetonový 300 mm Zdivo cihelné CP 450 mm Zdivo cihelné CDm 375 mm Zdivo cihelné CD TÝN 300 mm Panel železobetonový s PPS 40 mm Panel keramzitbetonový 320 mm Zdivo křemelina 250 mm Zdivo škvárobetonové 375 mm Zdivo cihelné CDK 450 mm Zdivo cihelné CP 600 mm Panel železobetonový s PPS 60 mm 0,30 / 0,37 2,13 / 1,85 Ano 0,38 / 0,41 0,49 1,82 / 1,74 1,52 Ano 0,42 / 0,53 1,70 / 1,43 Ne 0,45 / 0,53 0,76 1,61 / 1,43 1,08 Ne 0,50 / 0,57 0,85 1,49 / 1,35 0,99 Ne 0,55 / 0,58 0,91 1,39 / 1,33 0,93 Ne 0,62 / 0,73 0,80 1,27 / 1,11 1,03 Ne 0,75 / 0,76 1,09 1,09 / 1,08 0,78 Ne Zdivo porobetonové lehké 300 mm 0,82 / 0,99 1,01 / 0,86 Ne Zdivo cihelné CD INA 375 mm 0,87 / 1,01 0,96 / 0,85 Ne Zdivo cihelné CD IVA 450 mm Panel pórobetonový 250 mm 0,94 / 1,10 0,91 / 0,79 Ne Panel železobetonový s PPS 80 mm 0,98 / 1,42 0,87 / 0,63 Ne Panel pórobetonový 300 mm 1,11 / 1,66 0,78 / 0,55 Ne Panel železobetonový s PPS 100 mm 1,20 / 1,75 0,73 / 0,52 Ne Zdivo cihelné THERM 365 mm*) 2,50 / 3,00 0,37 / 0,32 Ne Zdivo cihelné THERM 400 mm*) 2,65 / 3,60 0,35 / 0,26 Ne Zdivo cihelné THERM 440 mm*) 2,95 / 3,95 0,32 / 0,24 Ne Panel železobetonový s EPS-F 80 mm*) 2,05 / 2,15 0,45 / 0,43 Ne Panel železobetonový s EPS-F 100 mm*) 2,55 / 2,70 0,37 / 0,35 Ne Panel železobetonový s EPS-F 120 mm*) 3,05 / 3,20 0,31 / 0,30 Ne Zdivo cihelné 240 P+D s EPS-F 120 mm*) 3,65 / 3,80 0,26 / 0,25 Ne 2

3 Poznámky k tabulce 1 1. Objemové hmotnosti, vlastnosti materiálů a detailní řešení konstrukcí (tepelné mosty) byly uvažovány podle projekčních a technologických zvyklostí i tehdy platných ČSN. 2. Minimální tepelné odpory konstrukcí R a maximální součinitele prostupu tepla U (dříve k) odpovídají výraznějšímu vlivu tepelných mostů v konstrukcích s nedokonale řešenými detaily při běžné úrovni technologické kázně a technologických tolerancí při jejich provedení. Tyto hodnoty jsou v praxi obvyklé. Existují však i konstrukce stejné skladby s významně horšími hodnotami charakteristik tepelně izolační kvality, které pak svědčí o vadách či poruchách těchto konstrukcí. 3. Maximální tepelné odpory konstrukcí R a minimální součinitele prostupu tepla U (k) odpovídají reálnému vlivu tepelných mostů konstrukcích s běžně řešenými detaily při lepší úrovni technologické kázně a technologických tolerancí. Jsou v praxi méně časté. Lze však provádět konstrukce stejné skladby s příznivějšími hodnotami uvedených charakteristik tepelně izolační kvality, podmínkou je však optimalizace konstrukčního řešení detailů a řemeslně bezchybná úroveň provádění, což nebývá běžné. 4. Při stanovení tepelně izolačních vlastností konstrukcí jen ze skladby v ideálním výseku (tj. bez vlivu tepelných mostů) vycházejí hodnoty výrazně příznivější, jsou to však hodnoty nereálně idealizované, tedy chybné pro charakterizování celé konstrukce. Pro ideální výseky konstrukcí bývají stanoveny hodnoty výpočtem i měřením. 5. Povrchová kondenzace byla v tabulce 1 hodnocena podle požadavku ČSN z roku 1994 pro obytné prostředí s relativní vlhkostí vnitřního vzduchu 60 %, požadavek byl určen překročením teploty rosného bodu o více než bezpečnostní teplotní přirážku. Od ČSN z roku 2002 se povrchová teplota konstrukce hodnotí přísněji jako riziko vzniku plísní na vnitřním povrchu konstrukce při relativní vlhkosti vzduchu 50 %, požadavek je určen překročením kritické vlhkosti 80 % při vnitřním povrchu o více než bezpečnostní teplotní přirážku. Obvodové stěny, které vykazují riziko povrchové kondenzace podle ČSN z roku 1994 nevyhoví ani požadavku podle platné ČSN Pro srovnání jsou oproti [22] doplněny příklady současných těžkých obvodových stěn viz položky označené * ). Vnější stěny s ETICS přitom nemusí být se železobetonem, ostatní nosné materiály dávají obvykle příznivější výsledky. Například v případě nosné části stěny z cihelných tvarovek P+D tloušťky 240 mm budou tepelné odpory R o cca 0,60 m 2 K/W vyšší a součinitele prostupu tepla U o cca 0,05 až 0,10 W/(m 2 K) nižší. oddělením nosné konstrukce (skelety a nosné stěny). Ve zdivech jde jedním směrem vývoj pálených cihel jejich děrováním a vytvářením tvarovek, koncem století souběžně s výrazným vylehčením keramického střepu. Dalším směrem rozvoje zdiv jsou nové zdicí materiály z lehkých betonů zejména v druhé polovině století se bouřlivě rozvíjí betony s lehčeným kamenivem (škvárobetony, struskobetony, keramzitbetony, expanditbetony, agloporitbetony, perlitbetony apod.) a pórovité betony pórobetony (plynobetony a plynosilikáty, později nazývané pískové a popílkové pórobetony). Koncem století se z nich uplatňují zejména velmi lehké plné bloky z pórobetonu a těžší tvarovky z keramzitbetonu. Při zvyšování nároků na tepelnou izolaci obvodových stěn se po polovině dvacátého století začal hromadně používat pěnový polystyren. Od poloviny století se také naplno rozvíjí obvodové konstrukce z větších prvků než jsou kusová zdiva začíná éra prefabrikace a typizace, u nás provázená jednotvárností výstavby. Na tradiční způsob výstavby navazuje tzv. těžká prefabrikace, nejprve blokopanelová, posléze modulová prefabrikace (těžké parapetní a meziokenní dílce) a nakonec celostěnové dílce, často zcela kompletované v panelárnách. Od jednovrstvých technologii se většinou postupně přešlo k vrstveným obvodovým panelům tzv. sendvičům, ve kterých se osvědčil a téměř výhradně používal pěnový polystyren (tehdy značený PPS). V prvních typových vrstvených panelech se užívalo 40 mm PPS, v 70. letech se již uplatňovalo 60 mm PPS (v Praze výjimečně 50 mm PPS) a po revizi tepelně technických norem se po roce 1977 rozvíjely stavební soustavy s obvodovými stěnami s 80 mm PPS, výjimečně 100 mm PPS, někde však zůstaly zachovány obvodové stěny se 60 mm PPS. Největší rozmach tohoto způsobu stavění byl v osmdesátých 3

4 a devadesátých letech minulého století. Po prudkém odklonu od typizace a prefabrikace po roce 1989 se po roce 2000 k prefabrikaci začíná stavebnictví opatrně vracet na vyšší technologické úrovni, bez centrálně řízené typizace, s menšími sériemi prefabrikátů plnících individuální požadavky jednotlivých staveb a obvykle s prováděním tepelných izolací na stavbě formou vnějších tepelně izolačních (zateplovacích) systémů, nejčastěji kontaktních (ETICS) podrobněji viz dále. Příklady těchto již klasických konstrukcí uvádí tabulka 1 [22, doplněno]. Souběžně s těžkou prefabrikací se vyvíjelo zcela odlišné a převratné řešení obvodových stěn ze skládaných lehkých obvodových dílců lehká prefabrikace. Kromě nového uplatnění kovů, plastů a skla v obvodových konstrukcích se v nich znovu objevilo dřevo a výrobky ze dřeva. Někdy se lehké dílce kombinují s těžkou prefabrikací např. lehké meziokenní vložky MIV-L, lehké lodžiové stěny a vstupní či schodišťové prosklené stěny. Častější je však řešení celých fasád nebo jejich ucelených částí z lehkých obvodových plášťů LOP. Velmi brzy se v těchto typech konstrukcí stírá rozdíl mezi oknem, dveřmi a stěnou vznikají prosklené fasády. S vývojem LOP vyvstaly i zcela nové problémy související s jejich nízkou tepelnou akumulací a nově i s průsvitností, které se projevují zejména přehříváním budov s lehkými obvodovými plášti v letním období. Nyní se v rámci EU na LOP nahlíží jako na ekvivalent výrobku. Začátek tohoto století je pak ve znamení kombinací jak všech výše uvedených materiálů, tak konstrukčních systémů a provozů v budovách. Spolu s tím dochází k prudkému zpřísnění funkčních požadavků, zejména tepelně technických a energetických. Objevují se i požadavky nově formulované především pro trend trvale udržitelného stavění a snižování emisí CO 2, obvykle odpovídající nízkoenergetickým a pasivním, popř. nulovým domům. Zpřísnění tepelně technických funkčních požadavků vede ke zvýšenému užívání tepelných izolací, především pěnového polystyrenu EPS. V nebývalém rozsahu se šíří snaha o doplnění nových funkcí a požadovaných vlastností i u existujících budov, které tvoří většinový fond staveb. Rozvíjí se proto nové technologie regenerací a rekonstrukcí. Pro zvyšování tepelně izolačních vlastností obvodových stěn a podhledů se výrazně rozšířily technologie dodatečných tepelných izolací zateplovací systémy budov. Od prvotních obkladů obvodových stěn větranými roštovými systémy s vkládanými tepelnými izolacemi a od tepelně izolačních přizdívek z pórobetonu v 70. letech minulého století se vývoj postupně přikláněl k jednodušším, levnějším a účinnějším technologiím. Užívají se zejména vnější kontaktní zateplovací systémy ETICS (External thermal insulation composite system, někdy překládané též slovo od slova jako vnější tepelně izolační kompozitní systémy ), v nichž výrazně většinový podíl tvoří zateplovací systémy s pěnovým polystyrenem EPS. K jejich masivnímu uplatnění došlo po roce 1990, přestože se tato technologie u nás prováděla ojediněle již před rokem Rozšíření ETICS pomohly jak příznivé podmínky pro energeticky úsporné rekonstrukce v době propadu nové výstavby, tak zvýšení kvality zateplovacích systémů a jejich složek. Požaduje se přitom, aby i při rekonstrukcích a jiných změnách stávajících budov bylo až na výjimky dosaženo nejméně požadované normové úrovně, cílem však jsou vlastnosti na doporučené úrovni, popř. ještě lépe na nízkoenergetické až pasivní úrovni. Různorodost obvodových stěn a jejich kombinované uplatňování klade zvýšené nároky na materiály a výrobky, na znalosti projektantů a na schopnosti zhotovitelů staveb pracovat bezchybně s novými technologiemi a s jejich prolínáním. Budovy s výraznou tepelnou izolací jsou přitom citlivější na vliv nedokonalostí v návrhu a provedení podstatně více jejich výsledné vlastnosti ovlivňují tepelné mosty v konstrukcích a tepelné vazby mezi konstrukcemi. Pro pochopení zákonitostí rozmanitých konstrukčních řešení obvodových stěn se rozlišují: podle počtu vrstev na: jednovrstvé obvodové stěny, u nichž je nosná, tepelně izolační a tepelně akumulační funkce plněna jednou vrstvou s povrchovými úpravami, vrstvené (sendvičové) obvodové stěny, u kterých dochází k oddělení nosné a tepelně izolační 4

5 funkce, které zajišťují různé souvislé vrstvy (desky), navzájem bodově propojené, kostrové obvodové stěny, u kterých sice také dochází k oddělení nosné a tepelně izolační funkce, avšak nosnou funkci obvykle zajišťují tyčové prvky umístěné v tepelně izolační vrstvě, nebo ztužující kombinace tyčových prvků s deskou, kombinace výše uvedených, např. kostrový typ doplněný souvislou vrstvou ETICS, podle pořadí vrstev na: obvodové stěny tepelnou izolací na vnějším povrchu, obvodové stěny tepelnou izolací na vnitřním povrchu, obvodové stěny s tepelnou izolací uvnitř konstrukce, podle tepelně akumulačních schopností na: obvodové stěny lehké (bez významnější tepelné akumulace), s hmotností vnitřních vrstev k tepelné izolaci včetně nižší než 100 kg/m 2, obvodové stěny těžké (tepelně akumulační), s hmotností vnitřních vrstev k tepelné izolaci včetně 100 kg/m 2 a více, Návrh nové obvodové stěny ovlivňují zejména vnitřní a vnější podmínky očekávané v průběhu životnosti stavby. Při opravě, údržbě a zateplení původních obvodových stěn se výrazně uplatňuje výchozí řešení a současný stav, kterému se musí podřídit návrh nových vrstev zateplení. Původní a nové vrstvy při obnově obvodových stěn totiž spolupůsobí. Rozmanitost dosavadních stěn vyvolává i různorodost správných řešení při jejich potřebném zateplení. Proto neexistuje recept na jednotné, univerzálně správné řešení obvodových stěn. V řešení obvodových stěn je skryta řada technických a technologických problémů. Chyby při jejich návrhu a realizaci jsou drahé vynucují si předčasné opravy, popř. i rozsáhlejší rekonstrukce. Opravy obvodových stěn jsou často odborně náročnější než nové konstrukce. Tepelná izolace obvodových stěn se řídí zejména těmito obecnými pravidly: potřebná tloušťka tepelná izolace obvodových stěn musí souvisle přecházet v tepelnou izolaci střechy, podlah na terénu či podlah nad nevytápěným suterénem, na tepelnou izolaci tvořenou rámy oken, dveří a popř. dalších navazujících konstrukcí, výsledné tepelně izolační působení je velmi závislé na kvalitě detailů s minimalizací vlivu tepelných mostů a tepelných vazeb, jako jsou vodivé (nosné) prvky v tepelné izolaci a narušení souvislé tepelně izolační vrstvy ve vzájemném spojení konstrukcí; čím větší tloušťka tepelná izolace, tím je tento vliv významnější, důležitým předpokladem dobré tepelně izolační funkce je vyloučení, popř. omezení kondenzace vodní páry v obvodových stěnách, včetně jejich případných větraných vzduchových vrstev, další nutnou podmínkou je vyloučení proudění vzduchu a vlhkosti napříč obvodovými stěnami netěsnostmi (spáry mezi prvky, spoje těsnících vrstev, prostupy pro rozvody, otvory pro spojovací prvky apod.); nutno vyloučit změny v době životnosti konstrukce, nízkou tepelnou setrvačnost obvodových stěn lze zčásti nahradit vyšší tepelnou izolací. Nesplněním těchto pravidel se zhoršuje tepelně izolační funkce obvodových stěn a dochází k významným charakteristickým vadám a poruchám Zákony, předpisy a závaznost tepelně technických požadavků Požadavky na tepelně technické vlastnosti obvodových stěn zajišťují jeden ze šesti základních požadavků na stavby v legislativě EU úsporu energie a tepelnou ochranu budov. V návaznosti na stavební zákon a jeho vyhlášku MMR č. 268/2009 Sb., o technických požadavcích na stavby a na zákon č. 406/2000 Sb., o hospodaření s energií, po novele v úplném znění zákona č. 61/2008 Sb., a jeho vyhlášku č. 148/2007 Sb., o energetické náročnosti budov, se závazně požaduje splnění normových hodnot tepelně technických vlastností konstrukcí (tedy i obvodové stěny) při prostupu tepla, prostupu vodní páry a vzduchu. Zároveň musí být zaručeny požadované nízké normové hodnoty průměrného prostupu tepla obálkou celé budovy a návazně na to i požadovaná nízká energetická náročnost této budovy (včetně technického zařízení budovy). 5

6 Normové hodnoty tepelně technických vlastností stavebních konstrukcí a budov stanovuje platná ČSN Tepelná ochrana budov. Část 2: Požadavky v návaznosti na části 3 a 4 téže normy a v nich odkazované ČSN, popř. ČSN EN. Tato norma platí jak pro nové budovy, tak pro změny dokončených budov. Pro budovy památkově chráněné nebo stávající budovy uvnitř památkových rezervací platí norma přiměřeně možnostem tak, aby nedocházelo k poruchám a vadám při jejich užívání. Požadované normové hodnoty stanovují obecně závaznou úroveň technického požadavku, prokazovanou při stavebním řízení. Přísnější doporučené normové hodnoty stanovují úroveň vhodnou pro energeticky úsporné budovy; tato úroveň je v zahraničí často nazývaná cílová, obvykle s uvedením roku, od kdy bude pro novostavby užívána jako požadovaná (u nás se předpokládá toto zpřísnění pro novostavby při další revizi požadavků v ČSN ; pro změny existujících staveb by přitom měly být zachovány současné požadované hodnoty). Od této úrovně normových hodnot se navrhují nízkoenergetické domy, ještě lepší hodnoty jsou určeny pro pasivní domy Ustálená vlhkost obvodových stěn V dobře navržených a provedených konstrukcích kolísá vlhkost jejich materiálů v ročním průběhu kolem tzv. ustálené vlhkosti. Normové hodnoty ustálených hmotnostních vlhkostí materiálů uvádí ČSN Nízká trvalá vlhkost obvodových stěn je základním předpokladem jejich účinného tepelně izolačního působení. Zároveň je to i podmínka pro uplatnění většiny technologií úprav zvyšujících tepelně izolační vlastnosti stěn. Proto prvním a zásadním opatřením při změnách obvodových stěn je případná sanace jejich zvýšené či nadměrné vlhkosti. Zdrojů vyšší vlhkosti v obvodových stěnách může být celá řada: zatékání vody z dešťových žlabů a svodů, popř. z porušeného rozvodu vody či kanalizace, vzlínání zemní vlhkosti a šíření tlakové podzemní vody, nasákavé vnější povrchy obvodové stěny, zvýšený ostřik obvodových stěn při dešťových srážkách, kondenzace vlhkosti na vnitřním povrchu obvodové stěny a její vsakování, kondenzace vlhkosti uvnitř obvodové stěny při difuzi vodních par, proudění vlhkosti netěsnostmi obvodové stěny, výjimečně záplavy a povodně. Požadované snížení vlhkosti obvodových stěn se docílí ve dvou krocích nejprve se odstraní nebo odcloní působení zdroje vlhkosti, poté se zajistí vysychání konstrukce. Nejpodrobněji je tato otázka řešena pro zdiva, zřejmě vzhledem k častému uplatnění těchto postupů při sanacích historických budov (viz knihy o vysušování zdiva). Pro vrstvené těžké i lehké konstrukce, které již také patří do historie, je odkazů méně, nicméně zásady pro ně platí obdobné jako pro zdivo. U vrstvených konstrukcí je třeba vždy zvážit: výrazně odlišné rozložení teplot v tloušťce konstrukce, kde teplotní spád se koncentruje do tepelné izolace (z tohoto pohledu jsou nejrizikovější konstrukce s tepelnou izolací na vnitřní straně, a to nejen ve skladbě, ale zejména v detailech po celém obvodě vrstvy vnitřní tepelné izolace), proměnnou nasákavost jednotlivých vrstev (hrozí zejména kapilární vzlínavost), obtíže s vysušováním již nasáklé stěny při méně propustných povrchových vrstvách. Vlhkost obvodových stěn je důležitá zejména při provádění dodatečných tepelných izolací pomocí vnějších kontaktních zateplovacích systémů (používá se anglická zkratka ETICS, dříve též česká zkratka VKZS). Pro uplatnění ETICS nesmí být podklad zjevně vlhký, ani nesmí být opakovaně či trvale zvlhčován působením zemní vlhkosti, vlhkostí z netěsných rozvodů vody, kanalizace a dešťových svodů, smáčením v důsledku chybějící krytiny a žlabů apod. Zvýšená vlhkost podkladu musí být před provedení ETICS snížena sanačními úpravami tak, aby se příčina výskytu zvýšené vlhkosti odstranila nebo dostatečně omezila. Pro podklad ze zdiva z plných cihel se požaduje jeho hmotnostní vlhkost max. 5 %, neprokáže-li se přípustnost vyšší vlhkosti. Pro ostatní materiály podkladů se orientačně doporučuje hmotnostní vlhkost podkladu nižší než 1,5 násobek normové hodnoty ustálené vlhkosti materiálů podkladu uvedené v ČSN Podrobnější pokyny a doporučení pro provádění ETICS jsou v ČSN

7 9.1.3 Povrchová vlhkost obvodových stěn Povrchová vlhkost obvodových stěn souvisí s jejich vnitřní povrchovou teplotou. Při snížení vnitřní povrchové teploty se zvyšuje relativní vlhkost vzduchu v bezprostředním kontaktu se stěnou. Pokud relativní vlhkost vnitřního vzduchu i dosáhne u povrchu obvodové stěny 100 %, tedy rosného bodu, pak dojde na tomto povrchu ke kondenzaci vodní páry k orosování povrchu. Na povrchu stěny se vytváří vlhkostní mapy a povrchové vrstvy se obvykle znehodnocují. Vyloučení tohoto zcela nepřípustného poruchového stavu bylo základem pro hodnocení nejnižších vnitřních povrchových teplot obvodových stěn zavedeném v ČSN z roku Obvodové stěny musely podle ČSN z května 1994 vykazovat v každém místě vnitřního povrchu teplotu bezpečně nad teplotou rosného bodu (dříve používána značka t ). Zmíněnou bezpečnost přitom zajišťovala bezpečnostní přirážka (dříve t ) při stanovení normou požadované hodnoty nejnižší vnitřní povrchové teploty si,n (dříve t si,n ). Bezpečnostní přirážka byla určena tak, aby odpovídala možnému snížení vnitřní povrchové teploty v důsledku reálného kolísání teplot vnitřního a venkovního vzduchu. Pro pobytové místnosti se tehdy uvažovala relativní vlhkost vnitřního vzduchu i = 60 %, bezpečnostní přirážka u těžších stěn byla obvykle = 0,5 C. Teplotu vnitřního vzduchu pro další srovnání volíme ai = 21 C. Pro tyto podmínky se požadovala nejnižší vnitřní povrchová teplota nejméně na úrovni požadované normové hodnoty si,n = 13,44 C. V ČSN z listopadu 2002 se již v souladu s novou ČSN EN ISO uplatnil přísnější přístup místo rizika orosování se začalo s novými evropskými zvyklostmi hodnotit riziko vzniku plísní na vnitřním povrchu konstrukce. Relativní vlhkost vnitřního vzduchu i se zároveň sjednotila na nižší úrovni 50 %, avšak s bezpečnostní vlhkostní přirážkou 5 %. V ČR se pro stanovení nejnižší vnitřní povrchové teploty místo zmíněné bezpečnostní vlhkostní přirážky nadále užívá jemněji členěná již dříve zavedená bezpečnostní teplotní přirážka, která v mezních případech docílí také 5 %. Riziko vzniku plísní podle dříve uváděných podkladů ČSN EN ISO nastává již při kritické vnitřní povrchové vlhkosti si,cr = 80 % a této relativní vlhkosti odpovídá kritická povrchová teplota si,cr. Mikrobiologové nově uvádějí, že plísně se rychle přizpůsobují a některé již umí nastartovat růst kolonií při relativní vlhkosti vzduchu okolo 70 %. To se však zatím do požadavku nepromítá. Pro pobytové místnosti se uvažuje relativní vlhkost vnitřního vzduchu i = 50 %, bezpečnostní přirážka u těžších stěn si = 0,5 C a teplota vnitřního vzduchu ai = 21 C. Pro tyto podmínky se požaduje nejnižší vnitřní povrchová teplota nejméně na úrovni požadované normové hodnoty si,n = 14,07 C. V tomto konkrétním nejběžnějším případě tedy došlo ke zpřísnění požadavku pro obvodové stěny o zhruba 0,6 C. V revizi ČSN z dubna 2007 se požadavky na nejnižší vnitřní povrchovou teplotu vyjadřují pomocí lokální vlastnosti konstrukce, jejíž hodnota pro danou konstrukci nezávisí na teplotních podmínkách teplotního faktoru vnitřního povrchu f Rsi (zkráceně teplotní faktor ). Jedná se jen o změnu způsobu vyjádření, který lépe vyhovuje při navrhování konstrukcí, popisu podmínek pro jejich výběr a pro zpracování obecných katalogových řešení, výše požadavku se však nemění. Požadavek se vyjadřuje obdobně jako dříve součtem kritického teplotního faktoru f Rsi,cr a bezpečnostní přirážky teplotního faktoru f Rsi. Tabulka 2 Požadované hodnoty bezpečnostní přirážky teplotního faktoru f Rsi Vytápění s poklesem výsledné teploty v [ C] Konstrukce v 2 C (nepřerušované) 2 C v 5 C (tlumené) v 5 C (přerušované) Obvodová stěna Bezpečnostní přirážka teplotního faktoru f Rsi těžká 0 0,015 0,030 lehká 0,015 0,030 0,045 7

8 ϕ ϕ Obvodové stěny ϕ a pěnový polystyren Pro požadavek na obvodové stěny se při relativní vlhkosti Někteří výrobci již tyto hodnoty pro své stavební soustavy vnitřního vzduchu i = 50 % stanoví kritická hodnota teplotního faktoru f Rsi,cr uvádějí v katalogových listech. ϕ ze vztahu Kritické detaily jsou např. připojovací spára okna (parapet, boční ostění, nadpraží okna) poblíž koutu, detail návazností + ϕ (1) obvodové stěny u terénu, na střechu a další. Požadavky na omezení vlhkosti vnitřního povrchu tedy směřují k omezení extrémně nízkých povrchových teplot Pro jinou relativní vlhkost vnitřního vzduchu platí o něco na nejvýraznějších tepelných mostech v obvodové stěně a v nejvýraznějších tepelných vazbách v místech ná- složitější vztah + vazností obvodové stěny na další konstrukce. Jinými slovy je to jeden z požadavků na návrh a provedení detai- ϕ ϕ ϕ ϕ lů obvodové stěny. (2) Další požadavky, které omezují nevhodné řešení detailů kde si,cr = 80 % je kritická povrchová vlhkost pro obvodové stěny, stanovená pro vyloučení rizika tvorby plísní součinitel prostupu tepla U (průměrný vliv tepelných jsou požadavky na: na jejich vnitřním povrchu. mostů v konstrukci) viz v ČSN [13], Bezpečnostní přirážka teplotního faktoru f Rsi pro požadavek na obvodové stěny, zohledňující lineární a bodový činitel prostupu tepla k,n a j,n (vliv způsob vytápění jednotlivých tepelných vazeb mezi konstrukcemi) viz vnitřního prostředí a teplotní útlum (tepelnou akumulaci) v ČSN [13], obvodové stěny, se stanoví z tabulky 2. Nejnižší vnitřní povrchová teplota si a jí odpovídající teplotní faktor vnitřního povrchu f Rsi se obvykle stanoví řešením teplotního pole pro kritické detaily obvodové stěny a navazujících konstrukcí. Ze zjištěné vnitřní povrchové teploty si a okrajových teplotních podmínek vnitřního a venkovního vzduchu se teplotní faktor vnitřního povrchu f Rsi stanoví ze vztahu popř. ze vztahu (3) (4) průměrný součinitel prostupu tepla U em obálky budovy, zahrnující jak souhrnný vliv tepelných mostů v konstrukcích obálky budovy, tak souhrnný vliv všech tepelných vazeb mezi konstrukcemi viz v ČSN [13]. Z uvedeného je zřetelná snaha o snížení vlivu tepelných mostů a tepelných vazeb na minimum, tj. úsilí o jejich tepelně technickou optimalizaci. Tato optimalizace je nutná při výstavbě nízko energetických domů, pro pasivní a úspornější domy je ještě zvýrazněna. Dřívější snaha o správný návrh tlouštěk vrstev tepelných izolací tedy musí být se stejnou nebo vyšší důležitostí doprovázena snahou o správný návrh a provedení detailů. Tabulka 3 Normové hodnoty součinitele prostupu tepla U N,20 pro stěny budov s převažující návrhovou vnitřní teplotou im od 18 C do 22 C [13] 8 Druh konstrukce Stěna lehká (hmotnost 100 kg/m 2 a méně) Stěna těžká (hmotnost nad 100 kg/m 2 ) Požadované ψ χ Normové hodnoty součinitele prostupu tepla U N,20 [W/(m 2 K)] Požadované pro ND Doporučené Požadované pro PD Doporučené pro ND Doporučené pro PD 0,30 0,20 0,13 0,09 0,38 0,25 0,17 0,11

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních

Více

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky

Více

Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům

Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Úvod Nízkoenergetický a pasivní cihlový dům Porotherm Moderní dům s ověřenými vlastnostmi Při navrhování i realizaci

Více

1. Hodnocení budov z hlediska energetické náročnosti

1. Hodnocení budov z hlediska energetické náročnosti H O D N O C E N Í B U D O V Z H L E D I S K A E N E R G E T I C K É N Á R O Č N O S T I K A P I T O L A. Hodnocení budov z hlediska energetické náročnosti Hodnocení stavebně energetické vlastnosti budov

Více

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 91.120.10 Říjen 2011 ČSN 73 0540-2 Tepelná ochrana budov Část 2: Požadavky Thermal protection of buildings Part 2: Requirements Nahrazení předchozích norem Touto normou se nahrazuje

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově

Více

Technologie staveb Tomáš Coufal, 3.S

Technologie staveb Tomáš Coufal, 3.S Technologie staveb Tomáš Coufal, 3.S Co je to Pasivní dům? Aby bylo možno navrhnout nebo certifikovat dům jako pasivní, je třeba splnit následující podmínky: měrná roční potřeba tepla na vytápění je maximálně

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ

TEPELNĚ TECHNICKÉ POSOUZENÍ TEPELNĚ TECHNICKÉ POSOUZENÍ BD Obsah: 1. Zadání... 2 2. Seznam podkladů... 2 2.1. Normy a předpisy... 2 2.2. Odborný software... 2 3. Charakteristika situace... 2 4. Místní šetření... 2 5. Obecné podmínky

Více

HELUZ Family 2in1 důležitá součást obálky budovy

HELUZ Family 2in1 důležitá součást obálky budovy 25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel

Více

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Ing. Jiří Šála, CSc. tel. +420 224 257 066 mobil +420 602 657 212 e-mail: salamodi@volny.cz Přehled budov podle

Více

Icynene chytrá tepelná izolace

Icynene chytrá tepelná izolace Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO KONKRÉTNÍ ROZBOR TEPELNĚ TECHNICKÝCH POŽADAVKŮ PRO VYBRANĚ POROVNÁVACÍ UKAZATELE Z HLEDISKA STAVEBNÍ FYZIKY příklady z praxe Ing. Milan Vrtílek,

Více

TZB II Architektura a stavitelství

TZB II Architektura a stavitelství Katedra prostředí staveb a TZB TZB II Architektura a stavitelství Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace

Více

Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com

Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Řádně odvodněná pojistná hydroizolace

Více

Tepelně technické vlastnosti zdiva

Tepelně technické vlastnosti zdiva Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B

Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B K žádosti o poskytnutí dotace se přikládá z níž je patrný rozsah a způsob provedení podporovaných

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Zakládání staveb Legislativní požadavky Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

Tepelné mosty v pasivních domech

Tepelné mosty v pasivních domech ing. Roman Šubrt Energy Consulting Tepelné mosty v pasivních domech e-mail: web: roman@e-c.cz www.e-c.cz tel.: 777 96 54 Sdružení Energy Consulting - KATALOG TEPELNÝCH MOSTŮ, Běžné detaily - Podklady pro

Více

Vnitřní prostředí v podstávkovém domě Liberec 10-2014 Podstávkové domy, jejich tepelná ochrana a vnitřní prostředí

Vnitřní prostředí v podstávkovém domě Liberec 10-2014 Podstávkové domy, jejich tepelná ochrana a vnitřní prostředí Podstávkové domy, jejich tepelná ochrana a vnitřní prostředí Ing. Jiří Šála, CSc. tel. +420 224 257 066 mobil +420 602 657 212 e-mail: salamodi@volny.cz Tepelná ochrana budov a památky Památková ochrana:

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci

Více

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí

Více

POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ

POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci

Více

Tepelná izolace soklu

Tepelná izolace soklu Tepelná izolace soklu univerzální řešení pro jednovrstvé i vícevrstvé stěny Při návrhu i vlastním provádění detailu soklu dochází často k závažným chybám a to jak u jednovrstvých, tak u vícevrstvých zateplených

Více

Termodiagnostika v praxi, aneb jaké měření potřebujete

Termodiagnostika v praxi, aneb jaké měření potřebujete Termodiagnostika v praxi, aneb jaké měření potřebujete 2012 Ing. Viktor Zwiener, Ph.D. Tepelné ztráty v domech jsou způsobeny prostupem tepla konstrukcemi s nedostatečným tepelným odporem nebo prouděním

Více

Zateplené šikmé střechy Funkční vrstvy. jan.kurc@knaufinsula=on.com

Zateplené šikmé střechy Funkční vrstvy. jan.kurc@knaufinsula=on.com Zateplené šikmé střechy Funkční vrstvy jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Pojistná hydroizolace + odvětrání střešního pláště Ochrana

Více

NG nová generace stavebního systému

NG nová generace stavebního systému NG nová generace stavebního systému pasivní domy A HELUZ nízkoenergetické domy B energeticky úsporné domy C D E F G cihelné pasivní domy heluz Víte, že společnost HELUZ nabízí Řešení pro stavbu pasivních

Více

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o.

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o. Jak správně navrhovat ETICS Ing. Vladimír Vymětalík, VISCO s.r.o. Obsah přednášky! Výrobek vnější tepelně izolační kompozitní systém (ETICS)! Tepelně technický návrh ETICS! Požárně bezpečnostní řešení

Více

Posudek k určení vzniku kondenzátu na izolačním zasklení oken

Posudek k určení vzniku kondenzátu na izolačním zasklení oken Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Projektování nízkoenergetických a pasivních staveb konkrétní návrhy budov RD Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt

Více

Obr. 3: Řez rodinným domem

Obr. 3: Řez rodinným domem Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.

Více

Posudek k určení vzniku kondenzátu na izolačním zasklení oken

Posudek k určení vzniku kondenzátu na izolačním zasklení oken Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno

Více

ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ

ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ CECH PRO ZATEPLOVÁNÍ BUDOV ČR ING. PAVEL SVOBODA, ČLEN SKUPINY EXPERTŮ CZB ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ DO S A DON TS PŘI ZATEPLOVÁNÍ Jihlava 19.10.2010 VRÁMCI PROJEKTU ENERGY-FUTURE

Více

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb

Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Dřevostavby komplexně Aktuální trendy v návrhu skladeb dřevostaveb Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ZÁSADY NÁVRHU principy pro skladbu

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena

Více

ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU

ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU Technická zpráva 1.Identifikační údaje Název stavby: Energetická optimalizace školní jídelny Ždírec nad Doubravou Místo stavby: Kraj:

Více

F- 4 TEPELNÁ TECHNIKA

F- 4 TEPELNÁ TECHNIKA F- 4 TEPELNÁ TECHNIKA Obsah: 1. Úvod 2. Popis objektu 3. Normové požadavky na tepelně technické vlastnosti obvodových konstrukcí 3.1. Součinitel prostupu tepla 3.2. Nejnižší vnitřní povrchová teplota 3.3.

Více

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové

Více

POSOUZENÍ KCÍ A OBJEKTU

POSOUZENÍ KCÍ A OBJEKTU PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ Podrobné technické vlastnosti jednotlivých výrobků jsou uvedeny v následujících přehledných tabulkách, řazených podle jejich použití ve stavebním systému VELOX: desky (VELOX WS, VELOX WSD, VELOX WS-EPS)

Více

CIHLOVÝ PASIVNÍ DŮM PRO BUDOUCNOST HELUZ

CIHLOVÝ PASIVNÍ DŮM PRO BUDOUCNOST HELUZ CIHLOVÝ PASIVNÍ DŮM PRO BUDOUCNOST HELUZ Proč budujeme pasivní dům? 1. Hlavním důvodem je ověření možností dosažení úrovně tzv. téměř nulových budov podle evropské směrnice EPBD II. Co je téměř nulový

Více

Kontaktní zateplovací systémy z požárního hlediska. Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb

Kontaktní zateplovací systémy z požárního hlediska. Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Kontaktní zateplovací systémy z požárního hlediska Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Úvod KZS Kontaktní Zateplovací Systém ETICS External Thermally Insulating

Více

VÝSTUP Z ENERGETICKÉHO AUDITU

VÝSTUP Z ENERGETICKÉHO AUDITU CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba 212; Notifikovaná osoba 1390; 102 21 Praha 10 Hostivař, Pražská 16 / 810 Certifikační orgán 3048 VÝSTUP Z ENERGETICKÉHO AUDITU Auditovaný objekt:

Více

10 důvodů proč zateplit

10 důvodů proč zateplit 10 důvodů proč zateplit dům Sdružení EPS ČR Ing. Pavel Zemene, Ph.D. předseda Sdružení 10 důvodů proč zateplit dům 1. Snížení nákladů na vytápění 2. Bezpečná a návratná investice 3. Snížení nákladů na

Více

Seminář dne 29. 11. 2011 Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh

Seminář dne 29. 11. 2011 Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh Seminář dne 29. 11. 2011 Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh Popularizace a zvýšení kvality výuky dřevozpracujících a stavebních

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu

Více

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY energetické hodnocení budov Plamínkové 1564/5, Praha 4, tel. 241 400 533, www.stopterm.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Oravská č.p. 1895-1896, Praha 10 září 2015 Průkaz energetické náročnosti budovy

Více

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing.

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing. TECHNICKÁ Odborná inženýrská, projekční a poradenská kancelář v oblasti oken/dveří, lehkých obvodových plášťů (LOP) a jiných fasádních konstrukcí. KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových

Více

Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla

Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti

Více

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík

Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík Zlepšení tepelněizolační funkce ETICS Ing. Vladimír Vymětalík Způsoby řešení Provedení nového ETICS na původní podkladní konstrukci po předchozí demontáži kompletního stávajícího ETICS Provedení nového

Více

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ

Více

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o.

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o. Jak správně navrhovat ETICS Ing. Vladimír Vymětalík, VISCO s.r.o. Obsah přednášky! Výrobek vnější tepelně izolační kompozitní systém (ETICS)! Tepelně technický návrh ETICS! Požárně bezpečnostní řešení

Více

Návrh skladby a tepelnětechnické posouzení střešní konstrukce

Návrh skladby a tepelnětechnické posouzení střešní konstrukce Návrh skladby a tepelnětechnické posouzení střešní konstrukce Objednatel: FYKONY spol. s r.o. Beskydská 552 741 01 Nový Jičín - Žilina Kontaktní osoba: Petr Konečný, mob.: +420 736 774 855 Objekt: Bytový

Více

Energetická studie varianty zateplení bytového domu

Energetická studie varianty zateplení bytového domu Zakázka číslo: 2015-1102-ES Energetická studie varianty zateplení bytového domu Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově Kozlovská

Více

Ukázka zateplení rodinného domu Program přednášky:

Ukázka zateplení rodinného domu Program přednášky: Ukázka zateplení rodinného domu Program přednášky: Nová zelená úsporám a zateplování - specifika Příklad možné realizace zateplení podkrovního RD Přehled základních technických požadavků v oblasti podpory

Více

Pozemní stavitelství I. Zpracoval: Filip Čmiel, Ing.

Pozemní stavitelství I. Zpracoval: Filip Čmiel, Ing. Pozemní stavitelství I. Svislé nosné konstrukce Zpracoval: Filip Čmiel, Ing. NOSNÉ STĚNY Kamenné stěny Mechanicko - fyzikálnívlastnosti: -pevnost v tlaku až 110MPa, -odolnost proti vlhku, -inertní vůči

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

EJOT upevnění pro zvláštní použití. Upevnění pro zvláštní případy

EJOT upevnění pro zvláštní použití. Upevnění pro zvláštní případy EJOT upevnění pro zvláštní použití Energetická sanace budov vyžaduje stále více pro zpracování tepelně izolačních systémů nestandartní řešení. Zvláště u starých fasád nebo podkladů se zásadními vadami

Více

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK 1 ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH Ing. Ondřej Hec ATELIER DEK 2 ÚVOD PASIVNÍ DOMY JSOU OBJEKTY S VELMI NÍZKOU POTŘEBOU ENERGIE NA VYTÁPĚNÍ PRO DOSAŽENÍ TOHOTO STAVU

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry...

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry... SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u rodinných domů Schöck typ 6-17,5 Oblast použití: První vrstva zdiva na stropu suterénu

Více

Spolehlivost a životnost konstrukcí a staveb na bázi dřeva

Spolehlivost a životnost konstrukcí a staveb na bázi dřeva Zdeňka Havířová Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Dřevo Spolehlivost a životnost konstrukcí a staveb přírodní materiál rostlinného původu obnovitelný buněčná

Více

NG nová generace stavebního systému

NG nová generace stavebního systému NG nová generace stavebního systému pasivní dům heluz hit MATERIÁL HELUZ ZA 210 000,- Kč Víte, že můžete získat dotaci na projekt 40 000,- Kč a na stavbu cihelného pasivního domu až 490 000,- Kč v dotačním

Více

EKONOMIE ENERGETICKY ÚSPORNÝCH OPATŘENÍ PŘI UVAŽOVÁNÍ ODSTRANĚNÍ ZANEDBANÉ ÚDRŽBY

EKONOMIE ENERGETICKY ÚSPORNÝCH OPATŘENÍ PŘI UVAŽOVÁNÍ ODSTRANĚNÍ ZANEDBANÉ ÚDRŽBY EKONOMIE ENERGETICKY ÚSPORNÝCH OPATŘENÍ PŘI UVAŽOVÁNÍ ODSTRANĚNÍ ZANEDBANÉ ÚDRŽBY Stavebně technický ústav-e a.s. 24 EKONOMIE ENERGETICKY ÚSPORNÝCH OPATŘENÍ PŘI UVAŽOVÁNÍ ODSTRANĚNÍ ZANEDBANÉ ÚDRŽBY Řešitel:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov 148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov Ministerstvo průmyslu a obchodu (dále jen "ministerstvo") stanoví podle 14 odst. 5 zákona č. 406/2000 Sb., o hospodaření energií, ve znění

Více

(dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

(dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) [PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) Objekt: Bytový dům Adresa: Českobrodská 575 190 11 Praha - Běchovice kraj Hlavní město Praha Majitel:

Více

Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51 Environmentalistika a stavitelství

Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51 Environmentalistika a stavitelství TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51

Více

Porovnání tepelných ztrát prostupem a větráním

Porovnání tepelných ztrát prostupem a větráním Porovnání tepelných ztrát prostupem a větráním u bytů s parame try PD, NED, EUD, ST D o v ytápě né ploše 45 m 2 4,95 0,15 1,51 0,15 1,05 0,15 0,66 0,15 4,95 1,26 1,51 0,62 1,05 0,62 0,66 0,62 0,00 1,00

Více

Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy. 1. Identifikační údaje

Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy. 1. Identifikační údaje 1. Identifikační údaje Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy Adresa budovy (místo, ulice, číslo, PSČ) Kód obce Kód katastrálního území

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET

TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET Zadavatel : Roman Čejka Hrdlořezy 208 293 07 Zpracoval : Robert

Více

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY D.1.3 POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY ZPRACOVAL : PROJEKTANT : Ing. Iveta Charousková, Počerny 124, 360 17 Karlovy Vary osvědčení o autorizaci v oboru požární bezpečnost staveb č. 8488 Projektová kancelář

Více

šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod.

šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod. 1 Akustika 1.1 Úvod VÝBORNÉ AKUSTICKÉ VLASTNOSTI Vnitřní pohoda při bydlení a při práci, bez vnějšího hluku, nebo bez hluku ze sousedních domů nebo místností se dnes již stává standardem. Proto je však

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 5. PŘÍČKY I. Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů

Více

PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb.

PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb. PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY ZPRACOVATEL : TERMÍN : 11.9.2014 PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb. PROJEKTOVANÝ STAV KRAJSKÁ

Více

PASIVNÍ DOMY NÁVRH. ING. MICHAL ČEJKA Certifikovaný konzultant a projektant pasivních domů

PASIVNÍ DOMY NÁVRH. ING. MICHAL ČEJKA Certifikovaný konzultant a projektant pasivních domů PASIVNÍ DOMY NÁVRH ING. MICHAL ČEJKA Certifikovaný konzultant a projektant pasivních domů Projekt je realizován za finanční podpory Státního programu na podporu úspor energie a využití obnovitelných zdrojů

Více

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ VĚTRÁNÍ RODINNÝCH DOMŮ (PŘEDEVŠÍM V PASIVNÍCH STANDARDECH) 1. JAK VĚTRAT A PROČ? VĚTRÁNÍ K ZAJIŠTĚNÍ HYGIENICKÝCH POŽADAVKŮ FYZIOLOGICKÁ POTŘEBA ČLOVĚKA Vliv koncentrace CO 2 na člověka 360-400 ppm - čerstvý

Více

Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce. s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y

Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce. s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Příloha 2 - Tepelně t echnické vlast nost i st avební konst rukce l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í

Více

REGENERACE PANELOVÉHO BYTOVÉHO DOMU TYPU B 70R PO PĚTI LETECH. POZNATKY, EKONOMIKA PROVOZU, FAKTORY OVLIVŇUJÍCÍ PROCES VOLBY TECHNOLOGIÍ A DODAVATELE

REGENERACE PANELOVÉHO BYTOVÉHO DOMU TYPU B 70R PO PĚTI LETECH. POZNATKY, EKONOMIKA PROVOZU, FAKTORY OVLIVŇUJÍCÍ PROCES VOLBY TECHNOLOGIÍ A DODAVATELE REGENERACE PANELOVÉHO BYTOVÉHO DOMU TYPU B 70R PO PĚTI LETECH. POZNATKY, EKONOMIKA PROVOZU, FAKTORY OVLIVŇUJÍCÍ PROCES VOLBY TECHNOLOGIÍ A DODAVATELE Ing. Zdeněk Kobza Rockwool a.s., Cihelní 769, 735 31

Více

Směrnice EP a RADY 31/2010/EU

Směrnice EP a RADY 31/2010/EU Ing. Jaroslav Šafránek,CSc Centrum stavebního inženýrství a.s. Směrnice EP a RADY 31/2010/EU Zavádí nové požadavky na energetickou náročnost budov Revize zák. č. 406/2000 Sb. ve znění zák. č. 318/2012

Více

VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI

VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř

Více

STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533. Zadavatel: Ing. Marian Groch Třemblat 93 251 65 Ondřejov

STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533. Zadavatel: Ing. Marian Groch Třemblat 93 251 65 Ondřejov STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY reprezentant rodinných domů EKORD 182 t 78 a POSOUZENÍ POROVNÁVACÍCH UKAZATELŮ stavebních

Více