NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE"

Transkript

1 NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, Anotace: Tato práce se zabývá numerickým modelováním proudění ideálního plynu v radiálním ventilátoru. Modelován je ventilátor používaný v sestavných klimatizačních jednotkách firmy Alteko. Součástí práce je porovnání naměřené a vypočítané charakteristiky ventilátoru a porovnání rychlostních polí na výstupu z tlumiče umístěného za ventilátorem. Annotation: This study deals with numerical calculation of ideal gas flow in radial ventilator. A ventilator used in Alteko air conditioning units is modeled. Comparison of calculated and measured characteristics and velocity profiles are made. 1. Úvod Ventilátory jsou nedílnou součástí klimatizačních a vzduchotechnických zařízení. Mohou být různých konstrukcí, ale velmi často se používají radiální ventilátory. Tato práce se zabývá numerickým modelováním proudění ideálního plynu v radiálním ventilátoru za použití reálné geometrie stroje. Modelován byl ventilátor používaný v klimatizačních jednotkách firmy Alteko. Téma článku navazuje na práci [1], v níž byla prováděna měření na sestavné klimatizační jednotce a rovněž celá klimatizační jednotka byla modelována numericky, přičemž vlastní ventilátory byly nahrazeny okrajovými podmínkami pressure inlet a pressure outlet. Součástí zmiňované práce bylo i měření charakteristiky ventilátorů a rychlostních polí na výstupu z ventilátorového dílu. Při těchto měřeních byly zjištěny rozdíly mezi naměřenou charakteristikou a charakteristikou udávanou výrobcem. Při měření bylo rovněž zaznamenáno kmitání celého proudového pole způsobené zřejmě nevhodně tvarovanými vstupy a výstupy do ventilátorového dílu a samotného oběžného kola. Cílem této práce je numerická vizualizace proudění v oběžném kole a v celém ventilátorovém díle, aby bylo možné přistoupit k úpravě stávající klimatizační tratě za účelem odstranění nežádoucích nestacionarit. 2. Metody 2.1. Geometrie modelu a výpočtová síť Geometrie modelu vychází ze skutečných rozměrů ventilátoru TERNO-S 250K používaných firmou Alteko v sestavných klimatizačních jednotkách [2]. Jedná se o radiální ventilátor s dvaačtyřiceti kruhovými dopředu zahnutými lopatkami. K ventilátoru je na straně sání připojen volný díl tzv. mezikus. Na straně výtlaku ventilátoru je tlumič, který by měl snižovat hlukové emise výstupu do okolí. Uspořádání modelu je patrné z obrázku 1 a odpovídá - 1 -

2 uspořádání dílů klimatizační jednotky, při kterém byla měřena charakteristika ventilátorového dílu. Naměřená charakteristika slouží ke kontrole numerického výpočtu. Obrázek 1: Model radiálního ventilátoru s připojenými potrubními díly. Geometrie ventilátoru, okolních potrubních dílů i výpočetní síť byly vytvořeny v programu GAMBIT. Vzhledem k hardwarovým možnostem výpočtu numerického modelu byla snaha omezit počet buněk výpočtové sítě do půl milionu elementů. Výsledná síť obsahuje buněk. Na obrázku 2 je náhled na vytvořený model s výpočetní sítí a okrajovými podmínkami. Obrázek 2: Model radiálního ventilátoru s výpočetní sítí vytvořenou v programu GAMBIT. Okrajové podmínky pressure inlet a pressure outlet byly zadány na vstup a výstup modelu. Výstupní okrajová podmínka byla 0 Pa, tlak na výstupu tak odpovídal referenčnímu tlaku 98 kpa. Vstupní okrajová podmínka byla měněna tak, aby bylo dosaženo poklesu tlaku na sání ventilátoru a jeho hodnota odpovídala hodnotě podtlaku naměřené při experimentu a odečtené z dokumentace dodávané výrobcem. Na obrázku 3 je detail výpočtové sítě v okolí lopatek oběžného kola ventilátoru se zadanými okrajovými podmínkami

3 Obrázek 3: Detail výpočtové sítě v okolí lopatek oběžného kola Nastavení parametrů proudění v programu FLUENT Použitým proudícím médiem byl vzduch uvažovaný jako ideální plyn, tj. dokonale stlačitelný s konstantními měrnými tepelnými kapacitami a viskozitou, při teplotě 20 C a referenčním tlaku 98 kpa. Fyzikální parametry vzduchu jsou uvedeny v tabulce 1. Density constant 1,164 kg/m3 Cp constant 1006,43 j/kg-k Thermal Conductivity constant 0,0242 w/m-k Viscosity constant 1,79E-05 kg/m-s Molecular Weight constant 28,966 kg/kgmol Tabulka 1: Fyzikální parametry vzduchu jako ideálního plynu. Pro simulování chování viskózního prostředí byl použit stacionární dvou-rovnicový turbulentní implicitní model Realizable k-ε, s vylepšeným stěnovým modelováním. Přehled použitých okrajových podmínek a jejich hodnoty jsou uvedeny v tabulce 2. Otáčení oběžného kola bylo simulováno pomocí funkce moving reference frame. Použit byl řešič pressure based, upwind druhého řádu [3]. Druh podmínky Pressure inlet Pressure outlet Rotation velocity Hodnota Hodnota měněna v rozmezí Pa podtlaku Zadán nulový protitlak 150,7 rad/s Tabulka 2: Hodnoty okrajových podmínek

4 2.3. Výsledky numerického výpočtu Z vektorového pole na obrázcích 4 a 5 je patrný směr rotace oběžného kola, velikost i směr rychlosti v daných řezech. Je zde dobře patrné, jakým směrem se tekutina pohybuje a jak se chová v rozšiřujícím se kanále v okolí oběžného kola a na výstupu z ventilátoru. Je patrné, že proudové pole na vstupu do oběžného kola je deformované, což je způsobeno přívodem vzduchu z jednoho směru příliš úzkým přívodním kanálem. Obrázek 4: Vektorové pole rychlosti v okolí oběžného kola ventilátoru v horizontální rovině. Obrázek 5: Vektorové pole rychlosti v okolí oběžného kola ventilátoru ve vertikální rovině

5 Snižováním statického tlaku na vstupní podmínce pressure inlet se nastavovala hodnota tlakové diference na ventilátoru. Dané hodnotě diferenčního tlaku odpovídal příslušný hmotnostní tok a dopočítán tok objemový. Výsledky v porovnání s měřenou charakteristikou a charakteristikou udávanou výrobcem jsou uvedeny v grafu Charakteristika ventilátoru TERNO-S 250K Dokumentace ALTEKO Měřeno Fluent Tlaková diference pc [Pa] ,1 0,2 0,3 0,4 0,5 0,6 Objemový průtok V [m 3 /s] Graf 1: Porovnání charakteristik ventilátoru. Na první pohled je zřejmé, že se výsledky výpočtu od ostatních hodnot značně rozcházejí. Tyto rozdíly ukazují, že zvolený výpočtový model není nejvhodnější, případně, že je chyba v síti modelu, patrně v oblasti oběžného kola. 3. Rychlostní pole na výstupu Rychlostní pole bylo získáno měřením dynamického tlaku. Pro tento případ posloužilo zařízení na obrázku 6, skládající se z pěti samostatných Pitotových trubic, uchycených v kabelových vývodkách tak, aby bylo možné s trubicemi traverzovat ve vertikálním, ale i horizontálním směru. Zařízení umožňovalo rovněž měřit teplotní pole pomocí připojených termočlánkových čidel. Získané hodnoty rychlostí byly převedeny do jednoduchých grafů, jak je patrné na ukázce jednoho z nich (graf 2) s nejvyšším objemovým průtokem a maximálním dynamickým tlakem 56 Pa. Ze získaného rozložení rychlostí a příslušných částí průtočného průřezu byl vypočítán objemový tok, který v tomto případě odpovídá hodnotě 0,53 m 3 /s. Je vidět, že pro měření se nachází oblasti maximálních rychlostí v pravé dolní části průtočného průřezu, ačkoliv je výstup z ventilátoru z tohoto pohledu vlevo nahoře. Ve skutečnosti tak dochází k přimykání proudu k pravé straně tlumiče, zřejmě vlivem směru proudu na výstupu z oběžného kola ventilátoru

6 Obrázek 6: Zařízení s Pitotovými trubicemi, určené k měření teplot, celkových a statických tlaků v potrubí klimatizace. Graf 2: Naměřené rychlostní pole na výstupu z ventilátorového dílu za tlumičem. Pro srovnání je na obrázku 7 rychlostní pole na výstupu z tlumiče získané numerickým výpočtem v programu FLUENT v režimu diferenčního tlaku 50 Pa na ventilátoru, kdy je velikost objemového toku 0,44 m 3 /s. Z obrázku je patrné, že maximální rychlost je na rozdíl od měření v levé části průtočného průřezu. Je zde rovněž zřejmé, že mezní vrstvy nejsou tak silné, jak vyplývá z měření pomocí zařízení na obrázku 6, které nedovoluje měřit bezprostředně u stěny, kde je tak uvažován konstantní gradient rychlosti

7 Obrázek 7: Rychlostní pole na výstupu z ventilátoru za tlumičem. 4. ZÁVĚR Byla vytvořena geometrie modelu ventilátoru s výpočtovou sítí, na níž byla provedena numerická simulace proudění ideálního viskózního plynu. Výsledky simulace byly konfrontovány se skutečným měřením a s daty z dokumentace výrobce. Tyto výsledky se od sebe dosti rozcházejí, což je způsobeno buď nevhodným nastavením numerického řešení, nebo chybou, vyskytující se v síti modelu, zřejmě v okolí oběžného kola. Získané výsledky jsou přesto velmi cenné, neboť odhalují nedokonalosti numerického modelu a nutí k jeho dalšímu vylepšení. Získaná experimentální data tak umožní volit správnější výpočetní aparát a zdokonalit model tak, aby bylo možné úlohu řešit s menší chybou a později i nestacionárně. Poté bude možné přistoupit k návrhu úprav stávající geometrie jednotlivých dílů klimatizace, tak aby se daly odstranit nežádoucí nestacionarity v proudovém poli způsobené zřejmě nevhodně tvarovanými vstupy a výstupy do ventilátorového dílu a samotného oběžného kola. Poděkování Tento projekt byl realizován za finanční podpory ze státních prostředků z projektu MSM LITERATURA [1] Švarc P.: Sestavná klimatizační jednotka s rekuperací, diplomová práce, vedoucí Dvořák, V., TU v Liberci [2] Stavebnicový větrací a klimatizační systém. Dokumentace firmy Alteko vzduchotechnika.. [3] Fluent Dokumentation, Fluent Inc.,

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika NUMERICKÉ ŘEŠENÍ BUDÍCÍCH SIL NA LOPATKY ROTORU ZA RŮZNÝCH OKRAJOVÝCH PODMÍNEK SVOČ FST 2008 ABSTRAKT Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Úkolem

Více

Modelování proudění vzdušiny v elektroodlučovači ELUIII

Modelování proudění vzdušiny v elektroodlučovači ELUIII Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Kontrola parametrů ventilátoru

Kontrola parametrů ventilátoru 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Konference ANSYS 2011 Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Bartoloměj Rudas, Zdeněk Šimka, Petr Milčák, Ladislav Tajč, Michal Hoznedl ŠKODA POWER, A Doosan Copany bartolomej.rudas@doosan.com

Více

Příloha č. 4. Specifikace Aerodynamického tunelu

Příloha č. 4. Specifikace Aerodynamického tunelu Technické podmínky Příloha č. 4 Specifikace Aerodynamického tunelu Výstavba vědeckotechnického parku včetně technologie aerodynamického tunelu 1. Základní požadavky Všeobecné požadavky Cirkulační aerodynamický

Více

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku

Více

FSI analýza brzdového kotouče tramvaje

FSI analýza brzdového kotouče tramvaje Konference ANSYS 2011 FSI analýza brzdového kotouče tramvaje Michal Moštěk TechSoft Engineering, s.r.o. Abstrakt: Tento příspěvek vznikl ze vzorového příkladu pro tepelný výpočet brzdových kotoučů tramvaje,

Více

VÝPIS MATERIÁLU 07 DOSTAVBA SEKCE OPTIKY - SLOVANKA. Atelier EGIS spol.s.r.o. Projektování a p íprava staveb Na Boti i5, Praha 10 106 00

VÝPIS MATERIÁLU 07 DOSTAVBA SEKCE OPTIKY - SLOVANKA. Atelier EGIS spol.s.r.o. Projektování a p íprava staveb Na Boti i5, Praha 10 106 00 Atelier EGIS spol.s.r.o. Projektování a p íprava staveb Na Boti i5, Praha 10 106 00 I O: 28375327 Tel.: Fax: e-mail: 272 769 786 272 773 116 info@egis.cz Investor: Místo stavby: Stavba: Profese: 0bsah

Více

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,

Více

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva)

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Byl sestaven zjednodušený matematický model pro dvojrozměrné (2D) simulace

Více

NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ

NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ Ing. Ondřej Švec Školitel: Prof. Ing. Pavel Ditl DrSc. Abstrakt : V textu se zabýváme řešením problematiky nátoku plynů do chemických reaktorů a jejich distribuce na

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

3D CFD simulace proudění v turbinovém stupni

3D CFD simulace proudění v turbinovém stupni 3D CFD simulace proudění v turbinovém stupni Bc. Petr Toms Vedoucí práce: Ing. Tomáš Hyhlík Ph.D. Abstrakt Tato studie se zabývá vlivem přesahu délky oběžné lopatky vůči rozváděcí na účinnost stupně. Přesahem

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

VLIV TVARU VÝSTUPNÍ HRANY LOPATKOVÉ MŘÍŽE NA PARAMETRY HYDRAULICKÉHO STROJE

VLIV TVARU VÝSTUPNÍ HRANY LOPATKOVÉ MŘÍŽE NA PARAMETRY HYDRAULICKÉHO STROJE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VLIV TVARU VÝSTUPNÍ HRANY LOPATKOVÉ MŘÍŽE

Více

Návrh hydraulického rozváděče a jeho numerické řešení proudění

Návrh hydraulického rozváděče a jeho numerické řešení proudění Návrh hydraulického rozváděče a jeho numerické řešení proudění Martin Veselý Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Cílem práce je provést geometrický návrh rováděče a numerický výpočet proudění

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

CFD ANALÝZA CHLAZENÍ MOTORU

CFD ANALÝZA CHLAZENÍ MOTORU CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus

Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus Trendy a zkušenosti z oblasti datových center Zpracoval: CONTEG Datum: 15. 11. 2013 Verze: 1.15.CZ 2013 CONTEG. Všechna práva vyhrazena.

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

Simulace letního a zimního provozu dvojité fasády

Simulace letního a zimního provozu dvojité fasády Simulace letního a zimního provozu dvojité fasády Miloš Kalousek, Jiří Kala Anotace česky: Příspěvek se snaží srovnat vliv dvojité a jednoduché fasády na energetickou náročnost a vnitřní prostředí budovy.

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Kompaktní vzduchotechnické jednotky s rekuperací tepla KOMFORT Ultra S Objem vzduchu až 300 m 3 /h Rekuperační účinnost až 85%

Kompaktní vzduchotechnické jednotky s rekuperací tepla KOMFORT Ultra S Objem vzduchu až 300 m 3 /h Rekuperační účinnost až 85% Kompaktní vzduchotechnické jednotky s rekuperací tepla KOMFORT Ultra S Objem vzduchu až 300 m 3 /h Rekuperační účinnost až 85% Popis: Vzduchotechnické jednotky pro přívod i odvod vzduchu v bytech, domech,

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

VĚTRÁNÍ HALY PRO VÝKRM KUŘAT

VĚTRÁNÍ HALY PRO VÝKRM KUŘAT 19. Konference Klimatizace a větrání 2010 OS 01 Klimatizace a větrání STP 2010 VĚTRÁNÍ HALY PRO VÝKRM KUŘAT Pavel Kic 1, Milan Zajíček 2 1 TF ČZU v Praze, Kamýcká 129, 165 21 Praha 6 - Suchdol 2 ÚTIA AV

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

PLOCHÉ KLIMATIZAČNÍ JEDNOTKY

PLOCHÉ KLIMATIZAČNÍ JEDNOTKY PLOCHÉ KLIMATIZAČNÍ JEDNOTKY Ploché klimatizační jednotky proč právě aeromaster fp? Klimatizační jednotky Aeromaster FP jsou ideální pro větrání a klimatizaci administrativních, obchodních, restauračních

Více

Výpočtová studie 2D modelu stroje - Frotor

Výpočtová studie 2D modelu stroje - Frotor Objednávka: 2115/0003/07 V Plzni dne: 20.5.2007 Ing. Zdeněk Jůza Západočeská univerzita v Plzni FST KKE Na Čampuli 726 Univerzitní 8 Tlučná Plzeň 330 26 306 14 Technická zpráva Výpočtová studie 2D modelu

Více

TZB - VZDUCHOTECHNIKA

TZB - VZDUCHOTECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-06 SOUČÁSTI VZDUCHOTECHNICKÝCH SYSTÉMŮ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

Vytápění BT01 TZB II cvičení

Vytápění BT01 TZB II cvičení CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Zadání U zadaného RD nadimenzujte potrubní rozvody

Více

Rekuperační jednotky

Rekuperační jednotky Rekuperační jednotky Vysoká účinnost výměníku účinnosti jednotky a komfortu vnitřního prostředí je dosaženo koncepcí výměníku, v němž dochází k rekuperaci energie vnitřního a venkovního vzduchu a takto

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

GEA Ultra-DENCO : Přesná klimatizace pro datová centra. Spolehlivost s nízkou spotřebou energie. 09/2012 (CZ) GEA Heat Exchangers

GEA Ultra-DENCO : Přesná klimatizace pro datová centra. Spolehlivost s nízkou spotřebou energie. 09/2012 (CZ) GEA Heat Exchangers GEA Ultra-DENCO : Přesná klimatizace pro datová centra Spolehlivost s nízkou spotřebou energie 09/2012 (CZ) GEA Heat Exchangers vysoké nízké Numerická simulace proudění Tlakové pole Tlakové pole na tepelném

Více

Clony a dýzy Měření průtoku pomocí tlakové diference

Clony a dýzy Měření průtoku pomocí tlakové diference Clony a dýzy Měření průtoku pomocí tlakové diference - Ověřený normovaný způsob měření - Přesné měření i pro rychle proudící páru a plyn - Absence pohyblivých prvků - Robustní a variabilní provedení -

Více

Přívodní ventilační jednotky BLAUBOX E Průtok vzduchu až 1520 m 3 /h

Přívodní ventilační jednotky BLAUBOX E Průtok vzduchu až 1520 m 3 /h Přívodní ventilační jednotky BLAUBOX E Průtok vzduchu až 1520 m 3 /h Popis: Ovladatelný přívod, ohřev a filtrace vzduchu. Připojitelný ke kruhovému potrubí Ø 100 až 315 mm. Vzhled: Kompaktní dvoustěnný

Více

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09 R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva ze vstupních měření na testovací trati stanovení TZL č. 740 08/09 Místo

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření rychlosti a rychlosti

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

POTRUBNÍ KLIMATIZAČNÍ JEDNOTKY

POTRUBNÍ KLIMATIZAČNÍ JEDNOTKY POTRUBNÍ KLIMATIZAČNÍ JEDNOTKY Potrubní klimatizační jednotky Proč právě Vento? Potrubní jednotky Vento jsou konstruovány tak, aby umožnily realizovat komplexní a přitom jednoduchá klimatizační zařízení.

Více

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných

Více

Porovnání rychlostního profilu ve vertikální trubici z numerické simulace a z experimentálního měření metodou PIV

Porovnání rychlostního profilu ve vertikální trubici z numerické simulace a z experimentálního měření metodou PIV Konference ANSYS 2009 Porovnání rychlostního profilu ve vertikální trubici z numerické simulace a z experimentálního měření metodou PIV Lávička D. Západočeská univerzita v Plzni, Univerzitní 22, 306 14

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Senzory průtoku tekutin

Senzory průtoku tekutin Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:

Více

Řešení vnější aerodynamiky kolejových vozidel

Řešení vnější aerodynamiky kolejových vozidel Řešení vnější aerodynamiky kolejových vozidel Milan Schuster Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 46, 301 00 Plzeň, e-mail: schuster@vzuplzen.cz Abstract: This paper deals with numerical simulations

Více

PREDIKCE A ANALÝZA VÝSKYTU COANDOVA JEVU

PREDIKCE A ANALÝZA VÝSKYTU COANDOVA JEVU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŢENÝRSTVÍ Energetický ústav Odbor termomechaniky a techniky prostředí PREDIKCE A ANALÝZA VÝSKYTU COANDOVA JEVU Zpráva o řešení projektu Fondu rozvoje vysokých

Více

Opláštění Opláštění je vyrobeno z aluzinku s 25mm vnitřní tepelnou a zvukovou izolační vrstvou minerální vlny.

Opláštění Opláštění je vyrobeno z aluzinku s 25mm vnitřní tepelnou a zvukovou izolační vrstvou minerální vlny. Rekuperační jednotky VUT EH VUT WH Vzduchotechnické rekuperační jednotky s kapacitou až 2200 m 3 /h (VUT EH) a 2100 m 3 /h (VUT WH) a účinností rekuperace až 85 % (VUT EH) a 78 % (VUT WH). Popis Vzduchotechnické

Více

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ VĚTRÁNÍ RODINNÝCH DOMŮ (PŘEDEVŠÍM V PASIVNÍCH STANDARDECH) 1. JAK VĚTRAT A PROČ? VĚTRÁNÍ K ZAJIŠTĚNÍ HYGIENICKÝCH POŽADAVKŮ FYZIOLOGICKÁ POTŘEBA ČLOVĚKA Vliv koncentrace CO 2 na člověka 360-400 ppm - čerstvý

Více

VÍŘIVÁ VÝUSŤ EMCO DRS 483/DRV 483

VÍŘIVÁ VÝUSŤ EMCO DRS 483/DRV 483 VÍŘIVÁ VÝUSŤ EMCO DRS 8/DRV 8 OBLASTI POUŽITÍ FUNKCE ZPŮSOB PROVOZOVÁNÍ Vířivá výusť DRS 8/DRV 8 Vířivá výusť typu DRS 8/DRV 8 je vysoce induktivní, s kruhovou nebo čtvercovou čelní maskou s vylisovanými

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Ing. Pavel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2

Ing. Pavel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2 Ing. vel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2 MODELOVÁNÍ PROUDĚNÍ METANU V PORÉZNÍM PROSTŘEDÍ S JEDNÍM AKTIVNÍM ODPLYŇOVACÍM VRTEM POMOCÍ CFD PROGRAMU FLUENT Abstrakt Článek reaguje

Více

MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU

MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU Autoři: Ing. Jan SZWEDA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB-Technická univerzita Ostrava, e-mail: jan.szweda@vsb.cz Ing. Zdeněk PORUBA, Ph.D.,

Více

PROJEKT STAVBY VZDUCHOTECHNIKA. Stavební úpravy, nástavba a přístavba. Domov pro seniory Kaplice. SO 01 a SO 02. ul. Míru 366 682 41 Kaplice

PROJEKT STAVBY VZDUCHOTECHNIKA. Stavební úpravy, nástavba a přístavba. Domov pro seniory Kaplice. SO 01 a SO 02. ul. Míru 366 682 41 Kaplice PROJEKT STAVBY VZDUCHOTECHNIKA Akce : Stavební úpravy, nástavba a přístavba Domova pro seniory Kaplice SO 01 a SO 02 Investor : Domov pro seniory Kaplice ul. Míru 366 682 41 Kaplice Vypracoval : L. Sokolík

Více

MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ

MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ P. Zubík * 1. Úvod Pracovníci Odboru fluidního inženýrství Victora Kaplana (OFIVK) Energetického ústavu Fakulty strojního inženýrství na

Více

Rekonstrukce větrání bytových domů CRVB ECOWATT inteligentní DCV systém

Rekonstrukce větrání bytových domů CRVB ECOWATT inteligentní DCV systém dálkový ovladač PROSYS ECOWATT Typ příslušenství Ø A B C Ø D E F G H I CRVB/4-315 ECOWATT 435 560 330 435 250 40 347 136 171 92 CRVB/4-355 ECOWATT 560 754 330 560 355 40 407 136 171 92 CRVB/4-400 ECOWATT

Více

Obsah. A) F1.4.c 1 Technická zpráva. B) Výkresy F1.4.c 2 půdorys 1.NP F1.4.c 3 půdorys 2.NP

Obsah. A) F1.4.c 1 Technická zpráva. B) Výkresy F1.4.c 2 půdorys 1.NP F1.4.c 3 půdorys 2.NP Obsah A) F1.4.c 1 Technická zpráva B) Výkresy F1.4.c 2 půdorys 1.NP F1.4.c 3 půdorys 2.NP Technická zpráva Úvod V rámci tohoto projektu stavby jsou řešeny základní parametry větrání obchodního centra Philips

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

Vzduchotechnické jednotky s rekuperací tepla KOMFORT LE Objem vzduchu až 2200 m 3 /h Rekuperační účinnost až 85%

Vzduchotechnické jednotky s rekuperací tepla KOMFORT LE Objem vzduchu až 2200 m 3 /h Rekuperační účinnost až 85% Vzduchotechnické jednotky s rekuperací tepla KOMFORT LE Objem vzduchu až 2200 m 3 /h Rekuperační účinnost až 85% Popis: Vzduchotechnické jednotky pro přívod i odvod vzduchu v bytech, domech, v chatách

Více

Divize Ventilátory & Megtec. Ventilátory pro Vás. Ventilátory ZVVZ a.s.

Divize Ventilátory & Megtec. Ventilátory pro Vás. Ventilátory ZVVZ a.s. Divize Ventilátory & Megtec Ventilátory pro Vás Ventilátory ZVVZ a.s. Divize Ventilátory & Megtec Profitcentrum Ventilátory Ve výrobním programu ZVVZ a.s. je rozsáhlá řada axiálních a radiálních ventilátorů,

Více

EVIDENČNÍ FORMULÁŘ. 3. Kategorie výsledku: ověřená technologie specializované mapy

EVIDENČNÍ FORMULÁŘ. 3. Kategorie výsledku: ověřená technologie specializované mapy EVIDENČNÍ FORMULÁŘ 1. Tvůrce(i): Jméno a příjmení, titul: Jana Jablonská, Ing., Ph.D. Adresa bydliště: Šimáčková 1220, Ostrava - Mariánské Hory, 70900 Název zaměstnavatele: VŠB-TU Ostrava Sídlo zaměstnavatele:

Více

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ Některé z možných uspořádání motoru se společnými ventily pro sání i výfuk v hlavě válce: 1 ČTYŘDOBÝ

Více

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací KATALOGOVÝ LIST VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací KM 12 3334 Vydání: 12/10 Strana: 1 Stran: 10 Ventilátory radiální vysokotlaké RVM 400 až 1250 jednostranně sací (dále

Více

R01-Z07 Rozdělení skladu komercí (01.S47) na 3 samostatné sklepy (01.567, 01.568, 01.569)

R01-Z07 Rozdělení skladu komercí (01.S47) na 3 samostatné sklepy (01.567, 01.568, 01.569) R01-Z07 Rozdělení skladu komercí (01.S47) na 3 samostatné sklepy (01.567, 01.568, 01.569) Obsah technické zprávy: 1/ Základní identifikační údaje akce 2/ Náplň projektu 3/ Výchozí podklady k vypracování

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

SOFTFLO S55. Softflo S55 určen k větrání nebo chlazení velkých prostor pouze přiváděným vzduchem.

SOFTFLO S55. Softflo S55 určen k větrání nebo chlazení velkých prostor pouze přiváděným vzduchem. Softlo technologie = dvakrát efektivnější dodávka přiváděného vzduchu Softlo technologie tichá a bez průvanu Zabírá dvakrát méně místa než běžné koncová zařízení Instalace na stěnu Softflo S55 určen k

Více

PŘÍLOHA KE KAPITOLE 12

PŘÍLOHA KE KAPITOLE 12 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství 1 PŘÍLOHA KE KAPITOLE 12 Disertační práce Příloha ke kap. 12 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Více

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Parametry Jako podklady pro výpočtovou dokumentaci byly zadavatelem dodány parametry: -hmotnost oběžného kola turbíny 2450 kg

Více

Time-Resolved PIV and LDA Measurements of Pulsating Flow

Time-Resolved PIV and LDA Measurements of Pulsating Flow Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 MĚŘENÍ PERIODICKÉHO PROUDĚNÍ METODOU TIME-RESOLVED PIV A LDA Time-Resolved PIV and LDA Measurements

Více

OPTIMA-RM. Převodník pro řešení vícezónového VAV systému

OPTIMA-RM. Převodník pro řešení vícezónového VAV systému Ventilátory Vzduchotechnické jednotky Distribuční elementy Požární technika Vzduchové clony Tunelové ventilátory OPTIMA-RM Převodník pro řešení vícezónového VAV systému 2 Regulátory variabilního průtoku

Více

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský Rovinný průtokoměr Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013 Autor: Vedoucí DP: Jakub Filipský Ing. Jan Čížek, Ph.D. Zadání práce 1. Proveďte rešerši aktuálně používaných způsobů a

Více

X-kříž. Návod k instalaci a použití

X-kříž. Návod k instalaci a použití X-kříž Návod k instalaci a použití 1 Obsah Název kapitoly strana 1. Měřicí princip X-kříže 2 2. Konstrukce 2 3. Využití 2 4. Umístění 3 5. Provedení 3 6. Instalace 4 7. Kompletace systému 7 8. Převod výstupu

Více

Ventilátory Vzduchotechnické jednotky Distribuční elementy Požární technika Vzduchové clony Tunelové ventilátory BOR. Difuzory pro rezidenční větrání

Ventilátory Vzduchotechnické jednotky Distribuční elementy Požární technika Vzduchové clony Tunelové ventilátory BOR. Difuzory pro rezidenční větrání Ventilátory Vzduchotechnické jednotky Distribuční elementy Požární technika Vzduchové clony Tunelové ventilátory BOR Difuzory pro rezidenční větrání 2 Difuzory Systemair výrobky pro rezidenční větrání

Více

doporučené pro instalaci v místnostech s výškou od cca 2,60... 4,00 m

doporučené pro instalaci v místnostech s výškou od cca 2,60... 4,00 m /11/TCH/ Stropní anemostaty Série DLQ ADLQ doporučené pro instalaci v místnostech s výškou od cca,6... 4, m TROX GmbH Telefon +4 8 88 8 organizační složka Telefax +4 86 881 87 Ďáblická e-mail trox@trox.cz

Více

6. Základy kreslení VZT zařízení

6. Základy kreslení VZT zařízení PROJEKT - vzduchotechnika 6. Základy kreslení VZT zařízení (Rozpracováno) Autor: Organizace: E-mail: Web: Ing. Vladimír Zmrhal, Ph.D. České vysoké učení technické v Praze Fakulta strojní Ústav techniky

Více

Modelování magnetického pole v železobetonových konstrukcích

Modelování magnetického pole v železobetonových konstrukcích Modelování magnetického pole v železobetonových konstrukcích Petr Smékal Anotace: Článek pojednává o modelování magnetického pole uvnitř železobetonových stavebních konstrukcí. Pro vytvoření modelu byly

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Vířivé anemostaty. doporučené použití v místnostech s výškou od cca 2,60... 4,00 m

Vířivé anemostaty. doporučené použití v místnostech s výškou od cca 2,60... 4,00 m 2/4/TCH/8 Vířivé anemostaty Série RFD doporučené použití v místnostech s výškou od cca 2,60... 4,00 m TROX GmbH Telefon +420 2 83 880 380 organizační složka Telefax +420 2 86 881 870 Ďáblická 2 e-mail

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

ZVVZ-Enven Engineering

ZVVZ-Enven Engineering ZVVZ-Enven Engineering, a.s., člen ZVVZ Group, je nositelem know-how a pokračovatelem tradičního dodavatele ZVVZ a.s. všech vzduchotechnických zařízení a jeho systémů pro jaderné elektrárny se všemi potřebnými

Více

Profesionální měřicí technika v kapesním formátu

Profesionální měřicí technika v kapesním formátu Budoucnost zavazuje Profesionální měřicí technika v kapesním formátu Měřicí přístroje pro vytápění, klimatizaci a ventilaci Pocket Line Testo, jako vedoucí výrobce přenosné měřicí techniky, přináší na

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Využití počítačové simulace CFD pro stanovení součinitelů místních ztrát

Využití počítačové simulace CFD pro stanovení součinitelů místních ztrát Počítačová simulace FD omputational Simulation FD P o č í t a č o v á s i m u l a c e F D o m p u t a t i o n a l S i m u l a t i o n F D Ing. Vladimír ZMRHAL, Ph.D. Ing. Jan SHWARZER, Ph.D. ČVUT v Praze,

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

FUNKČNÍ VZOREK WILSONOVA MŘÍŽ PRO AERODYNAMICKÝ TUNEL

FUNKČNÍ VZOREK WILSONOVA MŘÍŽ PRO AERODYNAMICKÝ TUNEL MODELOVÁNÍ A MĚŘENÍ INTERAKCÍ V TECHNICKÝCH SYSTÉMECH FUNKČNÍ VZOREK WILSONOVA MŘÍŽ PRO AERODYNAMICKÝ TUNEL Autor: Ing. Michal Kůs, Ph.D. Ing. Jindřich Kňourek, Ph.D. Ing. Petr Kovařík, Ph.D. Číslo projektu:

Více

Teorie přenosu tepla Deskové výměníky tepla

Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více