5 Stacionární magnetické pole HRW 28, 29(29, 30)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "5 Stacionární magnetické pole HRW 28, 29(29, 30)"

Transkript

1 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 31 5 Stacionární magnetické pole HRW 28, 29(29, 30) 5.1 Magneticképole,jehozdrojeaúčinkyHRW28(29) Permanentní magnet Vedle výhradně přitažlivé interakce gravitační se v makrosvětě setkáme s interakcí elektrickou (často zvanou elektrostatickou), která je přitažlivá i odpudivá, a magnetickou, která je podobně jako elektrická jak přitažlivá, tak odpudivá. Tuto vlastnost vykazují permanentní magnety(látka permanentně magnetické), např. přírodní minerál magnetovec, tvrdá ocel, umělé magnety slitiny kovůfe,ni,co,gd,mn,event.sdalšímipříměsemi,aleichemickyodlišnélátky,např.ferity. Jiné látky(měkké železo) vykazují podobné vlastnosti, ale jen v přítomnosti permanentních magnetů. Dosud jmenované látky jsou feromagnetické. Na ostatní látky má magnetické pole mnohem slabší vliv. Obecně jsou ze silnějšího magnetického pole vytlačovány(diamagnetikum), někdy je ale diamagnetismus překryt vlastnostmi paramagnetickými a látka je do silnějšího magnetického pole vtahována. Toto je velmi hrubá charakteristika. Teorie pevných látek vedle toho rozeznává(a zdůvodňuje) antiferomagnetismus, ferimagnetismus atd. Podrobnější pozorování ukáže, že všechna tělesa s těmito vlastnostmi se chovají jako analogie nikoli elektrických nábojů, ale dipólů: nejjednodušší strukturou jako by byla destička se severním pólem(s;n)najednéstraněajižnímpólem(j;s)nastranědruhé.stejnépólyseodpuzují,opačné přitahují, na elektricky náboj v klidu magnet nepůsobí. Tyčový magnet se chová rovněž jako složený z takových destiček a nejde proto získat magnetické póly jeho rozlomením. Podstatně později se zjistilo, že jako permanentní magnety se chovají i mnohé elementární částice kladný proton, neutrální neutron(složený z nabitých kvarků) i záporný elektron Proudová smyčka Zatímcomagnetybylyznámyodpradávna(ito,žeZeměsetakéchovájakovelkýmagnet,např. kompasy staré Číny nebo pojednání W. Gilberta z r. 1600), magnetické účinky elektrického proudu objevilažvr.1820dánskýfyzikhanschristianørsted( )aampèrezáhynato(1822) popsal interakci dvou vodičů protékaných elektrickým proudem jako interakci magnetickou. Připomeňme, že homogenně zmagnetovaná kruhová destička budí stejné pole jako smyčka tvořená jejím obvodem a protékaná vhodně velkým elektrickým proudem Silové účinky magnetického pole. Magnetická indukce a intenzita Vedle toho, že na sebe silově působí(v libovolných kombinacích) permanentní magnety i proudové smyčky, působí magnetické pole na pohybující se elektrický náboj, a to zásadně silou kolmou na jeho rychlost, tedy kolmou na okamžitý směr pohybu(1889 O. Heaviside, poté H. A. Lorentz, možná už ij.c.maxwell1865). Vduchupolníhopřístupuzavedememagnetickápole H, Bkpopisuinterakce.Bohužel,zhistorických důvodů(podle analogie předpokládající magnetické monopóly k bodovým elektrickým nábojům) je terminologie obrácená, než bychom zvolili dnes, takže nazýváme magnetickou indukci Bamagnetickou intenzitu H = B/µ 0 vevakuu,kde µ 0 jemagnetická konstanta neboli permeabilita vakua: µ 0 =4π 10 7 N m A 2 1, H/m (127) (Připomeňme,že ε 0 µ 0 c 2 0 =1.)Sílapůsobícínabodovýnáboj qpohybujícíserychlostí vjepak F= q E+q v B (128) (viz rov.(6)), první člen se nazývá Coulombova síla, druhý Lorentzova síla. Odtud také plyne jednotkamagnetickéindukce1tesla,t,kde1t=n/(c m/s)=n/(m A).Dříve(vsoustavěCGS) seužívalajednotka1gauss,1g=10 4 T. Sílapůsobícínanábojjevždykolmákesměrujehopohybuanekonátedypráci neměníenergii náboje, jen zakřivuje jeho dráhu. Sílu působící na permanentní magnet a na vodič protékaný proudem v poli odvodíme později.

2 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) PohybnábojevmagnetickémpoliHRW28-6,7(29.5,6) Uvasžujme pro jednoduchost volný kladný náboj q > 0(abychom nemuseli u velikostí ostatních veličinpsátabsolutníhodnoty)vhomogennímmagnetickémpoli B. Letí-linábojpodél siločáry B,nepůsobínanějodmagnetickéhopoležádnásíla,nábojtedy poletí stálou rychlostí dále po siločáře. Letí-livšakkolmoksiločáře,působínanějstálesílaovelikosti q vbkolmokesměrupohybu. Nedodávátedyenergii(velikost vrychlosti Vvnosičenábojeseprotonemění)anábojsebudepohybovat po kružnici o poloměru r takovém, aby dostředivá síla byla právě realizována Lorentzovou sílou: mv 2 r = qvb atedy (129) r = mv qb T = 2πr v =2πm qb ω = 2π T = qb m poloměr kružnice (130) doba oběhu (131) úhlová frekvence (132) (tzv. cyklotronová frekvence). Při obecném směru se náboj pohybuje v magnetickém poli po šroubovici kolem siločáry. Při dostatečném zhuštění siločar se náboj pohybuje po menších kružnicích a dá se dokázat, že má menší stoupání natolik, že od dostatečně velkého zesílení pole se bude po šroubovici odrážet(princip magnetických nádob či magnetických pastí) Ampérova síla HRW 28-8(29.7) Protože elektrický proud I souvisí s pohybem náboje vztahy I = J ds= ρ v ds, (133) S je zřejmé, že na elektrický proud I(přesněji: na přímý vodič délky L protékaný proudem o hodnotě I) bude v magnetickém poli působit síla S F= I L B, (134) kdevektor Lmávelikost Lasměrpodélvodičevesměrutokuproudu.Vdiferenciálnímtvaru pro infinitezimální úsek d r vodiče má tato Ampérova síla tvar Proudová smyčka HRW 28-9, 10(29.8, 9) d F= Id r B (Ampérovasíla). (135) (Obr.28(29)-21a28(29)-22.)Vhomogennímmagnetickémpoli Bvesměruosyxležíobdélníková smyčkaodélce avesměruosyyašířce bvroviněxzpodúhlem θkroviněyz,protékanáproudemi, otáčivákolemosysymetriešířek(směry).smyčkamáplochu S= ab.najejí i-toustranupůsobí síla F i kolmáktétostraněaležícívroviněyz(tedykolmok B).Je-lismyčkapevná,paksesíly našířky bnavzájemvyruší,alesílypůsobícínadélky amajíobecněrůznáumístěníx,aproto vytvářejí silovou dvojici působící na smyčku momentem síly M= IabBsinθ=ISBsinθ (136) hledícímstočitsmyčkudopolohysθ=0(tj.dorovinyyzkolmékpoli B). Je-li navzájem rovnoběžných smyček N, bude výsledná síla N H-krát větší, tedy M N =(NIS)Bsinθ (137)

3 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 33 kdy veličiny v závorce jsou konstanty dané konstrukcí cívky. Na tomto principu pracovaly analogové galvanoměry měřící(neznámý) proud I cívkou(než je vytlačily digitální měřidla) a jsou i podstatou elektromotorů(kdejepotřebazajistitnapř.setrvačnostípřeběhnutí mrtvé polohysθ=0a současně změnit orientaci proudu I cívkou). Z tohoto hlediska se cívka chová jako obdélníkový permanentní magnet mající magnetický dipólový moment µ rovný µ = N IS magnetický dipólový moment (138) sjednotkou[µ]=1a m 2 arov.(137)můžemevektorovězapsattvarem M N = µ B (139) podobně jako moment síly, kterým působilo elektrické pole na elektrický dipól. Analogicky odvodíme potenciální energii magnetického dipólu ve vnějším magnetickém poli jako E p = µ B (140) odkud je zřejmý i jiný zápis jednotky magnetického dipólového momentu [µ]=1a m 2 =1J/T (141) Odsud asi tušíte, proč jsme jako elementární magnet volili raději magnet destičkový než tyčový. 5.2 Magnetické pole elektrického proudu HRW 29(30) Biotův-Savartův zákon HRW 29-2(30.1) Vzorecpromagneticképoleelekrickéhoproudu navrhneme analogickyjakovzorecproelektrické pole elektrického náboje, jen s pár potížemi: 1. půjdeovektorovýproudovýelementd I= Id r,nikolioskalárníelementnábojedq ; 2. zatímco elementární náboj je fyzikálně přijatelný, je elementární proudový element lehce obskurní(odkud teče a kam?). Ale nějak to zvládneme(vždycky ho nakonec zintegrujeme podél uzavřené smyčky); 3. mělobysetojmenovat magnetickáintenzita,zatímcozhistorickýchdůvodůsetonazývá magnetickouindukcí,aprotototakéobsahujeparametrµ 0,kterýbypatřilkdefinicidosavadní intenzity H. Jako přijatelný se pro magnetické pole ve vakuu jeví tvar analogický Coulombovu zákonu rov.(13); (to µ 0 byvlastněpatřilojinam,atok Hdovztahu H= B/µ 0 vevakuu) db= µ 0 Id r R 0 4π R 2 (Biotův-Savartůvzákon) (142) sobvyklým R= r rajednotkovýmvektorem R 0 ;HRWužívá snamístonašeho r Magnetické pole přímého vodiče NRW 29-2 Napravíme potíž 2 z minulého odstavce tím, že spočteme magnetické pole nekonečného přímého vodičevosex(proudpřicházíznekonečnaadonekonečnasetakyvrací,cožtakynenízrovna ideální, ale pořád lepší než odnikud nikam). Pole zřejmě bude záviset jen na vzdálenosti r od osy xastačíhourčitnaosez;budemítsměryavelikost B( r) = = db = µ 0 4π µ 0 2π z I = µ 0I 2π z B(r) = µ 0I 2πr 0 Id r R R 3 dx µ 0I (x 2 +1) 3/2= 2π z = µ 0 4π I [ x (x 2 +1) 1/2 dx (x 2 +z 2 ) 3/2 (143) ] 0 (144) (mg. pole přímého vodiče na ose z) (145) (mg. pole přímého vodiče ve vzdálenosti r) (146)

4 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 34 Směr indukčních čar plyne z vektorového součinu a lze ho tedy popsat pravidlem pravé ruky: Položíme-li palec pravé ruky ve směru toku proudu, ukazují zahnuté prsty směr magnetických indukčních čar Síla mezi rovnoběžnými vodiči protékanými proudem HRW 29-3(30.2) Zeznáméhomagnetickéhopole Bjednohovodiče(rov.(146))azeznámésíly(rov.(134))působící nadruhývodičveznámémmagnetickémpoli Burčímeisměr,ivelikostsílypůsobícínarovnoběžné vodiče protékané proudem: Dvarovnoběžnévodičevevzdálenosti dprotékanéproudy I 1 a I 2 sepři stejné orientaci proudů přitahují, při opačné se odpuzují. Velikost síly na délku L je rovna F= µ 0I 1 I 2 L 2πd (147) Polezávitu,cívky,toroiduHRW29-3,5,6(30.4,5) Pole uprostřed závitu cívky spočítáme snadno: B = Γ B = µ 0I 2R µ 0 I 4π dγ µ 2π 0I dϕ R 2= 4π 0 R (148) (pole ve středu kruhové smyčky) (149) Má-li solenoid(dlouhá, hustě vinutá cívka s délkou L podstatně větší než poloměr R) N závitů protékaných proudem I, bude pole uvnitř homogenní. Šlo by ho ovšem rozněž spočíst integrací (princip superpozice), ale mnohem jednodušeji dostaneme záhy z Ampérova zákona vztah B= µ 0 I n (polevsolenoidu) (150) kde n = N/L je počet závitů na jednotku délky. Solenoid umožňuje jednoduše vytvořit ccelkem homogenní magnetické pole. Stočenímsolenoidudokružnice(prstenec, pneumatika )dostanemetoroid,důležitýnapř. při návrhu urychlovačů částic(např. TOKAMAK = rus. toroidaľnaja magnitnaja katuška). Opět z Ampérova zákona dostaneme celkem snadno, že pole uvnitř toroidu o celkovém počtu závitů N (mírně) klesá se vzdáleností r od středu podle vzorce B= µ 0I N 2π r avněideálníhotoroidujemagneticképolenulové: B= Ampérův zákon(ve vakuu) HRW 29-4(30.3) (pole v solenoidu) (151) Podobně jako je Coulombův zákon(určení pole známého náboje) ekvivalentní Gaussovu zákonu (určení náboje ze známého pole), je i Biotův-Savartův zákon ekvivalentní Ampérovu zákonu: B r=µ 0 I Σ (152) Γ kde I Σ jeúhrnnýproudprotékajícísmyčkouγ.orientaciurčíampérovopravidlopravéruky:

5 6 KVAZISTACIONÁRNÍ ELEKTROMAGNETICKÉ POLE 35 Ukazují-liprstysevřenépravérukyvesměrusiločar BpodélAmpérovykřivky,pakpalec ukazuje kladný směr elektrického proudu. 5.4 Ampérův zákon v látkovém prostředí Podobně jako v elektrickém poli, i v magnetickém poli chceme oddělit zdroje magnetického pole námi řízené od spontánních či indukovaných zdrojů přítomných v látkovém prostředí. Rozbor je zde mnohem složitější a méně názorný než u(prostých) elektrických nábojů a dipólů. 5.5 Intenzita magnetického pole 6 Kvazistacionární elektromagnetické pole Kvazistacionárnípoleje předposledním zobecněním:popisujeelektromagnetickéděje,alestále se všechny změny pole odehrávají synchronně se změnami jeho zdrojů tedy formálně, jako by se světlo(coby změna v elmg. poli) šířilo nekonečně rychle. 6.1 Zákon elektromagnetické indukce 6.2 Vlastní a vzájemná indukčnost vodičů 6.3 Energie magnetického pole

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety Magnetické pole Ve starověké Malé Asii si Řekové všimli, že kámen magnetovec přitahuje podobné kameny nebo železné předměty. Číňané kolem 3. století n.l. objevili kompas. Tyčový magnet (z magnetovce nebo

Více

Magnetické pole - stacionární

Magnetické pole - stacionární Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

Stacionární magnetické pole Nestacionární magnetické pole

Stacionární magnetické pole Nestacionární magnetické pole Magnetické pole Stacionární magnetické pole Nestacionární magnetické pole Stacionární magnetické pole Magnetické pole tyčového magnetu: magnetka severní pól (N) tmavě zbarven - ukazuje k jižnímu pólu magnetu

Více

Elektřina a magnetizmus magnetické pole

Elektřina a magnetizmus magnetické pole DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole

Více

FYZIKA II. Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce

FYZIKA II. Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce FYZIKA II Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce Osnova přednášky tenká cívka, velmi dlouhý solenoid, toroid magnetické pole na ose proudové smyčky

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

3.6. Magnetické pole a jeho vlastnosti

3.6. Magnetické pole a jeho vlastnosti 3.6. Magnetické pole a jeho vlastnosti 1. Vyjmenovat typické zdroje magnetického pole. 2. Znát vlastnosti homogenního a stacionárního magnetického pole. 3. Umět nakreslit magnetické indukční čáry v okolí

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Zapnutí a vypnutí proudu spínačem S.

Zapnutí a vypnutí proudu spínačem S. ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k

Více

Magnetické pole. Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů.

Magnetické pole. Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů. Magnetické pole Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů. Magnetické pole vytváří buď pemanentní magnet nebo elektromagnet. Magnet buzený elektrickým proudem, elektromagnet

Více

Název: Měření magnetického pole solenoidu

Název: Měření magnetického pole solenoidu Název: Měření magnetického pole solenoidu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Elektřina

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4. Magnetické pole je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4.1. Fyzikální podstata magnetismu Magnetické pole vytváří permanentní (stálý) magnet, nebo elektromagnet. Stálý magnet,

Více

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D15_Z_OPAK_E_Stacionarni_magneticke_pole_T Člověk a příroda Fyzika Stacionární

Více

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující

Více

MAGNETISMUS Magnetické pole následkem pohybu elektrických nábojů permanentní magnet elektromagnet póly severní jižní blízkosti elektrického proudu

MAGNETISMUS Magnetické pole následkem pohybu elektrických nábojů permanentní magnet elektromagnet póly severní jižní blízkosti elektrického proudu MAGNETISMUS Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů. Vytváří jej buď permanentní magnet nebo elektromagnet. Magnet přitahuje kovové předměty. Jeho silové účinky

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Přehled látky probírané v předmětu Elektřina a magnetismus

Přehled látky probírané v předmětu Elektřina a magnetismus Přehled látky probírané v předmětu Elektřina a magnetismus 1 Matematický aparát 1.1 Skalární a vektorová pole Skalární pole, hladina skalárního pole, vektorové pole, siločára, stacionární a nestacionární

Více

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení

Více

6 Pohyb částic v magnetickém poli

6 Pohyb částic v magnetickém poli Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Magnetizmus. Název: Autor:

Inovace a zkvalitnění výuky prostřednictvím ICT Magnetizmus. Název: Autor: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Magnetizmus Indukční zákon Ing. Radovan Hartmann

Více

Základy elektrotechniky - úvod

Základy elektrotechniky - úvod Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Magnetismus 1. ročník Učební obor: Kuchař číšník Kadeřník 2 - magnetické pole, magnetické pole elektrického proudu, elektromagnetická

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

21 MAGNETICKÉ POLE. 21.1 Lorentzova síla, Ampérův zákon silového působení

21 MAGNETICKÉ POLE. 21.1 Lorentzova síla, Ampérův zákon silového působení 221 21 MAGNETICKÉ POLE Lorentzova síla, Ampérův zákon silového působení Siotův-Savartův zákon, Ampérův zákon celkového proudu Síly v magnetickém poli Magnetické pole v reálném látkovém prostředí Indukční

Více

F6 - Magnetické vlastnosti látek Číslo variace: 1

F6 - Magnetické vlastnosti látek Číslo variace: 1 F6 - Magnetické vlastnosti látek Číslo variace:. Silové působení magnetu na magnetku je způsobeno magnetizací látky elektrickým polem gravitačním polem magnetickým polem. Dva tyčové magnety podle obrázku

Více

Z á k l a d y f y z i k y I I

Z á k l a d y f y z i k y I I Z á k l a d y f y z i k y I I Prezenční studium DFJP - obory DMML, TŘD RNDr Jan Z a j í c, CSc, 2004 4 MAGNETICKÉ JEVY 41 S T A C I O N Á R N Í M A G N E T I C K É P O L E Magnetické pole je jednou ze

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

Teorie elektromagnetického pole Laboratorní úlohy

Teorie elektromagnetického pole Laboratorní úlohy Teorie elektromagnetického pole Laboratorní úlohy Martin Bruchanov 31. května 24 1. Vzájemná induktivní vazba dvou kruhových vzduchových cívek 1.1. Vlastní indukčnost cívky Naměřené hodnoty Napětí na primární

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž

Více

Elektromagnetická indukce

Elektromagnetická indukce Elektromagnetická indukce Magnetický indukční tok V kapitolách o Gaussově zákonu elektrostatiky jsme vztahem (8.1) definovali skalární veličinu dφ e nazvanou tok elektrické intenzity (nebo také elektrický

Více

Název: Studium magnetického pole

Název: Studium magnetického pole Název: Studium magnetického pole Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika, Zeměpis Tematický celek: Elektřina a magnetismus

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektické a magnetické pole zdoje polí Co je podstatou elektomagnetických jevů Co jsou elektické náboje a jaké mají vlastnosti Co je elementání náboj a bodový elektický náboj Jak veliká je elektická síla

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

(2. Elektromagnetické jevy)

(2. Elektromagnetické jevy) (2. Elektromagnetické jevy) - zápis výkladu z 9. a 13. hodiny- B) Magnetické pole vodiče s proudem prochází-li vodičem elektrický proud vzniká kolem něj díky pohybujícímu se náboji (toku elektronů) magnetické

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34. Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_99 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

4. ELEKTROMAGNETICKÉ POLE 4.1 ELEKTROSTATICKÉ POLE

4. ELEKTROMAGNETICKÉ POLE 4.1 ELEKTROSTATICKÉ POLE 4 ELEKTROMAGNETICKÉ POLE 41 ELEKTROSTATICKÉ POLE Náboj Každý náboj je celistvým násobkem elementárního náboje: kde a je celé číslo Coulombův zákon Mezi dvěma náboji působí elektrostatická síla dána vztahem:

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Fyzikální praktikum pro nefyzikální obory. Úloha č. 10: Magnetizmus

Fyzikální praktikum pro nefyzikální obory. Úloha č. 10: Magnetizmus Ústav fyzikální elektroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum pro nefyzikální obory Úloha č. 10: Magnetizmus jarní semestr 2015 1 Magnetické pole stacionárních (ustálených)

Více

Elektřina a magnetismus věnováno všem, kteří mají zájem o fyziku a její radostné studium

Elektřina a magnetismus věnováno všem, kteří mají zájem o fyziku a její radostné studium Elektřina a magnetismus věnováno všem, kteří mají zájem o fyziku a její radostné studium kolektiv ÚFI FSI hypertextová verze vycházející z přepracovaných skript Fyzika II, autorů: Šantavý, Liška Copyright

Více

Magnetické vlastnosti látek část 02

Magnetické vlastnosti látek část 02 Magnetické vlastnosti látek část 02 A) Výklad: Feromagnetický materiál jedná se o materiál, který snadno podléhá magnetizaci stává se magnetem. (prostudovat - viz. kapitola 1.16 Jak si vyrobit magnet?)

Více

ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D.

ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D. ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D. třední škola, Havířov-Šumbark, ýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008

Více

Název: II.FYZIKÁLNÍ TESTY SOUHRNNÉ OPAKOVÁNÍ VY_52_INOVACE_F2.19. Vhodné zařazení: Časová náročnost: 45 minut Ověřeno: 5.6.2012. 8.

Název: II.FYZIKÁLNÍ TESTY SOUHRNNÉ OPAKOVÁNÍ VY_52_INOVACE_F2.19. Vhodné zařazení: Časová náročnost: 45 minut Ověřeno: 5.6.2012. 8. Název: II.FYZIKÁLNÍ TESTY SOUHRNNÉ OPAKOVÁNÍ VY_52_INOVACE_F2.19 Autor: Vhodné zařazení: Ročník: Petr Pátek Fyzika osmý- druhé pololetí Časová náročnost: 45 minut Ověřeno: 5.6.2012. 8.A Metodické poznámky:

Více

Stacionární magnetické pole

Stacionární magnetické pole Stacionární magnetické pole Magnetické pole se nachází v okolí planety Země, v okolí permanentních magnetů a také v okolí vodičů s proudem. Všechna tato pole budeme v laboratorní práci studovat za pomoci

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Elektrické vlastnosti látek

Elektrické vlastnosti látek Elektrické vlastnosti látek A) Výklad: Co mají popsané jevy společného? Při česání se vlasy přitahují k hřebenu, polyethylenový sáček se nechce oddělit od skleněné desky, proč se nám lepí kalhoty nebo

Více

7 Základní elektromagnetické veličiny a jejich měření

7 Základní elektromagnetické veličiny a jejich měření 7 Základní elektromagnetické veličiny a jejich měření Intenzity elektrického a magnetického pole, elektrická a magnetická indukce. Materiálové vztahy. Měrné metody elektrických a magnetických veličin.

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 41: ZÁVIT V HOMOGENNÍM POLI 2 OTÁZKA 42: ZÁVIT

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 5 Magnetické pole Pro potřeby

Více

Stejnosměrné generátory dynama. 1. Princip činnosti

Stejnosměrné generátory dynama. 1. Princip činnosti Stejnosměrné generátory dynama 1. Princip činnosti stator dynama vytváří budící magnetické pole v tomto poli se otáčí vinutí rotoru s jedním závitem v závitech rotoru se indukuje napětí změnou velikosti

Více

Ročník VI. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Látka a těleso IX X.. Seznámení s tím, co nás obklopuje, z čeho se tělesa skládají. Zavedení skupenství látek, vlastnosti atomů a molekul. Metoda monologická,dialogická, práce s knihou, s tabulkami,výukový

Více

ELEKTRICKÉ VLASTNOSTI LÁTEK. Mgr. Jan Ptáčník - GJVJ - Fyzika - Prima

ELEKTRICKÉ VLASTNOSTI LÁTEK. Mgr. Jan Ptáčník - GJVJ - Fyzika - Prima ELEKTRICKÉ VLASTNOSTI LÁTEK Mgr. Jan Ptáčník - GJVJ - Fyzika - Prima Elektrování třením Při tření těles z určitých materiálů působí tyto tělesa na drobné předměty silou. Tato síla je někdy přitažlivá,

Více

Kapacita. Gaussův zákon elektrostatiky

Kapacita. Gaussův zákon elektrostatiky Kapacita Dosud jsme se zabývali vztahy mezi náboji ve vakuu. Prostředí mezi náboji jsme charakterizovali permitivitou ε a uvedli jsme, že ve vakuu je ε = 8,854.1-1 C.V -1.m -1. V této kapitole se budeme

Více

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

4.5.1 Magnety, magnetické pole

4.5.1 Magnety, magnetické pole 4.5.1 Magnety, magnetické pole Předpoklady: 4101 Celá hodina je pouze opakování ze základky. Existuje speciální druh látek, které jsou schopny působit jedna na druhou nebo přitahovat železné předměty.

Více

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek 1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a

Více

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí

Více

4.5.7 Magnetické vlastnosti látek

4.5.7 Magnetické vlastnosti látek 4.5.7 Magnetické vlastnosti látek Předpoklady: 4501 Předminulá hodina magnetická indukce závisí i na prostředí, ve kterém ji měříme permeabilita prostředí = 0 r, r - relativní permeabilita prostředí (zda

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS X. Faradayův indukční zákon Obsah 10 FARADAYŮV INDUKČNÍ ZÁKON 10.1 FARADAYŮV INDUKČNÍ ZÁKON 10.1.1 MAGNETICKÝ TOK 10.1. LENZŮV ZÁKON 4 10. ELEKTROMOTORICKÉ NAPĚTÍ ZPŮSOENÉ POHYEM

Více

4.5.3 Magnetická síla

4.5.3 Magnetická síla 4.5.3 Magnetická síla Předpoklady: 4501, 4502 Okolo vodiče s proudem vzniká magnetické pole ( stává se z něj magnet ) pokud vodič s proudem dáme k magnetu bude na něj působit magnetická síla. Pokus: Podkovovitý

Více

Detail přístroje pro měření magnetických vlastností transformátorových jader a magneticky měkkých materiálů.

Detail přístroje pro měření magnetických vlastností transformátorových jader a magneticky měkkých materiálů. Transformátory Přístroje Remagraph a Remacomp (od firmy Dr. Steingroever) pro měření magnetických vlastností magneticky měkkých materiálů (hysterezích smyček a dynamických vlastností) např. transformátorových

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

Magnet 1) Magnet těleso, kolem kterého je magnetické (silové) pole 2) Mg.pole pozorujeme pomocí účinků mg. síly

Magnet 1) Magnet těleso, kolem kterého je magnetické (silové) pole 2) Mg.pole pozorujeme pomocí účinků mg. síly Magnet 1) Magnet těleso, kolem kterého je magnetické (silové) pole 2) Mg.pole pozorujeme pomocí účinků mg. síly 3) Magnet N severní mg. pól jižní mg. pól netečné pásmo Netečné pásmo oblast, kde je mg.

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Ing. Jakub Ulmann 5 Stacionární magnetické pole 5.1 Magnetické pole kolem

Více

Maturitní otázky z fyziky Vyučující: Třída: Školní rok:

Maturitní otázky z fyziky Vyučující: Třída: Školní rok: Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace

Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu: Číslo DUM: Tematická oblast: Téma: Autor: CZ.1.07/1.5.00/34.0245 VY_32_INOVACE_08_A_09

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9 Peter Dourmashkin MIT 006, překlad: Vítězslav Kříha (007) Obsah SADA 9 ÚLOHA 1: INDUKTOR ÚLOHA : SUPRAVODIVÉ MAGNETY ÚLOHA 3: MIXÉR ŘEŠENÍ ÚLOH 3 ÚLOHA 1: INDUKTOR

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

FYZIKA Elektrický náboj

FYZIKA Elektrický náboj Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Elektrický

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VIII. Úvod do magnetických polí Obsah 8 ÚVOD DO MAGNETICKÝCH POLÍ 2 8.1 ÚVOD 2 8.2 DEFINICE MAGNETICKÉHO POLE 3 8.3 MAGNETICKÁ SÍLA PŮSOÍCÍ NA ELEKTRICKÝ PROUD 3 8.4 MOMENT PŮSOÍCÍ

Více

4. Nakreslete hysterezní smyčku feromagnetika a popište ji. Uveďte příklady využití jevu hystereze v praxi.

4. Nakreslete hysterezní smyčku feromagnetika a popište ji. Uveďte příklady využití jevu hystereze v praxi. IZSE/ZKT 1 1.Definujte el. potenciál. Skalární fyzikální veličina, která popisuje potenciální energii jednotkového elektrického náboje v neměnném elektrickém poli. Značka: φ[v],kde W je potenciální energie

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více