LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

Rozměr: px
Začít zobrazení ze stránky:

Download "LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze"

Transkript

1 LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály vznikly v rámci projektu OPPA CZ.2.17/3.1.00/33306 Inovace předmětů a studijních materiálů pro e-learningovou výuku v prezenční a kombinované formě studia. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 ELEKTROMAGNETICKÉ BLUDIŠTĚ MOTIVACE Magnetické pole je fenomén, který poznáváme od dětství, kdy jsme si na lednici lepili magnetické obrázky, učili se zacházet s kompasem nebo si jen hráli s magnety a byli fascinováni jejich silou. Na základní škole nám ukázali jednoduchý experiment. Nad tyčový magnet dala paní učitelka papír s železnými pilinami a zatřásla s ním. Piliny se uspořádaly do nádherných obrazců. Vynořily se linie, kterým říkáme magnetické siločáry, přesněji magnetické indukční čáry. Každá zdroj magnetického pole má indukční čáry dvojího druhu. Jedny, které se do zdroje vracejí, těm říkáme uzavřené siločáry a druhé, které se do zdroje nikdy nevrátí, těm říkáme otevřené siločáry. Otevřené siločáry se napojují na siločáry z jiných zdrojů. U tyčového magnetu nebo magnetické střelky kompasu jde o siločáry vycházející z konců. Ty se napojují na siločáry magnetického pole Země. Právě proto střelka kompasu ví, kde je sever, a míří k němu. Samotné magnetické pole vzniká tam, kde se pohybují nabité částice. Jeho vznik popisují Maxwellovy rovnice elektrodynamiky. V permanentních magnetech není zdrojem pole pohyb částic, ale částice samotné. Jejich nenulový spin vytváří elementární magnetické dipóly, z nichž se skládá makroskopické pole. Nabité částice reagují na magnetické pole a působí na ně tzv. Lorentzova síla. Ta míří kolmo na siločáry magnetického pole a kolmo na rychlost pohybu částic. Právě tento fakt je velmi nezvyklý. U gravitačního i elektrického pole jsme si zvykli, že síly působí na spojnici částic. Zde je tomu zcela jinak. Pokud se nabitá částice pohybuje, působí síla, která je kolmá jak na směr jejího pohybu, tak na magnetické siločáry. Výsledkem je zakřivování trajektorie nabité částice, ta krouží po šroubovici podél magnetických siločar. Magnetické pole nemění energii částic, ale směr jejich pohybu. Nabité částice pohybující se po šroubovicích vyzařují elektromagnetický signál. To umožňuje u astronomických objektů, jako je například Slunce, zviditelnit siločáry za pomoci pohybu elektronů. Místo magnetických pilin nám siločáry zviditelní kroužící elektrony.

3 Magnetické siločáry slunečního pole zobrazené v UV oboru kroužícími elektrony. Sonda TRACE. Pohyb nabitých částic v magnetickém poli může být velmi komplikovaný. Nejjednodušším pohybem je krouživý pohyb kolem siločar. Částice se ale v přítomnosti dalšího pole mohou vydat kolmo na obě pole, pak říkáme, že částice driftují. V oblasti silnějšího pole může dojít k odrazu částic, tomuto jevu říkáme magnetické zrcadlo. Výukový modul, který jste právě otevřeli, se Vás pokusí formou hry seznámit s pohyby nabitých částic v magnetických polích. Tyto materiály vznikly v rámci projektu OPPA CZ.2.17/3.1.00/33306 Inovace předmětů a studijních materiálů pro e-learningovou výuku v prezenční a kombinované formě studia. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

4 ELEKTROMAGNETICKÉ BLUDIŠTĚ KE ČTENÍ Lorentzova síla Na nabitou částici pohybující se v magnetickém poli působí Loretzova síla, která je pojmenována po holandském fyzikovi Hendriku Antoonu Lorentzovi. Síla je úměrná náboji částice, indukci magnetického pole B, rychlosti pohybu částice v, a je kolmá jak na magnetické pole, tak na rychlost: F = Q v B (1) Na nepohybující se částice magnetická síla nepůsobí. Stejně tak nepůsobí, pohybuje-li se částice podél siločar, neboť vektorový součin dvou rovnoběžných vektorů dá nulu. Na částici působí síla pouze tehdy, pohybuje-li se kolmo na magnetické siločáry. Nejpřirozenějším pohybem je kroužení nabitých částic kolem magnetických siločar. Přidá-li se navíc volný pohyb konstantní rychlostí podél siločar, je výsledkem pohyb nabité částice po šroubovici. Takovému základnímu pohybu říkáme gyrační pohyb nebo Larmorův pohyb (podle irského fyzika a matematika Josepha Larmora). Hendrik Lorentz ( ) Joseph Larmor ( ) V homogenním poli se nabitá částice může pohybovat po kružnici (pokud nemá rychlost ve směru siločar). Poloměr a úhlovou frekvenci oběhu můžeme získat z rovnosti odstředivé a Loretzovy síly. Vzhledem ke kolmosti všech vektorů postačí napsat rovnost ve velikostech, tj. mv /R = QvB, kombinací se vztahem v = ωr snadno určíme ω = QB/m, (2) R = mv/qb. (3) Úhlové frekvenci oběhu se zpravidla říká cyklotronní nebo gyrační frekvence. Cyklotronní proto, že jde o frekvenci pohybu nabité částice v cyklotronu. Poloměr oběhu částice se nazývá Larnmorův poloměr. Roste s rychlostí částice a zmenšuje se se sílícím polem. Orientace šroubovice závisí na znaménku náboje částice (je na něm závislá jak cyklotronní frekvence, tak Larmorův poloměr). Pokud je magnetické pole nehomogenní, mohou být pohyby nabitých částic mnohem složitější, dochází k driftům a k odrazům v místech se silnějším magnetickým polem.

5 Drifty Typickým pohybem nabitých částic jsou kružnice nebo šroubovice kolem siločar magnetického pole. Tomuto pohybu se říká Larmorova rotace (gyrace, cyklotronní pohyb). Je-li v plazmatu přítomno další pole (například elektrické, gravitační, pole odstředivých sil), které se málo mění v čase a prostoru ve srovnání s periodou a poloměrem Larmorovy rotace, dochází k driftům. Jde o odvalování nabitých částic kolmo na elektrické (nebo jiné) a magnetické pole po křivkách, které nazýváme trochoidy (speciálním příkladem je cykloida). Rychlost odvalování (driftu) je vd = F B/(QB2). (4) Jde o rychlost pohybu gyračního středu. Ze vztahu je jasné, že je tato rychlost kolmá na dodatečné silové pole F a na základní magnetické pole B. Obecně je drift citlivý na znaménko náboje částice a elektrony driftují na jinou stranu než protony. Výjimkou je drift v elektrickém poli, kde je elektrická síla rovna F = QE a ve vztahu (4) se náboj v čitateli zkrátí s nábojem ve jmenovateli. V elektrickém poli driftují elektrony i protony stejným směrem. Velikost této rychlosti je vd = E sin α /B, kde α je úhel mezi elektrickými a magnetickými siločarami. Je známým faktem, že podíl elektrického a magnetického pole je typickou rychlostí v daném systému. V elektromagnetické vlně je například E/B = c. V plazmatu jde o typickou rychlost driftovámí (odvalování) částic. K nejznámějším driftům patří: E B drift (napříč elektrickému a magnetickému poli, elektrická síla) Gravitační drift (napříč gravitačnímu a magnetickému poli, gravitační síla) Grad B drift (způsobený změnou hustoty silokřivek magnetického pole, sílou grad B) Drift zakřivení (způsobený zakřivením silokřivek magnetického pole, odstředivá síla) Polarizační drift (způsobený pomalou změnou elektrického pole s časem, indukovaná síla) Pohyby nabitých částic nemusí být jen gyrační. Může docházet k driftům, tj. jejich kolmému odvalování v přítomnosti dalšího pole. Magnetické zrcadlo Pokud se částice pohybuje pomalu proměnným magnetickým polem, bude se měnit sklon gyrační kružnice vzhledem k magnetickým indukčním čarám. Označme úhel mezi rychlostí částice a indukčními čarami α: Pohyb nabité částice popisuje tzv. zrcadlová rovnice: sin2 α /B = const. (5) Sklon pohybu částice k siločarám se tedy dynamicky nastavuje podle síly pole. Rovnici lze také přepsat do tvaru sin2 α /B = sin2 α0 /B0. (6)

6 Index 0 označuje hodnoty pole a úhlu v místě nástřelu částice. Do čím silnějšího pole se dostane částice, tím kolměji je postavena její Larmorova šroubovice. Pokud bude rovina gyrace kolmá k poli (α = 90 ), částice se odrazí. Z rovnice (6) plyne, že částice nastřelená pod úhlem α0 v místě s polem B0, bude obrácena zpět, vzroste-li velikost pole na kritickou hodnotu Bc = B0/sin2 α0. (7) Nedosáhne-li magnetické pole této hodnoty, částice oblastí hustých indukčních čar prolétne. Máme-li naopak zadáno maximální pole Bc, potom ze systému v místě s polem B uniknou všechny částice s úhlem α < α0 (tzv. únikový kužel). V oblasti hustších siločar (intenzivnějšího magnetického pole) může dojít k odrazu gyrující částice. Některé částice ale touto oblastí proniknou. Pohyb v magnetickém dipólu V magnetickém dipólu (například v dipólovém poli Země) koná nabitá částice tři periodické pohyby. Prvním je gyrační pohyb kolem siločar. Druhým pohybem je pendlování částic od pólu k pólu. V polárních oblastech je pole silnější a částice se zde odrážejí efektem magnetického zrcadla. Třetí periodický pohyb souvisí s drifty. Nabité částice se pohybují podél siločar Země, které jsou zakřivené. Na gyrační střed tak působí obdoba odstředivé síly, která způsobí drift v azimutálním (rovníkovém) směru. Částice pendlující mezi póly se tak současně pohybuje v azimutálním směru, přeskakuje ze siločáry na siločáru a obíhá dipól ve směru magnetického rovníku. Pohyb nabitých částic v magnetickém dipólu Země

7 ELEKTROMAGNETICKÉ BLUDIŠTĚ NÁVOD/START Magnetické bludiště je tříúrovňová úloha, ve které se formou hry seznámíte s pohyby nabitých částic v magnetických polích. Vaším cílem je projít klikatou cestou, na které můžete k ovlivnění pohybu částice používat elektrické a magnetické pole a současně měnit náboj částice. V první úrovni se pokusíte projít homogenním magnetickým polem. Naučíte se, jak probíhá gyrace nabitých částic v homogenním pole. Ve druhé úrovni se budete potýkat s polem nehomogenním, kde v silnějším poli bude docházet k odrazu nabitých částic (jevu magnetického zrcadla). Pokud chcete projít oblastí silného pole, musíte porozumět základním principům magnetického zrcadla. V třetí úrovni se setkáte s kombinací magnetického a dalšího pole. Tato kombinace vede k driftům a pro úspěšné dokončení této úrovně musíte pochopit, jak drifty fungují. Doporučené rozlišení: 1680 na Doporučený procesor: Intel pentium M 2GHz a lepší. Doporučená grafická karta: ATI Radeon X700 a lepší. Microsoft Silverlight: Je potřeba udělit oprávnění aplikaci v nabídce Start Všechny programy Microsoft Silverlight Microsoft Silverlight. Na záložce Oprávnění je třeba povolit 3D grafika: použít blokované ovladače zobrazení pro aplikaci

8 ELEKTROMAGNETICKÉ BLUDIŠTĚ OTÁZKY Vyplňte prosím následující jednoduchý test, který ověří, zda jste porozuměli problematice pohybu nabitých částic v magnetickém poli. V jedné otázce může být i několik správných odpovědí nebo nemusí být správná žádná. Po vyplnění stiskněte tlačítko Odeslat. 1. Lorentzova síla působí na všechny částice působí jen na nabité částice působí na elektrony 2. Lorentzova síla je kolmá na magnetické siločáry působí na spojnici nabitých částic míří podél magnetických siločar 3. Lorentzova síla míří ve směru pohybu částice je nulová pro nepohybující se částici je nepřímo úměrná druhé mocnině rychlosti částice 4. Drifty jsou kolmé na magnetické pole a rovnoběžné s dalším polem jsou kolmé na magnetické a další pole 5. Drifty probíhají vždy probíhají, pokud se pole mění málo na Larmorově otočce jsou pohyby, při kterých plazma unáší nabitou částici 6. K jevu magnetického zrcadla dochází v kombinaci elektrického a magnetického pole může dojít v oblasti slabšího magnetického pole může dojít v oblasti silnějšího magnetického pole 7. K driftu může dojít v magnetickém a elektrickém poli v magnetickém a gravitačním poli pokud jsou siločáry magnetického pole zakřivené 8. Magnetické zrcadlo odrazí všechny nabité částice odrazí všechny částice odrazí jen některé nabité částice 9. Pohyb těles se počítá z Drakeovy rovnice za pomoci diferenciálních rovnic většinou numericky 10. V zemském magnetickém dipólu koná nabitá částice jeden periodický pohyb dva periodické pohyby tři periodické pohyby čtyři periodické pohyby Odeslat Obnovit

9 ELEKTROMAGNETICKÉ BLUDIŠTĚ DALŠÍ ČTENÍ Algoritmus pohybu nabitých částic Pro částici sestavíme pohybovou rovnici. Na částici bude působit Lorentzova síla způsobená magnetickým polem B, síla způsobená elektrickým polem E a další silové pole F. Výsledná pohybová rovnice nabité částice bude (1) což je soustava tří obyčejných diferenciálních rovnic druhého řádu pro polohy x(t), y(t), a z(t) nabité částice. Výhodnější je ale řešení soustavy šesti rovnic prvního řádu ve tvaru (2) Známe-li počáteční polohu a rychlost částice, můžeme použít některou standardní metodu na řešení diferenciálních rovnic, například Rungeovu-Kuttovu metodu 4. řádu, která je implementovaná v každém programovém celku pro numerické výpočty (například Mathematica, MATLAB atd.). Pro jistotu zde uvádíme příslušný diferenční předpis: Označme ξ = (r, v) šestici poloh a rychlostí částice, tedy budeme hledat hodnoty ξ1 až ξ6. První tři hodnoty jsou polohy, další tři jsou rychlosti. Námi hledané funkce ξk(t); k = 1,... 6 splňují soustavu rovnic (2), kterou přepíšeme do tvaru (3) Časovou osu rozdělíme na dílky s intervalem Δt. Předpokládejme, že známe polohu a rychlost v počátečním čase t0. Potom určíme (4) a přibližné řešení v čase t + Δt dostaneme ze vztahů (5) Tím známe řešení v čase t + Δt a postup můžeme opakovat. přesnosti výpočtu, konvergence a případně další metody lze nalézt v odborné literatuře. Materiály souvisící s tématem Na serveru Aldebaran jsme k tématu elektromagnetické interakce připravili materiály, ve kterých si prosím vyhledejte příslušné pasáže: [1] Petr Kulhánek: Teoretická mechanika; Praha 2012, [2] Petr Kulhánek: Úvod do teorie plazmatu; Praha 2011, [3] MIT: Kurz elektřiny a magnetizmu 8.02T; lokalizace AGA, 2007.

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály

Více

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály

Více

5 Stacionární magnetické pole HRW 28, 29(29, 30)

5 Stacionární magnetické pole HRW 28, 29(29, 30) 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 31 5 Stacionární magnetické pole HRW 28, 29(29, 30) 5.1 Magneticképole,jehozdrojeaúčinkyHRW28(29) 5.1.1 Permanentní magnet Vedle výhradně přitažlivé interakce

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

Elektřina a magnetismus úlohy na porozumění

Elektřina a magnetismus úlohy na porozumění Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

6 Pohyb částic v magnetickém poli

6 Pohyb částic v magnetickém poli Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektrické a magnetické pole zdroje polí Podstata elektromagnetických jevů Elementární částice s ohledem na elektromagnetické působení Elektrické a magnetické síly a jejich povaha Elektrický náboj a jeho

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

Měrný náboj elektronu

Měrný náboj elektronu Měrný náboj elektronu Miroslav Frantes 1, Tomáš Hejda 2, Lukáš Mach 3, Ondřej Maršálek 4, Michal Petera 5 1 miro11@seznam.cz; Gymnázium Benešov, 2 tohe@centrum.cz; Gymnázium Christiana Dopplera, Praha

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

Vzájemné silové působení

Vzájemné silové působení magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

Magnetické pole - stacionární

Magnetické pole - stacionární Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující

Více

ELEKTROMAGNETICKÉ POLE

ELEKTROMAGNETICKÉ POLE ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E.

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. MAGNETICKÉ POLE V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. Podobně i magnety vytvářejí pole v každém bodě prostoru.

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů

Více

Úvod do vln v plazmatu

Úvod do vln v plazmatu Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní

Více

Datum: 23. 8. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Datum: 23. 8. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34. Datum: 23. 8. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_97 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

Zapnutí a vypnutí proudu spínačem S.

Zapnutí a vypnutí proudu spínačem S. ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Věra Keselicová. květen 2013

Věra Keselicová. květen 2013 VY_52_INOVACE_VK62 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová květen 2013 8. ročník

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Název: Měření magnetického pole solenoidu

Název: Měření magnetického pole solenoidu Název: Měření magnetického pole solenoidu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Elektřina

Více

MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA)

MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA) MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA) Aplikace : Magnetický HD Snímání binárního signálu u HD HD vývoj hustota záznamu PC hard disk drive capacity (in GB). The vertical axis is logarithmic,

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

NESTACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Masarykovo gymnázium Vsetín Autor: Mgr. Jitka Novosadová DUM: MGV_F_SS_3S3_D16_Z_OPAK_E_Nestacionarni_magneticke_pole_T Vzdělávací obor: Člověk a příroda Fyzika Tematický okruh: Nestacionární magnetické

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Elektrické pole,

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

3.6. Magnetické pole a jeho vlastnosti

3.6. Magnetické pole a jeho vlastnosti 3.6. Magnetické pole a jeho vlastnosti 1. Vyjmenovat typické zdroje magnetického pole. 2. Znát vlastnosti homogenního a stacionárního magnetického pole. 3. Umět nakreslit magnetické indukční čáry v okolí

Více

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci! Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7 Peter Dourmashkin MIT 6, překlad: Vítězslav Kříha (7) Obsah SADA 7 ÚLOHA 1: HMOTNOSTNÍ SPEKTROMETR ÚLOHA : LEVITACE CÍVKY ÚLOHA : STŘELKA KOMPASU ŘEŠENÍ ÚLOH 4 ÚLOHA

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ

Více

Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice

Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice podzim 2008, pátá přednáška Derivace a tečny aneb matematika libovolně malých změn Nejen velké,

Více

Název: Studium magnetického pole

Název: Studium magnetického pole Název: Studium magnetického pole Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika, Zeměpis Tematický celek: Elektřina a magnetismus

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Alena Škárová Název: Magnetická indukce

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34. Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_99 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

ELEKTROMAGNETISMUS ELEKTRO MAGNETISMUS

ELEKTROMAGNETISMUS ELEKTRO MAGNETISMUS ELEKTROMAGNETISMUS ELEKTRO MAGNETISMUS úvodní poznámky klasický elektromagnetismus: ve smyslu nekvantový, tj. všechny veličiny měřitelné s libovolnou přesností klasická teorie měla dnešní podobu již před

Více

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D15_Z_OPAK_E_Stacionarni_magneticke_pole_T Člověk a příroda Fyzika Stacionární

Více

Stacionární magnetické pole Nestacionární magnetické pole

Stacionární magnetické pole Nestacionární magnetické pole Magnetické pole Stacionární magnetické pole Nestacionární magnetické pole Stacionární magnetické pole Magnetické pole tyčového magnetu: magnetka severní pól (N) tmavě zbarven - ukazuje k jižnímu pólu magnetu

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze

LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Faradayův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Faradayův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Faradayův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 7. FARADAYŮV ZÁKON 7.1 ÚKOLY 7. ALGORITMUS PRO ŘEŠENÍ ÚLOH FARADAYOVÝM ZÁKONEM

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Magnetismus 1. ročník Učební obor: Kuchař číšník Kadeřník 2 - magnetické pole, magnetické pole elektrického proudu, elektromagnetická

Více

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety Magnetické pole Ve starověké Malé Asii si Řekové všimli, že kámen magnetovec přitahuje podobné kameny nebo železné předměty. Číňané kolem 3. století n.l. objevili kompas. Tyčový magnet (z magnetovce nebo

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

18. Stacionární magnetické pole

18. Stacionární magnetické pole 18. Stacionární magnetické pole 1. "Zdroje" magnetického pole a jeho popis a) magnetické pole tyčového permanentního magnetu b) přímého vodiče s proudem c) cívky s proudem d) magnetická indukce e) magnetická

Více

Název: Základní pokusy na elektromagnetickou indukci

Název: Základní pokusy na elektromagnetickou indukci Název: Základní pokusy na elektromagnetickou indukci Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Plazma v kosmickém prostoru

Plazma v kosmickém prostoru Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

FYZIKA II. Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce

FYZIKA II. Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce FYZIKA II Petr Praus 8. Přednáška stacionární magnetické pole (pokračování) a Elektromagnetická indukce Osnova přednášky tenká cívka, velmi dlouhý solenoid, toroid magnetické pole na ose proudové smyčky

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

Magnetické pole drátu ve tvaru V

Magnetické pole drátu ve tvaru V Magnetické pole drátu ve tvaru V K prvním úspěchům získaným Ampèrem při využívání magnetických jevů patří výpočet indukce magnetického pole B, vytvořeného elektrickým proudem procházejícím vodiči. Srovnáme

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus Kapitola 3 Magnetické vlastnosti látky Velká část magnetických projevů je zejména u paramagnetických a feromagnetických látek způsobena především spinovým magnetickým momentem. Pokud se po sečtení všech

Více

Harmonický pohyb tělesa na pružině

Harmonický pohyb tělesa na pružině EVROPSKÝ SOCIÁLNÍ FOND Harmonický pohyb tělesa na pružině PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více