Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Rozměr: px
Začít zobrazení ze stránky:

Download "Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou"

Transkript

1 INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: Cetrum pro rozvoj výzkumu pokročilých řídicích a sezorických techologií CZ.1.07/2.3.00/ TENTO STUDIJNÍ MATERIÁL JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

2

3 OBSAH Obsah Optické vlastosti atmosféry Země Útlum optického zářeí Absorpce optického zářeí Rozptyl optického zářeí v atmosféře Turbulece vzduchu Vliv atmosféry a optický sigál Vliv statických vlivů Vliv dyamických vlivů Model detekce turbulece metodou plovoucího bodu Predikce pozice bodu ve frekvečí oblasti Rekostrukce optického sigálu Rekostrukce obrazu s využitím hardwarových prostředků Spektrálí filtrace optického sigálu Prostorově-frekvečí filtr Rekostrukce obrazu s využitím softwarových prostředků Lieárí zpracováí obrazu Sychroí símáí a pokročilé metody zpracováí obrazu Restaurace dyamických vlivů a optický sigál Závěr Sezam použité literatury

4 1. OPTICKÉ VLASTNOSTI ATMOSFÉRY ZEMĚ Pro plohodotý popis pozorovaých scé je uto zahrout eje vlastí vlastosti použitého přístroje, operátora a pozorovaé scéy samoté, ale i přeosové vlastostí prostředí atmosféry. Právě atmosféra Země je jedou z klíčových vlastostí, a kterých závisí kvalita přijímaého optického sigálu. S rostoucí vzdáleostí objektů je vliv atmosféry stále markatější. V této části je proto provede zjedodušeý popis základích vlivů, které výsledý optický sigál ovlivňují. V popisu jsou zahruty oba její domiatí vlivy útlum optického zářeí i turbulece atmosféry Útlum optického zářeí Zjišťováí charakteristik pozorovaých objektů apř. jejich vzdáleostí) je závislé mj. a okamžitém stavu atmosféry. Na základě zalosti tohoto vlivu je možé provádět aalýzu vlivu atmosféry a přeášeou obrazovou iformaci a tím i míru vlivu a vlastí parametry optického, popř. optoelektroického přístroje. K výše uvedeým vlivům přispívají estejou vahou růzé fyzikálí jevy v atmosféře se vyskytující. Mezi ejvýrazější patří absorpce a rozptyl optického zářeí souhrě ozačovaé jako útlum optického zářeí a turbulece atmosféry. Útlum optického zářeí způsobuje zejméa pokles itezity optického zářeí a pokles kotrastu pozorovaého objektu. Na útlumu optického zářeí v atmosféře je dá součtem 2 ezávislých fyzikálích jevů absorpce a rozptylu. V obou případech se jedá v relativě krátkém časovém rozmezí miuty, desítky miut) z pohledu pozorovatele o děje prakticky statické. Stěžejí pro modelováí útlumu optického zářeí je proto staoveí přeosové fukce atmosféry v závislosti a útlumu optického zářeí. 2

5 Scéa Rozptyl Absorpce Turbulece atmosféry Pozorovaý obraz scéy Obrázek 1.1 Schéma vlivů působících v atmosféře a výsledé zobrazeí Obrázek 1.2 ilustruje vliv atmosféry a pozorovaý objekt. Obrázek 1.2a demostruje objekt pozorovaý z krátké vzdáleosti. Obrázek 1.2b pak ukazuje stejou scéu pozorovaou a hraici meteorologické dohledosti v tomto případě 3 km). Při porováí obou símku je patrý pokles kvality zobrazeí pozorovaého objektu. a) b) Obrázek 1.2 Vliv atmosféry a zobrazeí vzdáleých objektů. a) símek ezatížeý vlivem atmosféry, b) símek po průchodu atmosférou 3

6 Absorpce optického zářeí K absorpci optického zářeí dochází v atmosféře zejméa: vodími parami, kysličíkem uhličitým CO 2 ) a aerosolovými částicemi. Pro účely této práce je postačující přiblížeí, ve kterém je zahruta pouze absorpce vodími parami. Základem pro vyhodoceí je možství obsažeé vody w l a optické trase. Teto parametr je číselě rove výšce vodího sloupce [mm], který vzike zkodezováím všech vodích par a trase délky l. Je urče vztahem uvedeým apř. v [5]. w l T RH ph O p l p 0, 1.1) kde pro výpočet parciálího tlaku asyceých vodích par lze využít s výhodou aproximačí vztah: p i mi T ), 2 H O 3 i0 1.2) kde: koeficiety m i mají hodotu: m 0 = Pa, m 1 = PaK -1, m 2 = PaK -2, m 3 = PaK -3. Hledaou spektrálí trasmitaci atmosféry H2O ) lze ásledě z možství zkodezovaé vody w l přímo určit z tabelovaých hodot viz apř. *1+). Model atmosféry využívá tabelovaých hodot k aproximaci hodot postačuje lieárí iterpolace) mezi dvěmi ejbližšími sousedími hodotami. Takto staoveá hodota je určea s dostatečou přesostí. Spektrálí koeficiet absorpce pak je urče rovicí *1+: ) p s p0 0.9 l. 1.3) Zpřesěí určeí celkového spektrálího koeficietu absorpce je možé především zahrutím vlivu CO 2. Hodoty spektrálí trasmitace CO 2 jsou rověž tabelovaé apř. *2+) pro hodotu CO 2 0,03 % a stadardí atmosférické podmíky dle stadardí atmosféry USSA

7 Obrázek 1.3 Optické vlastosti atmosféry Země Na absorpci optického zářeí zejméa v přízemích vrstvách se podílí rověž aerosol v í obsažeý. Pro vyčísleí jeho vlivu je zpravidla přijato zjedodušeí rovoměrého rozložeí aerosolu podél trasy. Teto předpoklad sižuje přesost určeí hodoty w a, ale pro přibližé určeí spektrálího koeficietu absorpce vodími částicemi ho lze připustit *1]. Z hodoty w a pak lze staovit spektrálí koeficiet absorpce vodími aerosolovými částicemi a ) podobě jako pro případ vodích par Rozptyl optického zářeí v atmosféře Druhým důležitým faktorem ovlivňující útlum optického sigálu v atmosféře je rozptyl optického zářeí. K rozptylu optického zářeí dochází v atmosféře jak a jejích vlastích složkách molekuly vlastích plyů zejméa dusíku, kyslíku a kysličíku uhličitého, ), tak i a aerosolových částicích, které jsou v í obsažey. Pro účely této práce je uvažová pouze rozptyl vziklý a aerosolových částicích. Rozptyl a vlastích složkách molekuly vlastích plyů zejméa dusíku, kyslíku a kysličíku uhličitého) je pro jeho velikost zaedbá. Atmosférický aerosol se vyzačuje začě variabilím rozložeím v čase i prostoru. Rověž rozměrové složeí jedotlivých druhů aerosolu je začě 5

8 proměé. Přitom aerosol se podílí v běžých středoevropských podmíkách v přízemích vrstvách atmosféry a celkové hodotě rozptylu rozhodující měrou. Model pro přibližé určeí spektrálího koeficietu rozptylu ) [km -1 + lze určit ze vztahu [3]: 0,585 1 / 3 S m 3,91 0,55, S m kde: S m... meteorologická dohledost *km+. 1.4) Ze zámých vlastostí útlumu lze ásledě popsat vliv útlumu a optický sigál. Te je možé výhodě popsat obecě komplexí přeosovou fukcí systému tj. v tomto případě atmosféry). Protože v této práci je řešea pouze otázka přeosové fukce z hlediska přeosu ekoheretího optického sigálu je dále pracováo pouze s modulem této fukce - modulačí přeosovou fukcí MTF). Pro jedoduchost je dále předpokládáo, že je vliv atmosféry homogeí v celém zorém poli pozorovacího přístroje. MTF se měí během de je velmi pozvola. Proto ji lze z pohledu krátkodobého pozorováí považovat za statickou. Na základě zalosti koeficietu absorpce a rozptylu lze vyjádřit zjedodušeý model MTF útlumu optického zářeí v atmosféře ve tvaru [5]: exp [ ) s ) s f r f c 2 ],pro f r f c, 1.5) M f, r, ) a r exp [ ) )] s, pro f r f c, kde: ).. spektrálí koeficiet absorpce *km -1 ], ).. spektrálí koeficiet rozptylu [km -1 ], s.. délka trasy *km+, r.. char. poloměr částice aerosolu [m],.. vlová délka optického zářeí *m], f r.. prostorová frekvece *čar/rad+, f c.. mezí prostorová frekvece *čar/rad+, kde:, r f c. 6

9 1.2. Turbulece vzduchu Z pohledu pozorovatele turbulece atmosféry způsobuje zejméa prostorově závislý odklo optického zářeí od původího směru šířeí což se v roviě pozorovatele projevuje fluktuacemi amplitudy optického zářeí a geometrickými deformacemi pozorovaého obrazu. Pro popis vlivu turbulece je používá strukturálí parametr idexu lomu C 2. V *5+ byl experimetálě ověře regresiví model umožňující určeí C 2 pomocí stadardě měřeých meteorologických údajů: C A W B T C RH C RH C RH D WS D WS D WS E SF F TCSA G 1.6) kde: W... časová váhová fukce viz. obrázek 1.4), A1,B1,C1,C2,C3,D1,D2,D3,E1,F1,F2,G... regresí koeficiety [5]. Obrázek 1.4 Průběh časové váhové fukce popisující vývoj turbulece během de Obdobě jako v případě útlumu lze staovit MTF turbulece atmosféry. Na základě zalosti strukturálího parametru idexu lomu C 2 lze MTF turbulece atmosféry se zohleděím délky expozice jedoho símku defiovat jako *5+: 7

10 5/ 3 2 1/ 3 a) pro dlouhé expozice: MTFturbulexp 57.3 fr C s) b) pro krátké expozice: 1.7) kde: MTF turbul exp 57.3 f 5/ 3 r C 2 1/ 3 f r... prostorová frekvece *čar/rad+, f s 1 x D C 2 strukturálí parametr idexu lomu [m 2/3 ],... vlová délka *m], r 1/ 3, s... délka trasy *km+, x... je rove 1 pro blízké pole, 0,5 pro vzdáleé pole *-], D... průměr vstupí apertury *mm+. Za krátkou expozici lze přitom považovat expozici, jejíž délka je podstatě kratší ež středí doba jedé fluktuace amplitudy přijímaého optického zářeí typicky 5 10 ms). Na rozdíl od útlumu elze v tomto případě předpokládat, že vliv turbulece je homogeí v celém zorém poli. Na základě zalosti dílčích MTF útlumu a rozptylu lze staovit výsledou MTF atmosféry. Ta, při přijetí předpokladu vzájemé ezávislosti těchto vlivů, je dáa součiem dílčích přeosových fukcí: MTF MTF a MTF turbul 1.8) U soudobých zobrazovacích systémů eí vliv atmosféry kompezová. Nerespektováí této skutečosti způsobuje mj. pokles kotrastu cíl proti pozadí, a tím zhoršeí kvality zobrazeí zejméa a dlouhých trasách) a zmešeí vzdáleosti, a které lze pozorovaý cíl zobrazovacím systémem zjistit, případě rozpozat, s požadovaou pravděpodobostí. Poz.: V atmosféře dochází eje k rychlým změám idexu lomu v důsledku turbulece, ale i k mohem pomalejším. Pomalé změy idexu lomu vzduchu mají za ásledek refrakci paprsků. Úhel mezi tečou paprsku v počátečým ebo koečým bodem optické dráhy a přímkou, která spojuje počátečý a koečý bod se azývá úhel refrakce. Pro úhel refrakce, pod kterým dopade paprsek a vstupí pupilu optické soustavy lze ze zákou lomu odvodit vztah: 8

11 kde: T gradiet teploty [K]. p s 0 si d dt T ds 1.9) Pro případ déle trvajícího pozorováí je proto uto zahrou i teto vliv. V opačém případě lze vliv refrakce zaedbat. 9

12 2. VLIV ATMOSFÉRY NA OPTICKÝ SIGNÁL Vliv atmosféry a výsledé zobrazeí optickým/optoelektroickým systémem se projevuje zejméa poklesem itezity optického zářeí během šířeí v atmosféře, sížeím kotrastu cíl/pozadí, fluktuací přijímaé úrově optického zářeí vlivem turbulece, deformací obrazů pozorovaých objektů a zkresleím barevých charakteristik objektů. Pro zpracováí optického sigálu je možo pohlížet a vliv atmosféry i z časového hlediska. Pak lze vliv atmosféry rozdělit a: statický a dyamický vliv atmosféry. Rozděleí vlivu atmosféry a statický a dyamický umožňuje přistoupit k jejich separaci a tím ke kvatifikováí jejich dílčích vlivů, popř. ásledě i k přijetí opatřeí pro miimalizaci jedotlivých vlivů Vliv statických vlivů Za statické vlivy lze považovat vlivy, jejichž úroveň zůstává v krátkém časovém horizotu prakticky eměá, ebo se měí kolem určité hodoty. To umožňuje využít kvatifikace středí hodoty tohoto vlivu eje k jeho popisu, ale zejméa i k jeho potlačeí. Mimo útlumu optického zářeí lze mezi statické vlivy zahrout i atmosférickou refrakci a pro případ dostatečě dlouhých expozicí částečě i turbuleci vzduchu. Jak již bylo uvedeo, vliv útlumu atmosféry se a výsledém zobrazeí optickým, resp. optoelektroickým systémem projevuje zejméa poklesem itezity optického zářeí během šířeí v atmosféře a sížeím kotrastu cíl/pozadí. S výhodou lze popsat vliv statických vlivů prostředictvím jejich modulačí přeosové fukce MTF) *1+. Nízké prostorové frekvece v obraze esou základí iformaci o umístěí a o základích tvarech objektů. Středí oblast prostorových frekvecí je výzamá pro správé rozděleí stupice záře a zobrazeí základích obrysů objektů. Vysoké prostorové frekvece mají zásadí roli pro zobrazeí jemých struktur obrazu, a ostrých přechodů mezi objekty a jejich pozadím. Ze zalosti MTF atmosféry lze usuzovat a celou řadu vlastostí eje atmosféry, ale i výsledého obrazu. Kvalitou obrazu je rozuměa veličia 10

13 vyjadřující věrost reprodukce prostorové distribuce určitého parametru apř. záře) a výstupu zobrazovacího systému vzhledem k distribuci tohoto parametru v roviě objektu. MTF atmosféry lze využít pro hodoceí kvality obrazu ásledujícími způsoby: 1) Mírou kvality je hodota, a kterou poklese MTF při určité prostorové frekveci. 2) Mírou kvality je prostorová frekvece, a které hodota MTF poklese a defiovaou úroveň. Voleé hodoty jsou zpravidla v rozmezí 0,001-0,707). 3) Mírou kvality je koeficiet určeý z průběhu MTF. Nevýhodou prvího a druhého způsobu hodoceí kvality obrazu je, že erespektují celý průběh MTF, ale pouze její část. Hodoceí kvality obrazu podle třetího způsobu respektuje celý průběh MTF, ebo jeho podstatou část, a je proto považová za ejvhodější pro další využití. Pro hodoceí kvality zobrazeí je v odboré literatuře často využívá koeficiet MCFA Modulatio Cotrast Fuctio Area)), který je defiová vztahem *apř. 2+: MCFA 0 MTF f r 2.1) f r ) df kde f r je prostorová frekvece *čar/rad+ a MTF je modulačí přeosová fukce atmosféry. Podle *4+ lze obraz jehož hodota MCFA je větší ež 0,68 považovat za kvalití. Omezeí vyvolaá atmosférickým přeosovým kaálem se prakticky eprojevují. Pro MCFA z itervalu 0,5-0,68) je obraz adále kvalití. Vliv atmosférického přeosového kaálu je patrý zejméa a zobrazeí jemých struktur sledovaého objektu tj. struktur s rozměry srovatelými s rozlišovací mezí použitého zobrazovacího systému). Pro MCFA 0,33-0,5) dochází v obraze k výrazé degradaci. Přesto jsou v ěm zřetelé všechy charakteristické struktury. Pro MCFA 0,1-0,33) jsou v obraze patré pouze základí struktury. Vhodým zpracováím obrazu je však možé ve začé míře tyto iformace restaurovat. Pro MCFA meší ež 0,1 je obraz zcela degradová. Neávratě se ztrácí základí iformace o všech objektech. r 11

14 S klesající hodotou koeficietu přeosu kotrastu MCFA klesá i hodota dosahu optoelektroického přístroje oproti jeho teoretické hodotě. Kolikrát bude tato vzdáleost meší oproti teoretické hodotě lze vyjádřit vztahem *4+: z t MCFA l MCFA 1 MCFA id id poz ), 2.2) kde: MCFA id je koeficiet kvality zobrazeí bez vlivu atmosféry a MCFA poz koeficiet kvality pozorovaého obrazu. Výhodé se zde jeví využití modelu atmosféry *1+, který z meteorologických údajů teplota s relativí vlhkost vzduchu, atmosférický tlak, ) umožňuje staovit hodotu koeficietu MCFA a tím i koeficiet zkráceí dosahu optoelektroického přístroje. 6 Koeficiet zkráceí dosahu přístroje 5.5 4,5 5 zt [-] , MCFA [-] Obrázek 2.1 Koeficiet zkráceí dosahu optoelektroického přístroje Pro hodoceí středího vlivu turbulece a optický sigál je výhodé využít model turbulece viz. kapitolu 0) vyjadřující závislost strukturálího koeficietu turbulece a stěžejích meteorologických parametrech. Mimo již uvedeého zkráceí dosahu optického přístroje lze aalyzovat i další závislosti a dopady. Z provedeé aalýzy *2+ vyplývá, že s rostoucí rychlostí větru a relativí vlhkostí vzduchu strukturálí koeficiet turbulece a tím i vliv turbulece jako takové) klesá. Naopak s rostoucí teplotou vzduchu a zejméa s rostoucí hustotou eergie sluečího zářeí sluečího svitu) roste. Vliv turbulece ukážeme a příkladu chyby měřeí dálky u optoelektroického systému využívajícího měřeí vrcholového úhlu tzv. paralaxy) mezi měřeým 12

15 objektem a základou přístroje tzv. bází). S využitím uvedeého modelu turbulece lze vyjádřit průměré chyby způsobeé turbulecí vzduchu. Na základě aalýzy meteorologických údajů ve středoevropském regiou a s využitím modelu turbulece viz kapitolu 0) lze v rozsahu běžých meteorologických situací přistoupit k přibližému určeí rozložeí chyby dopadového úhlu paprsku a tím i apř. chyby určeé dálky vlivem turbulece. Pro strukturálí koeficiet C z itervalu 1*10-8 5*10-7 ) lze pro modelováí rozložeí chyb využít ormálího rozděleí N T, T ) [6]. Hodota parametru je rova 0 a parametr T abývá hodot z itervalu 0, T, max ), kde pro T, max platí [3]: T,max st, 2.3) kde: je koeficiet podobosti [-+, který abývá zpravidla hodot v rozmezí 1-3); typická hodota pro běžé meteorologické podmíky ve středoevropském regiou je kolem 2,5. Obrázek 2.2 ilustruje chybu určeé dálky pro slabou, středě silou a silou turbuleci. Příklad chyby způsobeé slabou turbulecí C =510-9 m -1/3 ), středě silou turbulecí C=510-8 m -1/3 ) i silou turbulecí C=510-7 m -1/3 ) je staovea pro bázi přístroje rovu 1m a vstupí pupilu objektivů 50 mm. Z uvedeého apř. vyplývá, že ve slabé turbuleci je chyba určeé dálky prakticky zaedbatelá a dosahuje hodot pod 1% měřeé dálky. Pro středě silou turbuleci dosahuje chyba hodot do 5% měřeé dálky. V silé turbuleci však chyba může dosáhout až 25-33% měřeé vzdáleosti. Pro velmi dlouhé expozice v turbuletí atmosféře ustupuje deformace tvarů vlivem turbulece atmosféry do pozadí vliv skládáí kratších expozic do jedé delší). To způsobuje pokles kotrastu pozorovaé scéy. Chyba určeé dálky je pak určea obdobě jako v případě epřesého zamířeí vlivem poklesu kotrastu pozorovaé scéy. 13

16 ds [m] s [m] silá turbulece C= m-1/3) středě silá turbulece C= m-1/3) slabá turbulece C= m-1/3) Obrázek 2.2: Chyba dálky vlivem turbulece 2.2. Vliv dyamických vlivů Nejvýzamějším dyamickým vlivem, který ovlivňuje vlastosti optického sigálu přijímaého po průchodu atmosférou je turbulece vzduchu zejméa pak, přijímáme-li optický sigál optoelektroickým zařízeím s krátkými expozicemi. Z pohledu pozorovatele představuje deformace pozorovaého obrazu resp. přijímaého optického sigálu) fluktuačí pole tvořeé fragmety, jejichž itezita a souvztažost tj. sobě si odpovídající souřadice) se měí v čase. Fragmetem se přitom erozumí jediý obrazový bod, ale možia bodů, jejichž parametry lze v daém čase vůči sobě považovat za kostatí. Pro jedoduchost popisu se dále zaměříme pouze a fluktuaci jediého fragmetu tzv. záměrého bodu. Zobecěí fluktuací a celou obrazovou roviu eí předmětem této práce. 14

17 Pro popis dyamických vlivů atmosféry a optický sigál je klíčové staovit vhodý algoritmus eje určeí polohy, ale zejméa predikce pohybu záměrého bodu sledovaého fragmetu). Na základě výsledků dlouhodobých měřeí a aalýz byl autorem této práce sestave matematický model driftu záměrého bodu, který umožňuje popsat s dostatečou přesostí pohyb záměrého bodu a to i v blízké budoucosti tj. v ejbližší periodě jeho pohybu). To vytváří základí předpoklad pro kompezaci driftu záměrého bodu HW prostředky. Uvedeý model umožňuje mimo vlastí hodotu driftu staovit pro defiovaou zájmovou oblast i jeho převažující směr Model detekce turbulece metodou plovoucího bodu Na obraz pozorovaé scéy degradovaé vlivem turbulece atmosféry lze pohlížet jako a obraz složeý z jedotlivých polí/fragmetů. Jedotlivé fragmety se vůči sobě pohybují růzými směry a rychlostmi. Velikost jejich pohybu je fukcí itezity turbulece atmosféry. V důsledku toho dochází ke změám souřadic jedotlivých fragmetů resp. jejich výzačých bodů) a eustálému kolísáí itezity optického zářeí přicházejícímu od jedotlivých obrazových bodů pozorovaé scéy. Výchozím předpokladem je, že scéu mezi jedotlivými símky lze považovat za přibližě statickou eí v í žádý rychle se pohybující cíl). Základem metody plovoucího bodu je využití matematického popisu optického proudu ze série po sobě jdoucích símků ze změ itezity fragmetu v závislosti a jeho pozici a čase s využitím Taylorovy řady : x, y, t E x, y, t E x, y, t E1 1 1 E x, y, t E0x, y, t..., x y t ) kde: E i x,y,t) itezita optického zářeí v obrazovém poli v souřadici x,y) v čase t. Pro zpracováí optického proudu vyvolaého vlivem turbulece lze vyšší řády parciálích derivací zaedbat. Vlastí popis optického proudu vziklého ze sekvece símků v čase t a t+dt) platí: E t x, y, t Ex, y, t dx Ex, y, t x dt y dy dt, 2.5)

18 resp. x y, t E x, y, t E, v 0, t 2.6) kde: operátor prostorového gradietu itezity fragmetu, v vektor rychlosti pohybu fragmetu obrazového bodu) Predikce pozice bodu ve frekvečí oblasti Pro úspěšou predikci driftu záměrého bodu je předpokládáo, že jeho pohyb je spojitý bez skokových změ. Dále je předpokládáo, že v krátkém časovém itervalu lze vlastí pohyb záměrého bodu rozdělit a složku systémovou a áhodou. Systémová složka je zastoupea domiatí frekvecí frekvecemi), která určuje základí pohyb záměrého bodu kolem středí hodoty. Na í jsou superpoováy další, áhodé složky. Vyjádřeo v časové oblasti: kde: S R S R, 2.7) celkový vektor pohybu záměrého bodu, systémová složka pohybu, áhodá složka pohybu. Za předpokladu platosti superpozice sigálu lze výše uvedeý vztah přepsat do frekvečí oblasti: F. 2.8) F S F R Predikce polohy záměrého bodu ve spektrálí oblasti vychází z matematického popisu systémové složky turbulece. Náhodá složka z pohledu sigálu šum) pak způsobuje odchylky v predikovaé poloze. Základem metody extrapolace spektra je rozděleí spektra F a oblasti se stejým obsahem resp. počtem hodot) ekvivalet kvartil, popř. decil. kos u ju F j df 2.9) 16

19 10 3 Power spectral desity Frequecy Hz) Obrázek 2.3: Diskretizace spektra turbulece do oblastí Postačující je zpravidla 10 oblastí F 1 až F 10. S ohledem a typické spektrum turbulece jsou oblasti s ižšími frekvecemi zpravidla užší a vyšší) ež oblasti popisující vyšší frekvece. Každá tato oblast je vyhodocea samostatě. V dalším zpracováí je zastoupea charakteristickou frekvecí, která odpovídá pozici kvatilu uvitř oblasti. Ze změ hodoty uvitř oblasti je vytvoře stavový vektor W j obsahuje iformaci jak o amplitudě j tak i fázi j ). W j tedy obsahuje vývoj daé oblasti spektra za určitý časový úsek. W j e j i j i j1e j 1 j2 e i j ) Teto přístup umožňuje popsat eje velikost příslušé charakteristické frekvece pro přísě periodický sigál by stavový vektor W j byl ulový), ale i její tedeci vývoje systémovou změu amplitudy, popř. fáze). Z hodot stavového vektoru W j je extrapolováa budoucí hodota vektoru W j+1. K tomu lze využít postup uvedeý výše v části věovaé predikci pozice záměrého bodu v časové oblasti. 17

20 [px] 10 3 Power spectral desity j-4 j-3 j-2 j-1 j j+1 Obrázek 2.4: Stavový vektor Wi a jeho aproximace amplitudová složka) červeě aproximačí fukce, modře predikovaá hodota Oproti případu extrapolace v časové oblasti je výsledá hodota komplexí ese iformaci jak o velikosti, tak i fázi charakteristické frekvece). Výsledé diskrétí spektrum F d,j+1 je pak dáo složeím dílčích oblastí W j+1. W Obrázek 2.5: Srováí chyby predikce záměrého bodu tečkovaě fialově) středí hodota driftu vlivem turbulece, čárkovaě zeleě) chyba predikovaé pozice za předpokladu rovoměrého pohybu bodu, čerchovaě modře) chyba predikovaé pozice metodou ejmeších čtverců, plá červeá) chyba predikovaé pozice z vývoje spektra turbulece Uvedeý přístup k driftu záměrého bodu vlivem turbulece umožňuje s dostatečou přesostí provádět dostatečě přesý odhad pozice bodu oproti j 18

21 odhadu přímo v časové oblasti ve větším časovém horizotu řádově jedotek period domiatích frekvecí). Obrázek 2.5 ilustruje srováí chyby predikce mezi jedotlivými metodami predikce v podmíkách slabé turbulece hodota směrodaté odchylky driftu záměrého bodu je =0.7 pix). Předpokládáa je obrazová frekvece 60 obr./s. Pohybový vektor byl vytvoře z 15 předchozích símků tj. cca z doby 250 ms, jsou tedy zahruty zejméa domiatí ízké frekvece). Za evyhovující je považováa taková chyba predikce, kdy je chyba predikce větší, ež je hodota směrodaté odchylky. Nejjedodušší metoda predikce předpokládající rovoměrý přímočarý pohyb záměrého bodu je pro účely predikce pozice záměrého bodu evhodá již a ásledujícím símku je chyba predikce velmi často srovatelá s hodotou směrodaté odchylky ). Středí doba přijatelé chyby predikce je v tomto případě cca 15ms. Lepší výsledky poskytuje využití metody ejmeších čtverců. I v tomto případě má metoda dostatečou přesost je omezeou. Lze ji proto zpravidla využít je pro ásledující símek a to pouze za předpokladu, že se bod pohybuje v okolí své středí pozice. Středí doba akceptovatelé chyby predikce je pro tuto metodu predikce pro uvažovaou situaci 33 ms. Nejlepší podmíky dává využití aalýzy spektra turbulece. S přijatelou přesostí bylo v tomto případě možé predikovat pozici bodu cca 4-5 obrázku vpřed. Středí doba přípusté chyby byla cca 80 ms. V případě sížeí ároků a přesost predikce apř. a jede pixel je středí doba úspěšé predikce polohy dokoce cca 150 ms. V podmíkách silé turbulece je doba úspěšé predikce obdobá. Uvažujme apř. hodotu směrodaté odchylky driftu záměrého bodu =3.1 pixelu. Odhad pozice záměrého bodu algoritmem využívajícím predikci ve frekvečí oblasti v tomto případě dokázal úspěšě predikovat polohu s chybou meší ež po dobu téměř 300 ms. Ve velké míře se a délce úspěšé predikce podílela právě velká hodota turbulece, která byla do začé míry ustáleá a podíl áhodé složky byl velmi ízký. 19

22 [px] Obrázek 2.6: Srováí chyby predikce záměrého bodu v silé turbuleci tečkovaě fialově) středí hodota driftu vlivem turbulece, čárkovaě zeleě) chyba predikovaé pozice za předpokladu rovoměrého pohybu bodu, čerchovaě modře) chyba predikovaé pozice metodou ejmeších čtverců, plá červeá) chyba predikovaé pozice z vývoje spektra turbulece j 20

23 3. REKONSTRUKCE OPTICKÉHO SIGNÁLU Na základě pozatků uvedeých v předchozích kapitolách lze přistoupit k efektiví rekostrukci optického sigálu degradovaého průchodem atmosférou. V závislosti a požadavcích a rychlost a kvalitu rekostrukce je možé zvolit dva přístupy. S využitím hardwarových prostředků lze prakticky bez časového zpožděí do začé míry potlačit vliv statických vlivů. Jejich schopost potlačit dyamické vlivy je, pokud pomieme omezeé možosti adaptiví optiky, velmi malá. Tímto omezeím etrpí vybraé metody softwarového zpracováí optického sigálu. Mimo potlačeí statických vlivů tak umožňují relativě efektivě potlačit i vliv vlivů dyamických. Jejich využití je ale do začé míry omezeo určitou časovou áročostí a tím i vzikajícím časovým zpožděím mezi přijetím obrazové iformace a výsledkem jejího zpracováí Rekostrukce obrazu s využitím hardwarových prostředků Spektrálí filtrace optického sigálu Obrázek 3.1 ilustruje vliv vlové délky optického zářeí procházejícího atmosférou a výsledé zobrazeí. Vliv turbulece je ve viditelé a blízké IČ oblasti spektrálě závislý je miimálě. Jiá situace je v ifračerveé oblasti, kde je propustost optického zářeí omezea tzv. atmosférickými oky viz obrázek 1.2). Oproti tomu útlum optického zářeí zejméa rozptyl) měí svoji hodotu v závislosti a vlové délce velmi výrazě. S rostoucí vlovou délkou se jeho vliv zpravidla sižuje. Soudobé CCD a CMOS maticové detektory optického zářeí mají bez předřazeých spektrálích filtrů maximum spektrálí citlivosti zpravidla v okolí červeé barvy a blízké IČ oblasti. Této vlastosti lze využít pro sadé sížeí vlivu útlumu a výsledé zobrazeí. S využitím modelu atmosféry kapitola 1) a zámé citlivosti typického CCD detektoru lze avrhout optimálí průběh spektrálího filtru omezujícího vliv útlumu atmosféry. Obrázek 3.2 ukazuje vhodý průběh spektrálího filtru pro potlačeí vlivu atmosféry. V případě čerobílých zobrazovacích systémů je optimálí průběh zobraze modře. Svým průběhem jde o obdobu IČ filtru typu pásmová propust optimalizovaého a spektrálí vlastosti atmosféry. 21

24 Rel. citlivost [-] Trasmitace [-] Vlová délka [m] Obrázek 3.1: Spektrálí vliv útlumu a turbulece v porováí se spektrálí typického detektoru CCD vyrobeého a bázi křemíku V případě barevý detektorů resp.systémů pracujících s barevým obrazem) je uté zahrout i určitou část z oblasti kratších vlových délek. Na obrázku íže je uvede modelový ávrh pro Bayerovu masku RGB, kdy zbývající barevé složky jsou ozačey červeě a zeleě. Protože filtry využité v Bayerově masce se částečě liší výrobce od výrobce je pro barevou věrohodost uto počítat s částečým vyvážeí bílé barvy v obraze. Obrázek 3.2: Filtr pro omezeí vlivu útlumu optického zářeí A-IR Pro742 Takto avržeý filtr umožňuje jedoduchým umístěím v optické soustavě apř. a vstupí pupilu objektivu) výrazé zvýšeí kotrastu pozorovaého objektu i za zhoršeých meteorologických podmíek vlivem útlumu optického zářeí. Poěkud složitější je sížeí vlivu turbulece atmosféry. V přecházející 22

25 kapitole uvedeý postup predikce pozice záměrého bodu umožňuje využití v systémech určeých pro sížeí vlivu atmosféry. Z eergetického hlediska je výhodé, aby šířka pracovího pásma optoelektroického přístroje byla co ejvětší. Neměla by však přesahovat šířku aktuálě využívaého atmosférického oka. V případě silého rozptylu optického zářeí je aopak výhodé zvolit co ejužší pracoví pásmo a to v co ejvětších vlových délkách a kterých je schope daý optoelektroický systém pracovat. Kompromisem pro většiu meteorologických situací je omezeí pracovího pásma a třetiu aktuálě používaého atmosférického oka v oblasti větších vlových délek Prostorově-frekvečí filtr Omezeí se pouze a rekostrukci optického sigálu pouze ve spektrálí oblasti eumožňuje účiě potlačit zbylé statické vlivy, které se projevují zejméa v prostorové oblasti. Proto je vhodé doplit optický soustavu o subsystém umožňující prostorovou filtraci optického sigálu. Obrázek 3.3 ukazuje příklad prostorově-frekvečího filtru Vstupí a výstupí optická soustava 2. Prostorově-frekvečí modulátor 3. Spektrálí filtr Obrázek 3.3: Prostorově frekvečí filtr doplěý o spektrálí filtr Vstupí optická soustava zajišťuje průchod paralelího svazku přes jádro prostorově frekvečího filtru prostorově frekvečí modulátor. Vlastí prostorově frekvečí modulátor představuje realizaci iverzí fukce 23

26 k přeosové fukci atmosféry. To umožňuje zvýrazěí těch prostorových frekvecí, které jsou v atmosféře potlačováy. Prostorově frekvečí modulátor lze realizovat jako kostatí pro určité meteorologické podmíky ebo stavitelý prvek pro určitý omezeý rozsah průběhů modulačě přeosové fukce atmosféry a tím i meteorologických podmíek. Spektrálí propustost celého prostorově frekvečího filtru je vhodé volit dle kritérií uvedeých v kapitole výše pomocí vhodého spektrálího filtru. Výstupí optická soustava pak zajišťuje oboveí sbíhavosti svazku a původí hodotu. Jak z povahy modulačě přeosové fukce vyplývá a tím i fukci k í iverzí), klíčové pro korektí fukci tohoto filtru je dostatečý odstup vlastího optického sigálu od šumu, tj. fluktuaci optického zářeí pozadí. V opačém případě tato relativě jedoduchá metoda filtrace selhává. Mimo potlačeí vlivu útlumu optického zářeí je uvedeý prostorově frekvečí filtr vhodý pro potlačeí i jiých statických vlivů v atmosféře a optický sigál působících refrakce, vliv turbulece pro dlouhé expozice). I když je pricipielě možé avrhout řízeý prostorově frekvečí filtr tak, aby jeho aktuálí trasformačí fukce odpovídala většímu rozsahu meteorologických podmíek, eí teto přístup příliš úspěšý pro potlačeí rychlých lokálích prostorových fluktuací vlivem dyamických jevů turbulece vzduchu. Pro jejich potlačeí je uté použít jié řešeí. Pokud pomieme možosti adaptiví optiky, která je schopa velmi účiě potlačit vliv atmosféry, ale je za podmíky existece referečího sigálu zpravidla umělé hvězdy) a to pouze v omezeém zorém poli, je uté použít ěkterou z metod softwarové rekostrukce optického sigálu obrazu) Rekostrukce obrazu s využitím softwarových prostředků Cílem rekostrukce obrazu, degradovaého průchodem atmosférou, obecě je zvýšit jeho kvalitu, tz. omezit v maximálě možé míře vliv atmosférického přeosového kaálu. Výše uvedeé modely, jak již bylo uvedeo, popisují středí hodoty vlivu atmosféry a výsledý obraz a možé postupy potlačeí jejího vlivu. 24

27 Metody softwarového zpracováí optického sigálu obrazu) umožňují sice rověž odstrait středí vliv atmosféry, a tím i její statický vliv a optický sigál, ale jejich možosti jsou mohem širší. Pomocí ich lze avíc apř. realizovat jak potlačeí šumu v obraze a to eergetického apř. šum detektoru, tak i prostorového fluktuace poloh fragmetů obrazu vlivem turbulece), tak apř. i zvýšeí výsledé rozlišovací schoposti přístroje jako takového a to vhodým skládáím za sebou ásledujících símků Lieárí zpracováí obrazu Jedou z ejjedodušších a přitom relativě účiých metod restaurace obrazu je využití filtru s koečou impulsí odezvou FIR. Východiskem pro určeí požadovaé amplitudové frekvečí odezvy filtru je modulačě přeosová fukce atmosféry MTF atmosféry). MTF atmosféry lze určit z modelu uvedeém apř. v *3+. Vlastí rekostruovaý obraz f pak je urče předpisem: f Norm[FFT 1 F)], kde F FIR. 3.1) Za předpokladu dostatečého odstupu sigál/šum je hledaá amplitudová frekvečí odezva filtru FIR je pak čtvercová matice řádu 2+1), pro kterou platí: 1 FIR Nor ), kde: Nor vyjadřuje operaci ormováí dle maximálí hodoty výrazu M f 1 M f ). 3.2) Z meteorologických parametrů je urče průběh MTF atmosféry *1+. Pro ásledé určeí rekostrukčího filtru je postačující *3+ rozměr matice 5x5 až 99. Protože výše uvedeá MTF atmosféry charakterizuje středí vliv atmosféry a výsledý obraz i použití filtru FIR využívajícího její zalosti je touto skutečostí 25

28 limitováo. Odchylky obrazu při zpracováí reálých símků pak podléhají statistickým charakteristikám daým povahou MTF ormálí rozděleí). Z toho plye i omezeí jejího použití. Uvedeá metoda je velmi účiá pro kompezaci statických vlivů tedy těch, jejichž charakteristiky se měí je velmi pozvola), které vyvolávají degradaci zobrazeí. Primárě je tedy vhodá pro miimalizaci vlivu útlumu optického zářeí a částečě i pro kompezaci degradací obrazu při velmi dlouhých expozicích v turbuletí atmosféře. Tato metoda s kostatím filtrem FIR edokáže přímo kompezovat degradace vyvolaé dyamickými jevy turbulecí atmosféry), tedy ai deformaci vloplochy a s tím související projevy. Teto vliv je možé omezit ze série po sobě jdoucích símků a to pomocí skládáí símků. a) b) c) Obrázek 3.4: Výřez símku jasý bod série símků ve falešých barvách) a) ejlepší jedotlivý símek, b) jedotlivý símek deformovaý turbulecí, c) průměrý símek z 10 po sobě jdoucích. Předpokládejme po sobě jdoucích símků. Protože jsou símky pořízey prakticky za stejých podmíek jedou optickou soustavou, je jejich geometrické zkresleí a zatížeí optickými aberacemi prakticky totožé. 26

29 Jedotlivé símky jsou ale degradováy růzou měrou vlivem atmosféry obrázek 1.1). Rověž vliv símače CCD) se projeví áhodým šumem v obraze. Pro výběr símků ejméě zatížeých áhodými vlivy je výhodé pro prví přiblížeí využít apř. zobrazeí bodu popř. zobrazeí bodových detailů v obraze). Prosté skládáí símků q je dáo předpisem: q p qi x, y, Li i x, y, L ) Výsledý símek složeý pomocí tohoto předpisu má do začé míry potlače áhodý šum vyvolaý detektorem optického zářeí. Rověž dyamický vliv atmosféry je do začé míry vyhlaze. Obrázek 3.5 ilustruje příklad skládáí po sobě jdoucích símků. V aalyzovaém případě se vliv atmosféry projevuje je posuem obrazu aalyzovaého bodu. Deformace lokálích fragmetů obrazu, které dále sižují účiost tohoto algoritmu, ejsou uvažováy. a) b) Obrázek 3.5: Model skládáí símků odezev bodů a) X odezev z vybraých ejlepších símků, b) modře ideálí odezva bodu, červeě výsledá odezva vziklá zprůměrováím dílčích odezev dle a) Obrázek 3.5b ukazuje výsledek zpracováí. Je patré, že oproti ideálí odezvě bodu je výsledá odezva bodu širší. To v praxi zameá ižší rozlišovací 27

30 schopost celého systému oproti maximálí teoretické hodotě. Oproti dílčím símkům však dochází k výrazému zlepšeí Sychroí símáí a pokročilé metody zpracováí obrazu Prosté zpracováí obrazu uvedeé v kapitole umožňuje sice zvýšit kvalitu obrazu degradovaého áhodými vlivy apř. i šumy detektoru, geometrickým zkresleím optické soustavy, ), jeho aplikace a potlačeí vlivu atmosféry je však omezea a elimiaci jeho středího vlivu ebo zatížea vedlejšími efekty částečí sížeí maximálí rozlišovací schoposti). Obrázek 3.6 ukazuje možé doplěí měřícího/símacího systému tak, aby bylo možé realizovat rekostrukci obrazu degradovaého vlivem atmosféry v co ejvyšší možé míře. CCD1 je uložea v ohiskové roviě přijímacího objektivu a předává do zázamového systému PC) ostrý obraz pozorovaé scéy, který je základem pro rekostrukci obrazu. CCD2 je posuuta mimo obrazovou roviu. Iformace z í jsou využity k určeí deformace vloplochy vlivem turbulece atmosféry. V defiovaé vzdáleostí před í je umístěa v případě potřeby referečí mřížka umožňující separovat vliv atmosféry. Umístěí símače mimo ohiskovou roviu vyvolá v roviě detekce rozostřeí, jehož velikost závisí a parametrech optické soustavy a velikosti posuu detekčí roviy od obrazové. V obrazu tak s rostoucí hodotou posuu símače od obrazové roviy driftu) klesá podíl vyšších obrazových frekvecí. Rozlišeí detailů v obraze klesá. Vlastí rozostřeí obrazu se řídí Gaussovým rozděleím. Vliv atmosféry ale vyvolává deformace předpokládaé vloplochy od skutečě detekovaé. Vhodým zpracováím je pak možé separovat vlastí vliv atmosféry od vlastí obrazové iformace a takto 28

31 obdržeou iformaci využít pro rekostrukci obrazu pořizovaého símačem CCD1 viz apř. obrázek 3.9). Vlastí zpracováí símku je pak oproti statickému filtru z kapitoly adaptiví filtr. Parametry vlastího zpracováí zázamu je pak možé pro aktuálě zpracovávaý símek-část símku dyamicky přizpůsobovat. Atmosféra Přijímací objektiv Fokuser, dělič svazku CCD 2 CCD 1 METEO PC Obrázek 3.6: Blokové schéma sychroího símái Existuje celá řada algoritmů, které dokáží s výše uvedeou iformací efektivě pracovat. Za všechy uveďme alespoň hojě užívaý algoritmus Richardso- Lucy. Teto algoritmus je robustí iteračí algoritmus *3+, který umožňuje zvýšit kvalitu obrazu a tím i ostrost detailů obrazu. V tomto algoritmu eí požadová žádý specifický statistický model šumu, který u jiých algoritmů může vyvolávat estabilitu řešeí. V případě existece šumu ale esmí být jeho velikost příliš velká doporučeý poměr sigál/šum je řádově jedotky, lépe mi 10). V tomto případě je řešeí velmi stabilí a odolé proti áhodému šumu. Výhodou rověž je, že algoritmus rověž evyžaduje žádou a priori iformaci o origiálím símku. Celý algoritmus je efektiví zejméa při zalosti PSF. 29

32 30 Jádro algoritmu Richardso-Lucy spočívá v opakovaém voláí předpisu: f H q H f f 1, 3.4) kde F i je výsledek výpočtu po i iteracích a q je původí zazameaý símek. H je digitalizovaá PSF, jejíž iiciačí hodotu lze sado staovit z modelu atmosféry. V případě ezámé fukce odezvy bodu lze výpočet Richadso-Lucy upravit a předpis iterací: f H q H f f f H q f H H 1 1 1, 3.5) Obrázek 3.7 je příklad iterace algoritmu a bodový zdroj umístěý ve velké vzdáleosti. Vlivem atmosféry je pozorovaý obraz obrázek 3.7 vlevo ahoře). Zpracováím série pořízeých símků je postupou iterací zvýrazě obraz do podoby velmi blízké předpokládaé teoretické hodotě. Na símcích dole jsou již velmi dobře patré difrakčí kroužky, které azačují velmi vysokou účiost tohoto algoritmu.

33 Obrázek 3.7: Výsledek zpracováí obrazu bodového zdroje Richardso-Lucy algoritmem. ahoře zleva po 0 ezprac.), 8, 16, 32 a dole zleva po 64, 128, 256, 512, 1024 a 2048 iterací R 0.90 M S počet iterací [-] Obrázek 3.8: Středě kvadratická chyba rekostruovaého obrazu algoritmem Richardso- Lucy Algoritmus Richadso-Lucy je schope velmi účiě potlačit statické a omezeě i dyamické vlivy atmosféry. Mimo ěj existuje přirozeě celá řada algoritmů, které vykazují i vyšší odolost proti chybám šumu). Za všechy uveďme alespoň Mezi ejprogresivější patří algoritmus S.M.A.R.T. Základí předpis pro iteraci tohoto algoritmu má tvar: 31

34 f q 1 f exp H l. H f 3.6) Teto algoritmus je odvoze z řady algebraických rekostrukčích techik, které a obrazovou iformaci a celý přeosový řetězec pohlíží coby soustavu lieárích rovic. Cílem algoritmu pak je alézt takové řešeí soustavy, která bude mít miimalizovaou chybu. Algoritmus S.M.A.R.T pak řeší při každé iterakci celou soustavu rovic ajedou. I přes to koverguje algoritmus velmi pomalu. Jeho řešeí je však velmi stabilí. Pro úplé potlačeí dyamických jevů je ale vhodější použít metodu plovoucího bodu uvedeou v kap Restaurace dyamických vlivů a optický sigál Výchozím pro určeí vlivu turbulece a obraz, resp. jí vyvolaého optického proudu, je sekvece símků. Tato sekvece apř. videosigál) představuje souhrě dvourozměrou projekci třírozměrého předmětového prostoru pozorovaé scéy ve čtvrté časové) daé časovou posloupostí jedotlivých símků sekvece. Výpočet vycházející z diferecí sekvece símků může být použit eje pro určeí optického proudu, ale i v budoucu apř. pro detekci pohybujících se objektů. Základí idea určeí optického proudu je v lokalizaci jedotlivých fragmetů obrazu, určeí jejich výzačých bodů poloha geometrického těžiště, hraice fragmetu) a idetifikace korespodujících bodů v ásledém símku. Z pozatků uvedeých v kapitole vyplývá, že měřítko časové změy itezity obrazového fragmetu v obraze je zejméa závislé a prostorovém měřítku této změy vyásobeé rychlostí s íž se fragmet v obraze pohybuje. Popis vlivu turbulece se tímto postupem podařilo trasformovat a úlohu alezeí operátoru prostorového gradietu itezity a vektoru rychlosti fragmetu v. 32

35 33 K jejich alezeí existuje celá řada algoritmů. Ve fukci prostorového gradietu lze využít apř. Sobelův operátor gradietu *5+. Jeho staoveí je však spjato s četými problémy a poskytuté řešeí eí vždy dostatečě robustí. Vlastí pohyb bodu x, y) pak lze vyjádřit prostředictvím vektoru ) : 0 ) ) ) t y y x x v v, 3.7) kde v i velikost vektoru v v souřadici i, ) operátor defiovaý vztahem: 1, t y x t y x Y Y Y. 3.8) Pohyb sledovaého bodu je možé přirozeě vyjádřit i zpětě, tj. v obráceé poslouposti símků #+1, #, #-1, ). Sledovaý pohyb má stejou velikost a opačý směr. Rovice výše pak bude vyjádřea vztahem: 0 1) 1) 1) t y y x x v v. 3.9) Kombiací vztahu 3.8) a 3.9) pak obdržíme: 0 1) ) 1) ) 1) ) t t y y y x x x v v. 3.10) a ekvivaletě platí: 0 1) ) 1) ) t t v. 3.11) Toto vyjádřeí popisuje optický proud jehož velikost je dvojásobá oproti reálé hodotě. Teto přístup umožňuje řešeí, které je oproti jedoduchému přístupu stabilí *5+. Na základě tohoto vztahu již lze přímo provádět odhad driftu sledovaého bodu. K tomu lze využít apř. prediktor využívající metodu ejmeších čtverců. Vlastí prediktor pak má tvar: 1) ) T 1) ) 1 1) ) T 1) ) 1) ) 1) ) T 1) ) 1) ) 2 2 1) ) 1) ) mi arg mi arg ˆ t t t t t t t t v v v v v. 3.12)

36 Primárím požadavkem je, mimo jeho stabilitu řešeí, jeho výpočetí áročost a spolehlivost určeí. Současě algoritmus esmí vyžadovat mimo vlastí sérii vyhodocovaých símků žádou další dodatečou iformaci. Výchozím předpokladem je, že scéu mezi jedotlivými símky lze považovat za přibližě statickou eí v í žádý rychle se pohybující objekt). Obrázek 3.9: Příklad ukázka časové sekvece driftu fragmetů v obraze turbulecí Obrázek 3.10: Vizualizace vlivu turbulece 34

37 4. ZÁVĚR Na základě výše uvedeého popisu vlivu atmosféry a optický sigál lze usuzovat a její vliv a výsledé zobrazeí a ovlivěí techických parametrů daého optoelektroické přístroje. Rověž je možo predikovat předpokládaou kvalitu zobrazeí v závislosti a tedecích vývoje stěžejích meteorologických parametrů, popř. tedece ve vývoji chyb během zjišťováí dálek. Z aalýzy v práci uvedeých modelů je patré, že vliv poruch atmosféry a kvalitu zobrazeí klesá s rostoucí vlovou délkou. To platí jak pro vliv útlumu, tak i pro vliv turbulece. Turbulece se avíc výrazě projevuje v čase kolem polede a to hlavě v letích měsících. Za těchto podmíek je turbulece určující a obvykle ěkolikaásobě převáží vliv útlumu. V práci dále uvedeé zpracováí obrazu degradovaého průchodem atmosférou umožňuje další zvýšeí kvality pozorovaých obrazů. Je zřejmé, že vhodou volbou šířky a polohy pracovího pásma je možé výrazě potlačit zejméa vliv útlumu optického zářeí. Vhodým zpracováím pak lze omezit i vliv turbulece vzduchu. Při klasickém zpracováí optického sigálu je možé dosáhout výrazého zlepšeí kvality obrazu. Mimo zvýšeí celkové kvality obrazu tj. jeho kotrastu i jasových a geometrických vlastostí) je možé dosáhou i určitého zvýšeí rozlišeí símku. Ještě lepších výsledků při rekostrukci zobrazeí lze dosáhout s využitím pokročilého adaptivího algoritmu, apř. Richardso-Lucy, popř. jiým ekvivaletím adaptivím algoritmem. 35

38 SEZNAM POUŽITÉ LITERATURY [1] Řehoř Z.: Charakteristiky atmosféry, které mohou ovlivit přesost měřeí pasivích systémů lokalizace objektu; Výzkumá zpráva projektu CILEPAS, 120 stra, Bro, [2] R. C. Gozalez ad R. E. Woods, Digital Image Processig. Upper Saddle River, N.J.:Pretice Hall, [3] Sadot, D.- Dvir, A.- Bergel, I.- Kopeika, N.S.: Restoratio of thermal images distorted by the atmosphere, based o measured ad theoretical atmospheric modulatio trasfer fuctio; Optical Egieerig, roč. 33, č.1, str , [4] M. J. Black ad P. Aada, The robust estimatio of multiple motios: Parametric ad piecewise-smooth flow fileds, Computer Visio ad Image Uderstadig, vol. 63, o. 1, pp , Jauary [5] DOSKOČIL, Radek, BALAŽ, Teodor, MACKO, Marti, et al. Real-Time Software Restoratio of Optic Image Degraded by the Atmosphere. Mathematics ad Computers i Sciece ad Egieerig, World Scietific ad Egieerig Academy ad Society, WSEAS Press, Athes, s ISBN , Greece,

39 37

40 Cetrum pro rozvoj výzkumu pokročilých řídicích a sezorických techologií CZ.1.07/2.3.00/ Ústav automatizace a měřicí techiky VUT v Brě Kolejí 2906/ Bro Česká Republika ifo@crr.vutbtr.cz

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Problematika dosahu OE přístrojů v reálných atmosférických podmínkách

Problematika dosahu OE přístrojů v reálných atmosférických podmínkách Problematika dosahu OE přístrojů v reálných atmosférických podmínkách Optické vlastnosti atmosféry Vliv atmosféry na optický signál Rekonstrukce optického signálu degradovaného průchodem atmosférou Tato

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Modelování jednostupňové extrakce. Grygar Vojtěch

Modelování jednostupňové extrakce. Grygar Vojtěch Modelováí jedostupňové extrakce Grygar Vojtěch Soutěží práce 009 UTB ve Zlíě, Fakulta aplikovaé iformatiky, 009 OBSAH ÚVOD...3 1 MODELOVÁNÍ PRACÍCH PROCESŮ...4 1.1 TERMODYNAMIKA PRACÍHO PROCESU...4 1.

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10 Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.

Více

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU

ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU A.Mikš, J.Novák, P. Novák katedra fyziky, Fakulta stavebí ČVUT v Praze Abstrakt Práce se zabývá aalýzou vlivu velikosti umerické

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II 2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí: Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

Obsah. skentest. 1. Úvod. 2. Metoda výpočtu Základní pojmy

Obsah. skentest. 1. Úvod. 2. Metoda výpočtu Základní pojmy Obsah sketest 1. ÚVOD... 1 2. METODA VÝPOČTU... 1 2.1. ZÁKLADNÍ POJMY... 1 2.2. SOUŘADNICOVÉ SYSTÉMY... 2 2.3. PŘÍPRAVEK... 3 2.4. POSTUP VÝPOČTU... 4 3. PROGRAM SKENTEST... 5 3.1. VSTUPNÍ SOUBOR... 5

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )} ČÍSLICOVÉ ZPRACOVÁNÍ ZVUKOVÝCH SIGNÁLŮ Z HLEDISKA PSYCHOAKUSTIKY Fratišek Kadlec ČVUT, fakulta elektrotechická, katedra radioelektroiky, Techická 2, 66 27 Praha 6 Úvod Při číslicovém zpracováí zvukových

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více