Martin Sloup, A Ohyb světla optickou mřížkou

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Martin Sloup, A04372. Ohyb světla optickou mřížkou"

Transkript

1 Mart Sloup, A0437 Ohyb světla optckou mřížkou

2 Mart Sloup, A0437 Obecá část Optcká mřížka a průcho světla je skleěá estčka, a íž je vyryta řaa jemých, rovoběžých, stejě o sebe vzáleých vrypů. Vrypy tvoří eprůhleá místa a eporušeé sklo mez m vytváří řau rovoběžých štěrb. Vzáleost vou souseích vrypů (též vzáleost střeů souseích štěrb) se azývá mřížková kostata. Její převráceá hoota uává počet vrypů (stěrb) přpaajících a jeotku élky. Uvažujme rovoběžé koheretí paprsky opaající kolmo a estčku. Vzhleem k tomu, že šířka štěrb je srovatelá s vlovou élkou použtého světla, šíří se světlo pole Huygesova prcpu za štěrbou všem směry, tj. štěrby se stávají koheretím světelým zroj. Vyšetříme, jaká bue tezta světla po průchou optckou mřížkou. Paprsky procházející střey vou souseích štěrb sleujme po průchou štěrbam ve směru ochýleém o úhel α o půvoího směru paprsků. Oba paprsky terferují s ráhovým rozílem δ, pro ějž platí: δ sα Bue-l ráhový rozíl rove celstvému ásobku vlové élky λ, buou se paprsky v tomto směru terferecí zeslovat. Pomíka pro maxmum tezty ve směru aém úhlem α je tey:. sα kλ, (k 0,,, 3, ). Změříme-l úhel α, pak ze zámé hooty mřížkové kostaty můžeme určt vlovou élku použtého světla: s α λ k Číslo k azýváme řáem maxma. Je zřejmé, že pro k 0 obržíme maxmum tezty v půvoím směru, tzv. maxmum ultého řáu. Symetrcky po obou jeho straách lze pak pozorovat maxma prvého, přípaě ruhého řáu. Maxma alších řáů bývají jž ezřetelá. Použjeme-l jako zroje vláka žárovky, jeví se maxmum 0. Řáu jako bílá stopa, zatímco alší maxma vytvářejí spojtá spektra k-tého řáy, v chž ejméě ochýlea o půvoího směru je barva falová a ejvíce barva červeá (tzv. ohybové ebol ormálí spektrum). Poloha maxm pro jeotlvé barvy je áa vzorcem: kλ s α Jestlže ozačíme λ ejmeší rozíl vlových élek vou spektrálích čar, které je mřížkou možo ještě rozlšt, pak poměr λ/ λ azýváme rozlšovací schopostí mřížky a lze okázat, že platí: λ k λ

3 Mart Sloup, A0437 tj., že rozlšovací schopost mřížky závsí a použtém řáu spektra a a celkovém počtu vrypů a mřížce. Přesější měřeí vlových élek světla se prováí k tomuto účelu sestrojeým Mchelsoovým terferometry. Měřící přístroje K měřeí mřížkové kostaty používáme též spektrometru. Jeho hlaví část jsou kolmátor, pozorovací alekohle 4, stolek pro hraol ebo mřížku 3 a ěleý kruh 5s oem. Kolmátor má a vější straě jemě vypracovaou štěrbu, kterou lze šroubkem zužovat ebo rozšřovat; štěrba má být v ohskové rově achromatcké čočky, která je upevěa a vtří straě kolmátoru. Kolmátor bývá pevě spoje s postavcem. Dalekohle 4 můžeme př uvolěí šroubu 6 otáčet rukou za rameo esoucí alekohle, př utažeí šroubu 6 jím lze jemě pohybovat pomocí mkrometrckého šroubku 7. S alekohleem je pevě spojeá oová stupce, a íž oečítáme polohu alekohleu s přesostí a esety stupě. Stře zorého pole alekohleu je vyzače tkovým křížem. Postup př měřeí spektrometrem Zroj světla (soíkovou výbojku) postavte těsě ke štěrbě kolmátoru. Uvolěte šroub 6 po kruhovou eskou, takže alekohleem 4 lze lehce otáčet ve voorové rově a astavte jej prot kolmátoru. Př opětovém přtažeí šroubu 6 lze mkrometrckým šroubem 7 zaostřt obraz štěrby a tkový kříž alekohleu. Šířku štěrby kolmátoru astavte postraím šroubem tak, aby obraz byl ostrý a ostatečě jasý. Pole potřeby zaostřete čočku okuláru, aby tkový kříž byl zřetelý. Na pravé straě alekohleu je přpevě ous. Přléhající kruh je ěle a 360. Poku se ulová ryska oa ekryje s ryskou 0 ěleého kruhu, opravíte astaveí kruhu po uvolěí šroubu 8. Pak šroub opět obře utáhěte. Do střeu přístroje vložte optckou mřížku kolmo k ose kolmátoru. Neotýkejte se obélíkové účé plochy mřížky! Na tkovém kříž alekohleu zůstává přtom stále zaostře obraz štěrby, tj. maxmum ultého řáu. Po uvolěí šroubu 6 otáčejte zvola alekohleem a zaostřete a tkový kříž postupě maxma. A. Řáu. Jemý posuv ocílíte opět pole bou 3. Totéž a opačou strau (vz obr.). Měříme úhly α pootočeím o záklaí polohy. Př otáčeí oprava čteme přímo úhly α, α. Př otáčeí oleva čteme pomocí oa úhly β, β a vypočteme přímo úhly α β, α β. Z alezeých hoot pak bereme průměr. Např. pro maxmum. Řáu je : α ' + α '' α

4 Mart Sloup, A0437 Př soíkovém světle a vložeé mřížce zovu zkotrolujte seřízeí přístroje astaveím maxma ultého řáu (vz bo 4 a 5). Pak zaměňte zroj světla za Balmerovu lampu. Proměřte spektrum Balmerovy lampy o. Řáu. Měřeí Př praktckém měřeí používáme jako zroje světla úzké prosvětleé štěrby o astavtelé šířce. Štěrba je umístěa v ohsku spojé čočky, která vytváří svazek rovoběžých koheretích paprsků. Tak je možo využít celé plochy optcké mřížky. Po průchou mřížkou zaostříme alší spojkou jeotlvá maxma a stíítku. Změřeím vzáleost maxma k-tého řáu o maxma ultého řáu a ze zámé vzáleost stíítka a mřížky lze určt tgα a tím sα. Rychlejšího a přesějšího měřeí osáheme použtím spektrometru. Jako zroj světla slouží osvětleá štěrba kolmátoru. Dalekohle astavíme tak, aby optcké osy alekohleu a kolmátoru splývaly. Kolmo k optcké ose umístíme o střeu spektrometru mřížku (vrypy svsle) a zaostřeím tkový kříž alekohleu a obraz štěrby přestavující maxmum ultého řáu. Otáčeím alekohleu alezeme polohy maxm alších řáů a a úhlové stupc spektrometru přímo oečteme příslušé úhly α. Z alezeých hoot pro symetrcky položeá maxma téhož řáu bereme průměr. Pracoví úkol Zapěte obě výbojky (soíkovou a Balmerovu lampu) a počkejte, až se ažhaví. Pomocí soíkové výbojky zkotrolujte astaveí spektrometru. V přípaě potřeby proveďte jeho justac. Zaostřováí se prováí vysouváím ebo zasouváím okuláru (ejlépe otáčvým pohyby). Úhly měřte s přesostí a 0,. Poku zvolíte velkou šířku vstupí štěrby (u méě vtelých čar), astavujte př měřeí tkový kříž a levý okraj čáry. Soíková výbojka Změřte polohy ohybových maxm. A. Řáu a obou straách hlavího maxma (pouze žluté čáry!) K výpočtu použjte hootu vlové élky λ 589,3 m (průměrá vlová élka soíkového ubletu). Navíc spočtěte počet vrypů a mm (záklaí charakterstka mřížky). Balmerova lampa Balmerova lampa je plěa voím param. Ve výboj se molekula HO štěpí a rakály H a OH, což umožňuje saé měřeí spektra voíku. Proměřte spektrum Balmerovy lampy o 3. Řáu (vz tabulka). Prví falová čára je hůře vtelá. Výpočet vlových élek proveďte pole skrpt. Přřaíme-l k čárám voíku kvatová čísla a (vz tabulka), pak vločty (převráceé hooty vlové élky) splňují tzv. Balmerův vztah (oražová čára epřísluší voíku):

5 Mart Sloup, A0437 λ R Na záklaě tohoto vztahu spočtěte pro kažou vlovou élku Rybergerovu kostatu R. Dále spočtěte její střeí hootu a její střeí kvaratckou chybu. Sestrojte graf závslost /λ a (/4 / ). Metoou ejmeších čtverců ajěte rovc této přímkové závslost. Směrcí přímky je Rybergerova kostata. Porovejte obě hooty Rybergerovy kostaty s tabulkovou hootou R 09737,343 cm-. Měřící přístroje. spektrometr. optcká mřížka 3. soíková výbojka 4. Balmerova lampa Vyhooceí měřeí a výpočet Soíková výbojka Pomocí aměřeých úhlů a zámé hooty vlové élky vypočteme mřížkovou kostatu : k * λ * 589,3*0 s α s 0,9 k * λ *589,3*0 s α s 45,4 +,659 *0 6 6,659 *0 +,655 *0,655 *0 mm mm,6535 *0 mm Převráceou hootou mřížkové kostaty je počet vrypů a jeotku élky: záklaí charakterstka mřížky 604mm 3,6535*0 Balmerova lampa řá barva α' [ ] β [ ] α'' 360-β [ ] α(α'+α'')/ [ ] s α λ [m] R [cm-] falová 4, - 3 falová 5, 344,7 5,3 5,5 0, , ,4 morozeleá , , ,94 oražová,9 338,95 0, , červeá 3,3 336,6 3,4 3,35 0, , ,08 falová - - falová 3,4 38,3 3,7 3,55 0,534 43, ,47 morozeleá 36, ,05 0, , ,44 oražová červeá 5,5 307,5 5,5 5,5 0, , ,74 falová moozeleá 6, 98, 6,8 6,95 0, , ,5

6 Mart Sloup, A0437 Výpočet vlové élky pro růzá spektra: 3 s α,6535*0 *s 5,5 λ 434,95m k Výpočet Rybergovy kostaty: λ R R λ 434, , 4cm R x 76874, 0980,3cm δ R R ( ) 0980,3 0948,4 337,90cm , 4 09,49cm - - R ( 0980,3 ± 09,49) cm - Graf závslost /λ a (/4 /) /λ ,3 0,5 0,7 0,9 0, /4 / Výpočet koefcetů rovce pomocí metoy ejmeších čtverců pro tuto závslost. Bueme hleat fukčí závslost ve tvaru: Y a0 + ax. Výpočtem jsme ostal rovc přímky: Y 9, ,6 x Směrcí přímky je Rybergrova kostata: R 09765,6 cm -.

7 Mart Sloup, A0437 Závěr Př měřeí Balmerovou lampou bylo složté ajít falové, a to obou řáů. Ostatí barvy jak u soíkové výbojky tak u Balmerovy lampy byly vtelé skoro obře. Po srováí hoot vypočteých Rybergových kostat (( 0980,3 ± 09,49) cm-, 09765,6 cm-) s tabulkovou hootou (09737,343 cm-) s myslím, že jsem se př měřeí moc ezmýll.

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU 3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

4. SCHÉMA ZAPOJENÍ U R

4. SCHÉMA ZAPOJENÍ U R EDL 3.EB 5 1/11 1. ZADÁÍ a) Změřte voltampérové charakteristiky dvou různých žárovek pomocí voltmetru a ampérmetru b) Sestrojte grafy =f() c) Vypočítejte statický odpor a graficko-početní metodou dynamický

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

FLUORIMETRIE. Jan Fähnrich. Obecné základy

FLUORIMETRIE. Jan Fähnrich. Obecné základy FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

Jednokriteriální rozhodování za rizika a nejistoty

Jednokriteriální rozhodování za rizika a nejistoty Jeokrterálí rozoováí za rzka a estoty U eokrterálíc úlo e vžy pouze eo krtérum optmalty, a to buď maxmalzačí ebo mmalzačí. araty rozoováí sou zaáy mplctě - pomíkam, které musí být splěy (vz úloy leárío

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

strana 2-4 strana 5-7 strana 8-10

strana 2-4 strana 5-7 strana 8-10 Podrobné instrukce: Nákres / úprava stínidla Chtěli by jste si sami vytvořit návrh lampy nebo nádoby? plán A strana 2-4 Tento průvodce vám pomůže s nakreslením každé skleněné strany. - Matematik by toto

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí . Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně

Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně Optika CD přehrávače Zeněk Bochníček, Příroověecká fakulta MU v Brně V roce 1977, právě 100 let po vynálezu fonografu T. A. Eisona, byl firmami Sony a Philips uveen na trh nový revoluční systém reproukce

Více

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY Záklaí pom Rozhoutí výběr eé ebo více varat z mož všech přípustých varat. Rozhoovatel subekt, který má za úkol učt rozhoutí. V úlohách vícekrterálí aalýz varat

Více

optika0 Světlo jako vlna

optika0 Světlo jako vlna optika0 Světlo jako vlna Spor o postatě světla se přenesl z oblasti filozofických úvah o reality koncem 17. století. Vlnovou teorii světla uveřejnil v knize Pojenání o světle (190) holanský fyziky Christiaan

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti Učbí txt k přášc UFY1 Fotomtri a raiomtri Fotomtri a raiomtri Důlžitou částí kvatitativího popisu optického září j určováí jho mohutosti B, jsou přímo měřitlé, a proto rgtických charaktristik. Samoté vktory

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření

Více

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 -

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 - Středí průmyslová škola, Uherské Hradště, Kollárova 67 MECHANIKA I M.H. 00 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST Studjí obor (kód a ázev): -4-M/00 Strojíreství - - Středí průmyslová škola, Uherské Hradště,

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Kritické otáčky - kritický počet otáček souhlasí s počtem kmitů

Kritické otáčky - kritický počet otáček souhlasí s počtem kmitů Hřídele a čepy Nosé hřídele - ehybé - uložeí laové kladky R l Mo max (F * l)/4 - otočé - áprava vozidel R Pohybové hřídele - přeášejí otáčivý pohyb i kroutící momet Rozděleí - plé - drážkové (apř. 6 drážek)

Více

Spektrální analyzátor Ocean optics

Spektrální analyzátor Ocean optics Anna Kapchenko, Václav Dajčar, Jan Zmelík 4.3.21 1. Zadání: Spektrální analyzátor Ocean optics Získat praktické zkušenosti s měřením spektrálních charakteristik pomocí spektrálního analyzátoru Ocean Optics

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

2.5.7 Šetříme si svaly I (kladka)

2.5.7 Šetříme si svaly I (kladka) 2.5.7 Šetříme si svay I (kadka) Předpokady: 020501 Pomůcky: kadky, akoěá rovia, šroub, smotateá akoěá rovia, švihada (ao), dvě košťata Př. 1: Uveď příkad situace, ve které se používá páka a: a) většeí

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Zapněte mikroskop (1.12, 1a.4), vložte sklíčko krycím sklem nahoru a zařaďte 10x objektiv.

Zapněte mikroskop (1.12, 1a.4), vložte sklíčko krycím sklem nahoru a zařaďte 10x objektiv. 1 1. Okuláry s nastavením dioptrií 2. Nastavení vzdálenosti očí 3. Místo pro vložení objektivové prismy 4. Objektivový revolver 5. Stolek s držákem vzorků 6. Kondenzor 7. Aperturní clona 8. Centrovací

Více

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3] Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte

Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte 37 Difrakce Georges Seurat namaloval NeÏlnÌ opolene na ostrovï La Grane Jatte nikoli obvykl mi tahy ötïtcem, ale pouze velk m poëtem mal ch barevn ch teëek, coû je malì sk styl naz van pointilismus. StojÌte-li

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

5.2.11 Lupa, mikroskop

5.2.11 Lupa, mikroskop 5.2.11 Lupa, mikroskop Přepokla: 5210 Rozlišovací schopnost oka (schopnost rozlišit va bo): závisí na velikosti obrazu přemětu na oční sítnici, poku chceme rozlišit va tmavé bo, nesmí jejich obraz opanout

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU F. Dušek, D. Honc Katera řízení procesů, Fakulta elektrotechniky a informatiky, Univerzita Parubice Abstrakt Článek se zabývá sestavením nelineárního ynamického moelu

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Automatický nivelační přístroj RUNNER 20/24

Automatický nivelační přístroj RUNNER 20/24 Automatický nivelační přístroj RUNNER 20/24 RUNNER 20/24 patří k nové generaci stavebních nivelačních přístrojů. Je vhodný pro všechny aplikace spojené s přenášením výšek, pro měření vzdáleností a pro

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství MĚŘENÍ DRSNOSTI POVRCHU Metody kontroly povrchu rozdělujeme na metody kvalitativní a kvantitativní. Metody kvalitativní

Více

Vytvoření vytyčovací sítě a vytyčení stavby

Vytvoření vytyčovací sítě a vytyčení stavby Vytvořeí vytyčovací ítě a vytyčeí tavby O bo P a ojici TB 89 a RS (roh retarace Slova roviňte bňk ravoúhlé vytyčovací ítě le obrák. V této íti vytyčte tavb aých roměrů a ajitěte olohově i výškově. Vytyčeí

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

Měření koncentrace roztoku absorpčním spektrofotometrem

Měření koncentrace roztoku absorpčním spektrofotometrem Měření koncentrace roztoku absorpčním spektrofotometrem Teoretický úvod Absorpční spektrofotometrie je metoda stanovení koncentrace disperzního podílu analytické disperze, založená na měření absorpce světla.

Více

TŘETÍ HLOŽANKA DUŠAN 29.4.2013. Název zpracovaného celku: TŘECÍ PŘEVODY TŘECÍ PŘEVODY

TŘETÍ HLOŽANKA DUŠAN 29.4.2013. Název zpracovaného celku: TŘECÍ PŘEVODY TŘECÍ PŘEVODY Předmět: Ročík: Vytvořil: Datum: STAVBA A PROVOZ STROJŮ TŘETÍ HLOŽANKA DUŠAN 9.4.03 Název zpracovaého celku: TŘECÍ PŘEVODY A. Pricip, účel, vlastosti TŘECÍ PŘEVODY Obecý popis převodů: Převody jsou mechaismy

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 6 Název: Studium ohybových jevů v laserovém svazku Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 10.3.2014

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Měření na 3fázovém transformátoru

Měření na 3fázovém transformátoru Měření na 3fázovém transformátoru Transformátor naprázdno 0. 1. Zadání Změřte trojfázový transformátor v chodu naprázdno. Regulujte napájecí napětí v rozmezí 75 až 120 V, měřte proud naprázdno ve všech

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více