Univerzita Karlova v Praze Pedagogická fakulta

Rozměr: px
Začít zobrazení ze stránky:

Download "Univerzita Karlova v Praze Pedagogická fakulta"

Transkript

1 Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI

2 Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje o 8 8 f ( ) olyom 6 5 ( x) 8x 88x 5x 77x 77x 9x 8 f. Nehť Z je koře olyomu f ( x) x x. Pk. Učím eločíselé kořey olyomu f. Potože 8 mohou jimi ýt ouze vky z možiy { ± ± ± ± 6 ± 9 ± 8}. Potože f ( ) (viz dodtek) eí kořeem olyomu f. Dále oužiji Hoeovo shém (ří. okové Hoeovo shém k učeí ásoosti kořee). Pltí Číslo je tedy tojásoým kořeem olyomu f. Dále stčí hledt kořey olyomu g ( x) 8x x 5x 8. Teto olyom již emá dlší eločíselé kořey. Pověřím ioálí kořey. Nehť Q je koře olyomu ( ) f x x x ehť Z. q Pk ( q ) f ()( q ) f ( ) (oužívá se ejčstěji o kdy dostáváme o koře q odmíky ( ) f ( ) ( q ) f ( ) q ). q { ± ± ± ± 6 ± 9 ± 8 } { ± ± ± ± 7 ± ± 8} Posledí řádek Hoeov shém v ěmž je zytek ulový. Ukázk děleí je v dodtku. O tom yh se řesvědčil okovým doszeím do Hoeov shém le olyom jsem si vymýšlel sám vím jk vše dode.

3 Moži možýh ioálíh kořeů M : M ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 6 ± ± 8 ± Čísl jsem již ověřili. Pltí Číslo je jedoduhým kořeem olyomu g tedy i olyomu zylýh kořeů oužiji olyom h x ( ) 8x 8x 6 Podle vzoe o kořey kvdtiké fuke dostávám zylé kořey Závě: Zjistil jsem že kořey olyomu (jedoduhé kořey) tedy f f ± ± 7 ± ± 8 jsou čísl (tojásoý koře) f ± 9 ± 9 ±. učeí ( x) 8x 88x 5x 77x 77x 9x 8 8 ( x ) x x x Posledí řádek Hoeov shém v ěmž je zytek ulový. Ukázk děleí je v dodtku

4 Dodtek ( ) Hodot olyomu f x 8x 88x 5x 77x 77x 9x v odě : Děleí olyomu tojásoým kořeem ( x ): f ( ) x x x (8x 8x x 8x x x x 8x x x 5x 5x 77x 8x 5x x 7x 5x 8x 8x 77x 77x x 8x 5x 5x 5x 9x 9x 5x 5x 5x 8) 8 8 : ( x x x ) 8x x 5x 8 Děleí olyomu g jedoduhým kořeem: (8x 8x x x 8x 8x 5x 5x 9x 6x 6x 8) 8 8 : ( x ) 8x 8x 6

5 Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY NÁSOBENÍ POLYNOMŮ / CIFRI

6 Zdáí: ) Dokžte že ásoeí olyomů je soitiví. ) Dokžte že ásoeí olyomů je distiutiví vzhledem ke sčítáí olyomů Vyováí: V dlším textu udeme olyomy zisovt jko ekoečé oslouosti vků. Násoeí olyomů Nehť jsou dv olyomy ehť je dá oee ásoeí olyomů. Součiem těhto olyomů je olyom kde M Ad ) Máme dokázt že ásoeí olyomů je soitiví. Nehť ( ) [ ] jsou tři olyomy ehť je dá oee ásoeí olyomů. Ay ásoeí olyomů ylo soitiví musí ltit tj. ezáleží uzávokováí. ( ) [ ] N : Důkz římý: Ozčme -tý čle olyomu d ( ). Pk o ( ) ( ) ( ( ) ( : d N ) ) Ozčme -tý čle olyomu h ( ). Pk o ( ) ( ) ( ) ( : h N ) uvíme-li osledí vzth tím že ze všeh čleů oshujííh vytkeme ze všeh čleů s vytkeme td. ž do získáme ovost ( ) ( ) ( ) ( h ).

7 Potože jsou -té čley oou součiů stejé ltí že ásoeí olyomů je soitiví. QED Ad ) Máme dokázt že ásoeí olyomů je distiutiví vzhledem ke sčítáí olyomů. Oět ovedeme důkz římý. Nehť jsou tři olyomy d ooem itegity I kde jsou dáy oee sčítáí ásoeí olyomů. Ay ásoeí olyomů ylo distiutiví vzhledem ke sčítáí ásoeí olyomů musí ltit [ ( )] ( ) tj. lze ozásoovt závoky. Důkz: Záis řeíšeme do sum odle videl o očítáí se summi uvíme: [ ( ) ] ( ) ( ) ( Dokázli jsme oždovou ovost. [( ) ( ) ] ( ) ) QED

8 Okováí: Biáí oee (Biáí) oeí možiě M ozumíme kždé zozeí (elého) ktézského součiu M M do M. Neí-li defiičím ooem elá moži M M hovoříme o iálí eo též částečé oei. Říkáme že oee možiě M je komuttiví jestliže ( M ) je soitiví jestliže ( M ) ( ) ( ) má eutálí vek jestliže ( M )( M ) má gesiví vek jestliže ( M )( M ) má ivezí vek ke kždému vku jestliže existuje eutálí vek ltí ( M ) M. ( ) Distiutiví záko ( x y) o z ( x o z) ( y o z ) (distiutivit oee o vzhledem k oei ) Polyom mohočle 5 k k Polyom je lgeiký výz tvu x x... k x k. Čísl... k jsou kostty tzv. koefiiety mohočleu x je oměá. Je-li zývá se číslo k stueň mohočleu. Mohočle lze ovžovt z fuki oměé x. Odoě se defiuje mohočle víe oměýh; ř. x xy z yz je mohočle tří oměýh čtvtého stuě (ejvyšší součet exoetů u všeh oměýh). 5

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Vektory a matice. P r. P x

Vektory a matice. P r. P x Vektoy tie Vektoy Vekto je lieáí oslouost vků V, kteá oshuje vků. Kždý vek vektou V je řístuý ostředitví idexu k v ozshu [, ]. Vekto řioíá dtový ty ole, le eí to ole. P P P P P Oee s vektoe Pvek ozii oee

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

Mocniny, odmocniny, úpravy. Repetitorium z matematiky

Mocniny, odmocniny, úpravy. Repetitorium z matematiky Mociy, odmociy, úpvy lgeických výzů epetitoium z mtemtiky Podzim Iv culová . Mociy přiozeým celým mocitelem Po kždé eálé čílo kždé přiozeé čílo pltí:... čiitelů moci Zákld mociy (mocěec) mocitel (expoet)

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Využití aproximačních funkcí pro kaskádní syntézu filtrů

Využití aproximačních funkcí pro kaskádní syntézu filtrů Pučochář, J.: Využití roximčích fukcí ro kkádí ytézu filtrů Využití roximčích fukcí ro kkádí ytézu filtrů Mteriál louží ouze jko růvodce k mteriálu odrobějšímu, který je dotuý trákách htt:mi.vb.cz Tm jou

Více

8.2.7 Vzorce pro geometrickou posloupnost

8.2.7 Vzorce pro geometrickou posloupnost 7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější

Více

POSLOUPNOSTI A ŘADY,

POSLOUPNOSTI A ŘADY, POSLOUPNOSTI A ŘADY, ÚVOD DO INTEGRÁLNÍHO POČTU Obsh Poslouposti řdy. Poslouposti reálých čísel................................ Aritmetická geometrická posloupost........................ 4.3 Nekoečé číselé

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Ř ó Í é Í ž ú Í Č Ú ň Š ň é é é Í ó Š ů é ů é é é é é é Š é ú ů é Ž é é Ž é Ž é ů Ž Č é ď Š Ž Ú ž ů Ž ů Ž é ď ž ž ž é é é é é ů ó é é Ž ů ů Í ž Ž ú Ž é ž Ž ú ů É Á Ú Í Ř É Á ó é ů Č Ť Í ů ů ú ú Í é Š Ř

Více

Exponenciální výrazy a rovnice

Exponenciální výrazy a rovnice Epoeciálí výzy ovice Epoeciálí výzy ovice - jou ovice výzy ezáou v epoetu = 7 + + + + = 7 = 6 + + 6 Pvidl po počítáí ocii Při úpvě výzů ocii řešeí epoeciálích ovic je tře dodžovt áledující pvidl (jou uvede

Více

Důchody jako pravidelné platby z investice

Důchody jako pravidelné platby z investice ůchody jko prdelé pltby z estce ůchod prdelá pltb e stejé ýš (ut) Podle toho kdy jsou uty plcey rozlšujeme důchod: Předlhůtí uty plcey počátku určtého čsoého terlu. Polhůtí uty plcey koc určtého čsoého

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výuk technických ooů Klíčová ktivit IV Inovce zkvlitnění výuk měřující k ozvoji mtemtické gmotnoti žáků tředních škol Tém IV1 Algeické výz, výz mocninmi odmocninmi Kitol 1 Duhá odmocnin

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

ý Í Á ě Ě Á Í ý ě ě ů Š ů ý ě ú ě ě Í ě ý ů ě ý ý ě ě ě ý Ť ě ý Á Ž ě Ěú Á ě ý Í ú ú Ž Í Ž ě ý ý ó ó ď ě ě ý ě ú ý Á ě Ěú Á Š ě ě ý ě ě ý ě ú ě ý ě ě ú ý ě ó Áý Í ť ě Ěú Á Í ě Ž ě ý ý ě ě ý ě ě Á ě ě ý

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

POČÍTAČOVÉ SČÍTÁNÍ ČÍSELNÝCH ŘAD VE STŘEDOŠKOLSKÉ MATEMATICE

POČÍTAČOVÉ SČÍTÁNÍ ČÍSELNÝCH ŘAD VE STŘEDOŠKOLSKÉ MATEMATICE POČÍTAČOVÉ SČÍTÁNÍ ČÍSELNÝCH ŘAD VE STŘEDOŠKOLSKÉ MATEMATICE H Mhelová Gymázium Nymburk Abstrkt: Žáci v rámci výuky mtemtiky SŠ řeší součty číselých řd klsickými metodmi (ř využitím vzorce, likcí biomické

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady. Čílo ojektu CZ..07/..00/4.074 Název školy Movké gymnázium Bno..o. Auto Temtiká olt Mg. Mie Chdimová Mg. Vě Jeřáková Mtemtik 0 Rionální číl. Text říkldy. Ročník. Dtum tvoy.. 0 Anote ) o žáky jko text látky,

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

š š Í š Ú ž ž Í Ú ů Í š ů ú ů š ú ú ď š ú š ů š ú ď š ú ú Č ú ú ú š ž ň š Č Í š ú ú ú ú ú š š š ž ú ú ú ň ž ú ú ž Ž ú Ž Ž ú ú ú ň ú Ů š ú Í š š ž š Ž Í š ú ž ď š ď ž É Ž ó Ž š Ž ú ú Í ú ů ú Í ú ž ú ú Ú

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

Nejistoty v mìøení II: nejistoty pøímých mìøení

Nejistoty v mìøení II: nejistoty pøímých mìøení V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie

Více

8.2.4 Užití aritmetických posloupností

8.2.4 Užití aritmetických posloupností 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jká by byl

Více

Repetitorium z matematiky

Repetitorium z matematiky Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Fkult příodovědě-humití pedgogická ZÁVĚREČNÁ PRÁCE LIBEREC 0 Mg. JAROMÍR OSČÁDAL Techická uivezit v Lieci Fkult příodovědě-humití pedgogická Egyptské zlomky Závěečá páce

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Matematická analýza II

Matematická analýza II Mtemtická lýz Tylorův polyom, primitiví fukce, určitý itegrál, fukce více proměých, metrické prostory Mtemtická lýz II látk z II semestru iformtiky MFF UK podle předášek Roert Šáml Zprcovli: J Ztr Štěti,

Více

( ) ( ) Úpravy algebraických výrazů. Mocniny a odmocniny. a a. b b. b a 1 = 1, ( 1) = 1, ( 1) = 1

( ) ( ) Úpravy algebraických výrazů. Mocniny a odmocniny. a a. b b. b a 1 = 1, ( 1) = 1, ( 1) = 1 Úrvy lgebrických výrzů Mociy odmociy Pro kždé reálé r, s kždé > 0, b > 0 (res ro kždé celé r, s kždé 0, b 0 ltí: r 0 s rs, r r ( b b r r r r s r+ s b b r s rs b : b Dále ltí +, (, ( Je-li N, 0, eistuje

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

PRAVDĚPODOBNOST ... m n

PRAVDĚPODOBNOST ... m n RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána

Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána Mtemtická lýz III - fukčí poslouposti řdy Ig. Leopold Vrá Obsh Předmluv 5 Část. Mocié řdy 7 Kpitol. Kovergece mocié řdy 9 Kpitol. Součtová fukce mocié řdy 7 Část. Fukčí poslouposti 3 Kpitol 3. Kovergece

Více

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1.

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1. DIM PaS. Připomeutí pozatků ze středí školy Faktoriály a kombiačí čísla základí vzorce: ( )( 2 )...2.! =. 0! = =! ( k)! k! ( )...( k ). + = k! = k + + = k + k + 2 2 ( a + b) = a + a b+ a b +... + a b +...

Více