Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety

Rozměr: px
Začít zobrazení ze stránky:

Download "Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety"

Transkript

1 Extragalaktická astrofyzika Aktivní galaktická jádra, Jety

2 Aktivní Galaktická Jádra

3

4 Úvod Pro AGN je charakteristické, že emitují velké množství energie z velmi malé oblasti. Obecně se má za to, že centrálním motorem AGN emise je supermasivní černá díra(smbh). V rámci SMBH paradigmatu je AGN poháněné akreujícím plynem na SMBH a zdrojem energie je gravitační potenciál centrální černé díry.

5

6 Sférická akrece K pochopení škály energie spojené s takovou akrecí uvažujme jednoduchý sférický model : centrální zdroj s luminozitou L je obklopen plynem s rozložením hustoty ρ(r). Potom je tok záření na poloměru R od zdroje roven a příslušný tlak záření potom je

7 Tlaková síla záření Tlaková síla na jd.objemu v důsledku rozptylu záření na elektronech má tvar kde je σ T účinnný průřez Thompsonova rozptylu a n e je hustota počtu elektronů na poloměru R.

8 Eddingtonova luminozita Aby nebyl akreující plyn rozptýlen musí být tlaková síla F rad menší než gravitační v daném místě, tj. odkud ihned dostaneme výsledek

9 Eddingtonova luminozita Zavedením dostaneme pro Eddingtonovu luminozitu relaci a po vyčíslení konstant obdržíme finální výraz

10 Eddingtonova luminozita Akreční rate odpovídající Eddingtonově luminozitě je Zavedením dostaneme pro Eddingtonovu luminozitu relaci kde byla využita relace a kde je. a po vyčíslení konstant obdržíme finální výraz

11 Akreční disky Dynamika diskové akrece

12 Akreční disk Plyn akreující na supermasivní černou díru má obecně nenulový moment hybnosti. Akrece tedy nejpravděpodobněji probíhá přes Keplerovský disk.

13 Popis disku Cylindrické souřadnice v disku z R

14 Pohyb hmoty v disku V 1. aproximaci, hmota v disku proudí podél Keplerovských orbit s rychlostí Keplerovský pohyb není rigidní, protože zjevně platí dochází ke tření mezi sousedními vrstvami. Předpokládáme, že třecí síly jsou mnohem menší než centrifugální nebo gravitační objevuje se radiální složka.

15 Hmota v disku Nechť je U=U(R,t) plošná hustota disku. Uvažujme prstenec v disku o tloušťce R mezi poloměry R a R+ R. Hmotnost takového prstence potom je a vztah pro příslušný moment hybnosti má tvar

16 Rovnice kontinuity R R+ R Třecí plocha

17 Rovnice kontinuity Časová změna hmotnosti je dána rozdílem toku hmoty vstupujího do prstence a toku hmoty z něj vystupujícího, tj. platí V limitě R 0 a t 0 dostaneme rovnici kde je lokální akreční rate.

18 Rovnice transportu hybnosti Časová změna momentu hybnosti je dána rozdílem toku hybnosti do prstence a z něj a dále třecími silami F t na vzájemné třecí ploše dvou vrstev, tj. platí V limitě R 0 a t 0 dostaneme rovnici kde je

19 Rovnice transportu hybnosti Rovnice transportu hybnosti. Časová změna momentu hybnosti je dána rozdílem toku hybnosti do prstence a z něj a dále viskózními silami F t na vzájemné třecí ploše dvou vrstev, tj. platí Kde W R je viskózní napětí působící na element 2HRd. Potom je 2 W R R 2 silový moment v důsledku viskózních sil mezi sousedními V limitě R 0 a t 0 dostaneme rovnici vrstvami. kde je

20 Akreční rate a viskózní síly Kombinací rovnice kontinuity a transportu hybnosti, spolu s využitím relace pro lokální akreční rate ve tvaru obdržíme relaci ze které plyne, že směr toku hmoty (znaménko u závislostí W R R 2 na R. ) je dán

21 Disipace energie Celková energie prstence je Její časová změna je důsledkem toku energie skrz prstenec, rozdílem prací vykonaných viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

22 Disipace energie Celková energie prstence je Její časová změna je důsledkem toku energie skrz prstenec, rozdílem prací vykonaných viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

23 Disipace energie Celková energie prstence je Její časová změna je důsledkem toku energie skrz prstenec, rozdílem prací vykonaných viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

24 Disipace energie Celková energie prstence je Její časová změna je důsledkem toku energie skrz prstenec, rozdílem prací vykonaných viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

25 Disipace energie Celková energie prstence je Její časová změna je důsledkem toku energie skrz prstenec, rozdílem prací vykonaných viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

26 Disipace energie Celková energie prstence je Energie přeměněná na teplo je potom dána rovnicí [disipace energie v teplo v jednotkovém sloupci je 2x větší Její než časová rychlost změna se kterou je důsledkem je energie, na toku jednotku energie plochy, skrz prstenec, vyzářena pryč rozdílem (disk má prací dvě vykonaných strany)]. viskózními silami na vnější a vnitřní straně prstence a ireverzibilními ztrátami energie přeměnou na teplo v prostřednictvím tření a diferenciální rotace.

27 Hydrostatická rovnováha podél směru osy z Pokud jsou pohyby v disku podél osy z subsonické, pak je disk v hydrostatické rovnováze. Ve směru kolmém na rovinu disku je tlak plynu a záření balancován složkou gravitace od centrálního tělesa kolmou na rovinu disku (self-gravitace je v tomto případě zanedbatelně malá) a platí Předpokládáme, že disk je tenký (H<<R) a homogení (ρ ρ(z)), řešením předchozí dif. rovnice je

28 Hydrostatická rovnováha podél směru osy z Pokud jsou pohyby v disku podél osy z subsonické, pak je disk v hydrostatické rovnováze. Ve směru kolmém na rovinu disku je tlak plynu a záření balancován složkou gravitace od centrálního tělesa kolmou na rovinu disku (self-gravitace je v tomto případě zanedbatelně malá) a platí V této funkci je centrální tlak v disku. Předpokládáme, že disk je tenký (H<<R) a homogení (ρ ρ(z)), řešením předchozí dif. rovnice je

29 Hydrostatická rovnováha podél směru osy z Pokud Pro střední jsou pohyby tlak pv potom disku podél získáme osy výraz z subsonické, pak je disk v hydrostatické rovnováze. Ve směru kolmém na rovinu disku je tlak plynu a záření balancován složkou gravitace od centrálního tělesa kolmou na rovinu a s využitím disku (self-gravitace relace je v tomto získáme případě vztah zanedbatelně pro malá) průměrnou a platí rychlost zvuku v disku ve tvaru Předpokládáme, že disk je tenký (H<<R) a homogení (ρ ρ(z)), řešením předchozí dif. rovnice je

30 Viskózní napětí Vizkózní napění je vyjádřeno dynamickou viskozitou a platí V případě Keplerovské rotace, kde, dostáváme

31 Viskózní napětí Dá se ukázat, že důležitou roli v akrečních mechanizmech disku hraje transfer hybnosti turbulencí a chaotickými magnetickými poli na malých škálách. V tom případě pro dynamickou viskozitu dostáváme výraz kde je v t turbulentní (Alfvénova) rychlost a l t je délková škála magnetických polí.

32 Viskózní napětí Dá se ukázat, že důležitou roli v akrečních mechanizmech disku hraje transfer hybnosti turbulencí a chaotickými magnetickými poli na malých Obecně škálách. se V tom má za případě to, že platí pro dynamickou viskozitu a dostáváme. výraz kde je v t turbulentní (Alfvénova) rychlost a l t je délková škála magnetických polí.

33 Viskózní napětí Dá se Standardně ukázat, že důležitou se zavádí roli parametr v akrečních mechanizmech vztahem disku hraje transfer hybnosti turbulencí a chaotickými magnetickými poli na malých škálách. V tom případě pro dynamickou viskozitu a jeho dostáváme prostřednictvím výraz získáme výraz pro dynamickou viskozitu ve tvaru kde je v t turbulentní (Alfvénova) rychlost a l t je délková škála magnetických polí.

34 Viskózní napětí Dá se ukázat, že důležitou roli v akrečních mechanizmech disku hraje transfer hybnosti turbulencí Viskózní a chaotickými napětí nakonec magnetickými obdržíme ve poli tvaru na malých (s využitím škálách. předchozích V tom případě relací) pro dynamickou viskozitu dostáváme výraz kde je v t turbulentní (Alfvénova) rychlost a l t je délková škála magnetických polí.

35 Stacionární akrece

36 Vlastnosti stacionární akrece Pro stacionární akreci platí. Dynamické rovnice pak lze snadno integrovat. Z rovnice kontinuity rovnici pro akreční rate ve tvaru (konstantní v celém disku) Integrací rovnice transferu hybnosti zjistíme, že platí (**) a užitím vztahu dostaneme rovnici

37 Okrajové podmínky S klesajícím poloměrem roste úhlová rychlost hmoty akrečního disku ale příslušný moment hybnosti klesá (je odnášen směrem k větším R v důsledku viskózních mechanizmů). V případě Schwarzchildovy černé díry existují Keplerovské orbity na R>R MS =6M. Pro R<6M materiál disku, po několika orbitách, padá po spirále do černé díry. V této oblasti už je viskózní napětí malé a klademe W R = 0 na R=6M.

38 Okrajové podmínky Za této podmínky zjistíme, z rovnice (**), že pro viskózní napětí platí kde je R 0 vnitřní okraj akrečního disku. Vnitřní podmínka W R = 0 určuje konstantu v rovnici pro transport hybnosti.

39 Teplota disku Zářivý tok odnášející část tepelné energie souvisí s hustotou záření vztahem Z rovnosti veličin Q + a Q - v případě stacionární akrece je hustota záření daná vztahem

40 Teplota disku Je-li disipovaná energie vyzářena z poloměru kde byla produkována a pokud je disk opticky tlustý, je disipovaná energie kompletně termalizována a platí. Teplota disku v daném místě R potom je

41 Výtrysky (Jety)

42

43 Generování Jetů Jety jsou tvořeny nabitými, relativistickými částicemi, které jsou akcelerovány z jádra AGN ve vzájemně opačných směrech. Jejich akcelerace je podporována energií akrece, případně rotační kinetickou energií z centrální černé díry. Celkově musí být Jet elektricky neutrální, zatím není jasné jestli jej tvoří elektrony a ionty nebo elektron-pozitronové plazma.

44 Generování jetů Některé jety jsou extrémně kolimované a tenké i ve vzdálenostech přesahující rozměr aktivní galaxie (miliony sv. let). Předpokládá se, že kolimační mechanizmus je pracuje v blízkosti centrální oblasti generující jety. Žhavý, tlustý akreční disk kolem černé díry může poskytnout přirozenou kolimaci v důsledku komínového (funneling) efektu.

45 Generování jetů

46 Generování jetů Protože si akreující materiál podrží nějaký moment hybnosti jak spiráluje dovnitř, bude mít tendenci se hromadit nejmenších možných orbitách které odpovídají jeho momentu hybnosti. Uvnitř takové centrifugální bariéry najdeme relativně prázdnou dutinu, která funguje jako tryska směrující akreující plyn ven podél stěn této dutiny.

47 Generování jetů Bohužel, jak ukazují simulace, tento mechanizmus nestačí dostatečně kolimovat vysoko-relativistické jety. Ukazuje se, že je nezbytné zahrnout magnetohydrodynamické efekty k popisu účinné kolimace jetů.

48 Rádiové laloky (lobes)

49 Generování laloků Jak putuje materiál jetu ven z centrální oblasti tak postupně narazí na odpor mezihvězdného média hostující galaxie a dále interaguje s mezigalaktickým médiem. V důsledku, je špice jetu zpomalena a formuje se čelo rázové vlny. Kumulace a zpomalení částic v této oblasti způsobí, že vysoce směrovaný jet s stává více neuspořádaný a vzniká lalok.

50 Akcelerace částic v jetu

51 Problém Z observace jetů plyne, že jejich záření pochází zejména ze synchrotronového záření. Urychlené částice v jetu by vyzářili svou energii za 10 tis let. Tato doba je příliš krátká, protože typické jety dosahují do vzdálenosti miliónů světelných let! To naznačuje, že uvnitř jetů(laloků) musí existovat mechanizmus, který částice dodatečně akceleruje.

52 Dodatečná akcelerace Jednou možností může být rázová vlna která urychluje částice tak, že je magneticky sevře, odráží tam a zpátky a dodatečně částice jetu urychlí. Tlak záření může taky hrát dodatečnou roli při urychlování částic v jetu.

53 Nadsvětelné rychlosti

54

55

56 Řešení Foton č.1: Foton č.2: Časový rozdíl:

57 Řešení Foton č.1: Foton č.2: Zdánlivá rychlost potom je Časový rozdíl:

58 Řešení Foton č.1: Foton č.2: Pro poměr v/c nakonec obdržíme Časový rozdíl:

59 Řešení Foton č.1: Foton č.2: Časový rozdíl: Poměr v/c je menší než jedna pokud platí Pro v zd =7c je max = Pro v zd =4c je max = Pro v zd =c je max = 90.

60 Reference B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, 2007 (kapitola 28) N. I. Shakura and R. A. Sunyaev, A Theory of The Instability Of Disk Accretion On To Black Holes And The Variability Of Binary X-Ray Sources, Galactic Nuclei And Quasars, MNRAS, 1976 J. E. Pringle, Accretion Discs In Astrophysics, Ann. Rev. Astron. Astrphys, 1981

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47 GALAXIE Základy astronomie 2 16.4.2014 Galaxie 1/47 Galaxie 2/47 Galaxie 3/47 Hubbleův systém klasifikace 1936 1924 Hubble rozlišil okraje blízkých galaxií, identifikoval v nich hvězdy klasifikace zároveň

Více

11 milionů světelných let od domova...

11 milionů světelných let od domova... 11 milionů světelných let od domova...... aneb tady je Kentaurovo Michal Vlasák (FJFI ČVUT) 11 milionů světelných let od domova... EJČF Workshop 2013 1 / 21 původ kosmického záření stále nejasný z interakce

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ

Více

Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření

Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Pozorování kosmického záření Kosmické záření je proud převážně nabitých částic, které dopadá na zeměkouli z kosmického prostoru.

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015 Koróna, sluneční vítr Michal Švanda Sluneční fyzika LS 2014/2015 Přechodová oblast Změna teplotní režimu mezi chromosférou (10 4 K) a korónou (10 6 K) Nehomogenní, pohyby (doppler-shift), vývoj S výškou

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08 ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 262470 (И) (Bl) (22) přihláženo 25 04 87 (21) PV 2926-87.V (SI) Int Cl* G 21 G 4/08 ÚFTAD PRO VYNÁLEZY A OBJEVY (40)

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

Černé díry ve vesmíru očima Alberta Einsteina

Černé díry ve vesmíru očima Alberta Einsteina Černé díry ve vesmíru očima Alberta Einsteina Martin Blaschke otevření Světa techniky ve dnech 14. - 20. 3. 2014 Ústav fyziky, Slezská univerzita v Opavě 1 / 21 Černá díra, kde jsme to jen slyšeli? Město

Více

Koróna, sluneční vítr

Koróna, sluneční vítr Koróna, sluneční vítr Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106 K) Nehomogenní,

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektrické a magnetické pole zdroje polí Podstata elektromagnetických jevů Elementární částice s ohledem na elektromagnetické působení Elektrické a magnetické síly a jejich povaha Elektrický náboj a jeho

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

Úloha IV.4... ach ta tíže

Úloha IV.4... ach ta tíže Úloha IV.4... ach ta tíže 4 body; průměr 22; řešilo 42 studentů Určete jaké je tíhové zrychlení na povrchu neutronové hvězdy v závislosti na rovnoběžce. Jak velká slapová síla by působila na předmět vysoký

Více

Cesta do nitra Slunce

Cesta do nitra Slunce Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

Naše Galaxie dávná historie poznávání

Naše Galaxie dávná historie poznávání Mléčná dráha Naše Galaxie dávná historie poznávání galaxie = gravitačně vázaný strukturovaný a organizovaný systém z řeckého γαλαξίας Galaxie x Mléčná dráha Mléčná dráha antika: Anaxagoras (cca 500 428

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

Hvězdy a černé díry. Zdeněk Kadeřábek

Hvězdy a černé díry. Zdeněk Kadeřábek Hvězdy a černé díry Zdeněk Kadeřábek Osnova Vznik a vývoj hvězd Protohvězda Hvězda hlavní posloupnosti Červený obr Vývoj Slunce Bílý trpaslík Neutronová hvězda Supernovy Pulzary Černé díry Pád do černé

Více

Odhad změny rotace Země při změně poloměru

Odhad změny rotace Země při změně poloměru Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Přednáška 2. Martin Kormunda

Přednáška 2. Martin Kormunda Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré

Více

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann:

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann: Sluneční vítr počátek 17. století, Johannes Kepler: 19. století: sluneční aktivita ovlivňuje geomagnetickou aktivitu (pozorování Slunce + detekování změn magnetického pole měřeného na Zemi + polární záře)

Více

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole iločáry elektrického pole Intenzita elektrického pole buzená bodovým elektrickým

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Příklady: 22. Elektrický náboj

Příklady: 22. Elektrický náboj Příklady: 22. Elektrický náboj 1. V krystalové struktuře chloridu cesného CsCl tvoří ionty Cs + vrcholy krychle a iont Cl leží v jejím středu (viz obrázek 1). Délka hrany krychle je 0,40 nm. Každému z

Více

1/38 Bouřlivý život hvězdných vysloužilců

1/38 Bouřlivý život hvězdných vysloužilců 1/38 Bouřlivý život hvězdných vysloužilců Bouřlivý život hvězdných vysloužilců Stanislav Hledík U3V FPF SUO, Krnov 15. dubna 2008 Navzdory zdánlivé neměnnosti noční oblohy není život hvězd věčný. Hvězdné

Více

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji, HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací

Více

Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008

Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008 Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky

Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky Reliktní záření a jeho polarizace Jiří Krtička Ústav teoretické fyziky a astrofyziky Proč je obloha temná? v hlubohém lese bychom v každém směru měli vidět kmen stromu. Proč je obloha temná? pokud jsou

Více

Slunce - otázky a odpovědi

Slunce - otázky a odpovědi Slunce - otázky a odpovědi Vladimír Štefl, Josef Trna Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce na

Více

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

BIOMECHANIKA SPORTU ODRAZ

BIOMECHANIKA SPORTU ODRAZ BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí

Více

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech Vícefázové reaktory MÍCHÁNÍ ve vsádkových reaktorech Úvod vsádkový reaktor s mícháním nejběžnější typ zařízení velké rozmezí velikostí aparátů malotonážní desítky litrů (léčiva, chemické speciality, )

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL 4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL V předchozích dvou podkapitolách jsme ukázali, že chorové emise se mohou v řadě případů šířit nevedeným způsobem. Připomeňme

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

VY_32_INOVACE_246. Základní škola Luhačovice, příspěvková organizace Ing. Dagmar Zapletalová. Člověk a příroda Fyzika Opakování učiva fyziky

VY_32_INOVACE_246. Základní škola Luhačovice, příspěvková organizace Ing. Dagmar Zapletalová. Člověk a příroda Fyzika Opakování učiva fyziky VY_32_INOVACE_246 Škola Základní škola Luhačovice, příspěvková organizace Ing. Dagmar Zapletalová Datum: 1.9.2012 Ročník: 9. Člověk a příroda Fyzika Opakování učiva fyziky Téma: Souhrnné opakování učiva

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Plazma v technologiích

Plazma v technologiích Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více