i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2"

Transkript

1 i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon:

2 28-2 U měi hexan() + hetan(2) ři 70 C vyočítejte tlak a ložení arní fáze, která je v rovnováze kaalnou fází obahující 50 mol.% hexanu. Předokládejte latnot Raoultova ro kaalnou fázi a Daltonova zákona ro lynnou fázi. Tlaky naycených ar čitých ložek ři 70 C jou: 05,4 kpa, 2 40,5 kpa x 0,5 05,4 0,5 40,572,95 kpa y x 0,5 05,4 72,95 0, Vyočtěte jaké maximální množtví organických látek (v g) může být obaženo v m 3 vzduchu ři 25 C nad kaalnou měí, obahující 40 mol.% tetrachlorethylenu a 60 mol.% acetonu. Předokládejte ideální chování kaalné i arní fáze a oužijte náledujících dat. M log A B t C [ C, kpa ] [g/mol] A B C Tetrachlorethylen () , Aceton (2) 58 6, log 6,07 386, ,5 0,3825 2,43 kpa log 2 6,242 20, , ,93 kpa n V R T x V R T 0,4 2, ,389 mol R 298,5 m n M 0,389 65,864,55 g n 2 V R T V R T 0,6 29, ,24 mol R 298,5 m n M 7, ,92 g mm m 2 64,55 49,92484,47 g 5. Určete roný tlak a ložení kaalné fáze ytému benzen() + toluen(2) ři telotě 338 K, jetliže arní fáze obahuje 44 mol.% benzenu. Předokládejte ideální chování kaalné fáze i arní fáze. Tlaky naycených ar ložek mají ři uvažované telotě hodnoty: 62 kpa, 2 22,4 kpa. y y 2 x y 0, ,56 22,4 3,56 kpa 0,44 3,56 0, Anilin () a nitrobenzen (2) tvoří rakticky ideální roztok. Za ředokladu ideálního chování arní

3 fáze Vyočtěte telotu varu a ložení arní fáze za tlaku 00 kpa u měi, která obahuje 90 mol.% anilinu a zbytek nitrobenzenu. Tlaky naycených ar čitých látek určete z Antoineových rovnic (kpa, C): log 6, t 203 log 6, t 200 Teloty varu čitých ložek ři tlaku 00 kpa: 703 t v 20383,492 C 6,4063 log t v ,358 C 6,2207 log 00 Pro výočet teloty varu měi je nutné řešit rovnici: x x 0 [6,4063 t 203 ] x [6,2207 t 200 ] Tuto rovnici je nutné řešit numericky. Protože vímě, že mě obahuje 90% anilinu, je ravděodobné, že telota varu měi bude blízká telotě varu čitého anilinu a hodnota 83,5 C je tedy dobrou rvní aroximací. Newtonova metoda dokonverguje o třec iteracích na hodnotu 85,427 C. 703 [6,4063 t 203 ] telota varu měi 0 05,84 kpa Y x 0,9 05,84 0, Prakticky nemíitelná mě N,N-diethylanilin() + voda(2) vře za tlaku 0,32 kpa ři telotě 99,4 C. Tlak naycených ar vody ři této telotě je 99,2 kpa. Kolik gramů vody je třeba za daných odmínek k ředetilování 00 g N,N-diethylanilinu? M 49 gmol -, M 2 8 gmol -. P 0,32 99,22,2 kpa m m 2 n 2 M 2 n y y 2 M 2 M y 2 y 2,2 0,32 0,0209 y M , ,9 g 0, Cyklohexan () a methanol (2) vytvářejí ři telotách nižších než 49 C v určitém koncentračním intervalu heterogenní mě. Při telotě 40 C obahuje fáze bohatší na methanol 27 mol.% cyklohexanu, druhá fáze obahuje 73,2 mol.% cyklohexanu. Zíkáme heterogenní ytém, míímeli ři této telotě mol methanolu a 2 mol cyklohexanu? Pokud ano, jaké bude látkové množtví fáze bohatší na methanol?

4 I fáze bohatší na methanol x I 0,27 II fáze bohatší na cyklohexan x II 0,732 z n n n ,667 x I z x II mě o ložení z leží v heterogenní oblati a rozadá e na dvě fáze o loženích I a II. n I n x II z II z x 0,732 0,667 I 0,667 0,27 0,647 n I n II 3 n I 0,647 n II 0,647 3 n I n I 0,423 mol 9. Při 25 C e ři arciálním tlaku chloru 0, MPa v dm 3 ethylbenzenu rozutí,66 mol Cl 2. Určete (a) Henryho kontantu Cl 2 a (b) jeho rozutnot v ethylbenzenu (v gdm -3 ) ři téže telotě za arciálního tlaku chloru 0,037 MPa. Hutota ethylbenzenu je 0,8626 gcm -3, M ethylbenzen 06,7 gmol -, M Cl 35,5 gmol -. a) b) m Cl2 n Cl2 M Cl2 x Cl 2 n EB x EB n EB V EB 0, ,247 mol M EB 06,7 0, MPa n Cl 2,66 n Cl 2 n EB,66 8,247 0,696 Cl 2 0, 0,589 MPa x Cl2 0,696 x Cl2 Cl 2 0,037 0,589 0,06277 M Cl 2 0, ,247 0, ,683 g / dm 3 EB 2. Potáěčká nemoc je vyvolána tím, že e bublinky duíku rozuštěného v krvi uvolňují v důledku nížení tlaku ři rychlém návratu otáěče k hladině a brání krevnímu oběhu. Za ředokladu, že rozutnot duíku v krvi je tejná jako ve vodě, vyočtěte objem duíku uvolněného z krve (lynný tav; t 37 C, 00 kpa) ři rychlém návratu otáěče ke hladině z hloubky 60 m. Předokládejte, že lidké tělo obahuje 6 dm 3 krve (ro výočet uvažujte, že krev má ři 37 C tejné vlatnoti jako voda, 0,993 gcm -3, M 8 gmol - ), hutota mořké vody je ρ,044 gcm -3 a (N 2 ) 0000 MPa. Složení vzduchu: 2 mol.% kylíku, 79 mol.% duíku, g 9,8 m -2. P 0,325 kpa moře g h , ,4 Pa y 0,79 0,32580,047 kpa y 0,79 75,823565,5 kpa

5 x 80, n x H O n H O x , mol N ,5 5, n 2 H 2 O n H 2 O 5, , ,655 0 mol n N 2 n 2 n, ,65 0 3, mol V n R T 0,0607 R 273,5 37 0,44 dm 3 00

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Chemie lambda příklady na procvičování výpočtů z rovnic

Chemie lambda příklady na procvičování výpočtů z rovnic Chemie lambda příklady na procvičování výpočtů z rovnic Příklady počítejte podle postupu, který vám lépe vyhovuje (vždy je více cest k výsledku, přes poměry, přes výpočty hmotností apod. V učebnici v kapitole

Více

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze 3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0

Více

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE Záadočeská univerzita v Plzni Fakulta edagogická Dilomová ráce SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE COMPARISON OF SELECTED EFFECTS IN REAL GAS - MODELS, ANIMATIONS Jiří Prušák Plzeň

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

Č Ú Í Á Ú Í Ú Ú Í Á Ě Č Ě Á Á Í Á Í Í Á Í Ý Í Í Á Í ž Í š š ž ť ž ž Í š š š ž š š Ý Č Í Á ú ý ó Č Č ž Í ř ř ž ž ř ř Č ř ý ž ř ž ř ž ý Í ú ů ý ř ř ú ř š š š š ř ž ž ř ý ý ř ý Č ý ž ý š Í ý ý ř Ú š š ž ť

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více

Solane technické benzíny lehká frakce

Solane technické benzíny lehká frakce 4 Alifatická uhlovodíková rozpouštědla Solane technické benzíny lehká frakce PENTANE 15 PENTANE 22 HUSTOTA PŘI 15 C kg/m 3 EN ISO 12185 630 630 659 669 669 693 BARVA DLE SAYBOLTA - ASTM D 156 +30 +30 +30

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Ž é ř é ř é ř é č č š ě š ě č ř úř ř úř é é ě ě Í ř č ř ř ěž ě ř č é ř é ř č é ě ř ě č éř Ž é ě ě ř ř ě š ě č Ť é Í ě Ž ř é č ř é ř é Ž ě ě Ž ř é č Č é ě č Č é Ž č Č é é č é ě ř ň č é ř ř č ň č Ť é Ť ů

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

ď ř ř ř é ř ř ů ř ř é ř řú é ň é ř ň ř ů ň řú ů é ň ř ů ň ř ů é ň ř ú ň ř ů ň ř ů ž ž ň ř é ž ů é ň ů ž ř é ř ů ř š é ů ř é ř ů é ň ř ň é ř ž ů ů ř ž é ž ž ž ž ř é ř ř ů ř ř ů ř ú ů Ú ů ů ř é ř é ř ř é

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

í Š í í ď í í é č ř čí ě ěř é é íč š ří č ř Ž é č í í é ř Ž é č í Š Š í í ěř é č í ý č ř í é í č í ý é ě í í í í í ř ě Ž í Ť ě úř í í úř í ý é ě í ř í Ž ří č š í é í ří é í ě í í ď ě ř ý š ěř í ěř íč š

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové

Více

Ý Ř ÁŘ Í Ť Č ú š ž é ú ř é é Ň ÁŘ Á Í É Í ú ř ř ř š š é š é ř é ů Ň Ý ť ÁŘ Á Ř ř é ř š ž ů é ř ú ú é ř é ú ů ř ů ř ó ž é ř é ř é ů ř é ž é ó ůž ž ř ř ú ž ř é ž ř é é é ř ž ž é é é š ž é š é ž é š é É š

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

Í ÁŘ É Í ÁŘ É ť ň ť ť É ť ť ď ť ť ó ó ň Ř ť ť ť ó ó ň Ř ť Š ó ť Á ň ď Á ň ť ď Á Á ť Ť ď ť Á Č ď Č ť Ě ó Č Č Č ď ó ň Á ň ť ď Á Á ť Ť ď ť Á Č ď ť ň ó Č Č Č ť ď Č ť Š ť ď Č ť ň Š Š ď Ý Á ť Č Č Č Č ň ó ť

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

KONCENTRACE KYSLÍKU VE VODĚ

KONCENTRACE KYSLÍKU VE VODĚ KONCENTRACE KYSLÍKU VE VODĚ Eva Hojerová, PřF JU v Českých Budějovicích Stanovení koncentrace rozpuštěného O 2 ve vodě Koncentrace O 2 ve vodě je významným parametrem běžně zjišťovaným při výzkumu vlastností

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

Indexy chemické penetrace a odpudivosti

Indexy chemické penetrace a odpudivosti Indexy chemické penetrace a odpudivosti Penetrace kapalné chemikálie je fyzikální proces, kdy kapalina proniká do textilie skrze póry nebo otvory. Penetrace kapaliny textilií a odpudivost textilie pro

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

MO 1 - Základní chemické pojmy

MO 1 - Základní chemické pojmy MO 1 - Základní chemické pojmy Hmota, látka, atom, prvek, molekula, makromolekula, sloučenina, chemicky čistá látka, směs. Hmota Filozofická kategorie, která se používá k označení objektivní reality v

Více

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb.

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. Doporučené aplikace tanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. 1 Metodické pokyny pro určení množtví elektřiny z vyokoúčinné

Více

TCD Alcohol M. Otto-Roelen-Str. 3 D-46147 Oberhausen Germany. Product Stewardship FAX: +49 (0)208 693 2053 email: psq@oxea-chemicals.

TCD Alcohol M. Otto-Roelen-Str. 3 D-46147 Oberhausen Germany. Product Stewardship FAX: +49 (0)208 693 2053 email: psq@oxea-chemicals. 1.Označenílátky,lépeřečenosloučeninyafirmy Identifikacelátky/přípravku TCD Alcohol M Chemický název Octahydro-4,7-methano-1H-indenemethanol Reg.č.CAS 31308-55-1 Č.EINECS 250-561-2 Použitílátky/přípravku

Více

Kappa - výpočty z chemie 12/10/12

Kappa - výpočty z chemie 12/10/12 Kappa - výpočty z chemie 12/10/12 Všechny příklady lze konzultovat. Ideální je na konzultaci pondělí, ale i další dny, pokud přinesete vlastní postupy a další (i jednodušší) příklady. HMOTNOSTNÍ VZTAHY

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

Pracovní list: Karbonylové sloučeniny

Pracovní list: Karbonylové sloučeniny Pracovní list: Karbonylové sloučeniny 1. Doplň schéma rozdělení karbonylových sloučenin: karbonylové sloučeniny obsahují skupinu obsahují skupinu koncovka je koncovka je např. např. 2. Označ červeně ketony

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

Č ó š ě š ě Í šť Č šť Č Č Č ř ě ž š ě ř Č Č ř š ě ř š ě ř š š ě ř Ň š ň š ě š ě š ě š ě š ě ě š ě š ě ě šť šť š ě ě ř ě šť š ě š ě Č š ě Č š ě š ě ě š ě š ě ě šť šť š ě Ě ř ě šť š ě š ě Č š ě Č š ě š ě

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

č é č ě ší Ž ý ý ší ů í č á č í á ž á žň ř ě ší í ě ě ý ří é á í é ý í ší á á í ě á Ž ú ě ý ů á í č ý ž á á í ů Č š á é é é á ě á ř ý ž á í ž ě á í éč ž ě š ý é č í í ů ří é é ý ž á é í é í á á í é ě é

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem,

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem, Destilace diferenciální bilance a posouzení vlivu aparaturních dílů na složení destilátu Úvod: Diferenciální destilace je nejjednodušší metodou dělení kapalných směsí destilací. Její výsledky závisí na

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Název materiálu: Opakovací test

Více

ř ž ř š ř ů ř ž ř ř ž ž ř Č Ú Č Ř Ě Ř É Á ř ř ž ř ř ř ř ž Č ú ž Č ř š ř Č ž ř ň ř ž ř ů Ů ř ž ž ú ř š ř úř ř ř ň ř ů ů ř ř ž ů Č ž ř š ř ň ů ú ů ž ů ů š ž ř ů ů š ó š ů ů ř š ů ů ř ů ř ž š ř ú ůč Ú š ú

Více

Výpočet stechiometrického a sumárního vzorce

Výpočet stechiometrického a sumárního vzorce Výpočet stechiometrického a sumárního vzorce Stechiometrický (empirický) vzorec vyjadřuje základní složení sloučeniny udává, z kterých prvků se sloučenina skládá a v jakém poměru jsou atomy těchto prvků

Více

ř ř ř ó é ř ř é ř ř ů ř ř ó ř ř é ř ť Ď ž ň é ř ň ř ň ř é ž ů ň ř ň řú é ň ř ů ň ř ň ř ž ž ň ř é ž ů é ů é ň ů ů ž ř é ř ů š é ů ř é ř ů ř ů é ň ň é ř ň é ř ř ž ů ů ř ž ž ž ř é ř ř ů ř é ř ů ř ú ů ú ů

Více

H δ+ A z- K z+ Obr. E1

H δ+ A z- K z+ Obr. E1 ELEKTROCHEMIE Elektrochemie je část fyzikální chemie studující roztoky elektrolytů a děje na elektrodách do těchto roztoků onořených. Studuje tedy roztoky obsahující nabité částice - ionty. Pojmy elektroda,

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

š ý ó ř ó ýš ž ó ř ž ý ý ů ž ž ř ě ěř ěř ý š ě ý ý ý ří ě ě ě Ž ě ř ě ě ř ě ě Í Í š ř Ž ý ř ř ř Ž ř Ž ř Ž ý ř Í Á ý ó Ó Í ě ý ů š ř ť Ť Ó ř ě ě ě Ž ě ř ě ě ř ě ě Í š ř ý ř ř ř Ž ř Ž ř ý ý ě ý ů š Í š ó

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

ř é ů ř ř š Š ě ř é ů Š ě ř é ů ř ř é ě š ů ď ě ý ů ú é ú é ú é ú é ý ú é ř ř ů ř ě ý é ů ě é ř ě Ž é ú ř ý ě ý ř ď ů é Í ě é ě ý Š ěř é ýř é ř ů ó ě ý ř ě ř ě ý ů ě ě š ř ů ú ýš ě ů ú ý ť ě ý ý ď ě ď

Více

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ VSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta trojí katedra hydromechaiky a hydraulických zařízeí ČERPACÍ TECHNIKA A POTRUBÍ NÁVOD DO CVIČENÍ Tomáš Blejchař Syla Drábkoá OSTRAVA 00 Sezam oužitých

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

É ř Č é Ří Ó é íúř Ší í Ř Č Ě Š í í ý ý Ž ř í ý ř ů ž í í í š š Ž ý Ž í ř ň í é ý ý í ří í í í é ň í í ý ý í Ž ř š é ň ří š í é ý ú í é ů ý ú í í í ý í ý ú íč í Č ří í ý é í í ý í ří í í í ý í ŽČ é ý í

Více

Pracovní list č. 3: Pracujeme s kategorizovanými daty

Pracovní list č. 3: Pracujeme s kategorizovanými daty Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Posouzení klimatizačních a chladících systémů v energetických auditech z pohledu energetického auditora Ing. Vladimír NOVOTNÝ I&C Energo a.s., Seminář AEA 26.5.2005 FAST Brno Veveří 95 Regionální kancelář

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D01_Z_MECH_Uvod_PL Člověk a příroda Fyzika Mechanika Úvod Fyzika, SI, násobky a

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu

Tento materiál byl vytvořen v rámci projektu Operačního programu Tento materiál byl vytvořen v rámci projektu Operačního programu Projekt MŠMT ČR Číslo projektu Název projektu Klíčová aktivita Vzdělávání pro konkurenceschopnost EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.3349

Více

ULOHA Č. 6 - STANOVENÍ NEPOLÁRNÍCH EXTRAHOVATELNÝCH LÁTEK (NEL) 6.1 Teoretická část

ULOHA Č. 6 - STANOVENÍ NEPOLÁRNÍCH EXTRAHOVATELNÝCH LÁTEK (NEL) 6.1 Teoretická část ULOHA Č. 6 - STANOVENÍ NEPOLÁRNÍCH EXTRAHOVATELNÝCH LÁTEK (NEL) 6.1 Teoretická část V praxi se rozlišuje stanovení veškerých extrahovatelných látek (označení EL) a nepolárních extrahovatelných látek (označení

Více

H&0 = ,19(578-Ë&Ë. 9é6783 5&0 X ' + X&0 1(,19(578-Ë&Ë =(0 5 '

H&0 = ,19(578-Ë&Ë. 9é6783 5&0 X ' + X&0 1(,19(578-Ë&Ë =(0 5 ' Vážení zákazníci dovolujeme i Vá upozornit že na tuto ukázku knihy e vztahují autorká práva tzv. copyright. To znamená že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

DERIVÁTY - OPAKOVÁNÍ

DERIVÁTY - OPAKOVÁNÍ DERIVÁTY - OPAKOVÁNÍ Doplňte k názvu derivátu uhlovodíku charakteristickou skupinu: alkohol Název derivátu Charakteristická skupina nitroderivát karboxylová kyselina aldehyd halogenderivát keton Doplňte

Více

Č ó ž č ě š č ěš Í ž ě š ř ů Č úč ý ž ě ú ěš ě ů ý č ů ý č ů ď č ě ž ů ěž ě č ý ď č ř ý ě ř č ů řů ů ř ř ř Í ž č č ý ý ů ř ť ý ý ů č ť Č ý Č Č ř š č ý ř ě ů č ř řď ř š Č š č ř ě č ý ř ě ů ř č ú Í š č ý

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Prováděcí plán / Unit Plan Školní rok / School Year 2013/2014

Prováděcí plán / Unit Plan Školní rok / School Year 2013/2014 říjen Oct září Sep Období Month Vyučovací předmět / Subject: Chemie Třída / Class: VIII. Prováděcí plán / Unit Plan Školní rok / School Year 2013/2014 Vyučující / Teacher: Bc. Barbora Svátková, Clive Allen

Více