2. Elementární kombinatorika

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Elementární kombinatorika"

Transkript

1 2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové množiny. Permutace je uspořádaná n-tice všech prvků dané n-prvkové množiny. Tvrzení 2.2. Pro počet c(n, k) všech k-prvkových kombinací z n prvků, kde 0 k n, platí ( ) n n(n 1) (n k + 1) n! c(n, k) = = = k k(k 1)] 1 (n k)!k!. Pro počet v(n, k) všech variací platí Pro počet p(n) všech permutací platí v(n, k) = n(n 1) (n k + 1). p(n) = v(n, n) = n!. Příklad 2.3. Kolika způsoby lze přeuspořádat cifry v čísle tak, aby výsledné číslo bylo dělitelné dvěma nebo pěti? Protože požadujeme, aby výsledné číslo bylo dělitelné dvěma nebo pěti, tak poslední cifra může být pouze 2, 4, 5, nebo 6. Pro každou volbu poslední cifry máme možností, jak uspořádat zbylé cifry. Celkový počet možností je tedy 4 = = 40. Příklad 2.4. Zkoušející má připravených 12 příkladů z algebry a z geometrie. Na písemku chce dát 5 příkladů, přičemž chce, aby alespoň 2 byly z algebry a alespoň 1 z geometrie. Kolik má možností sestavení různých zadání? Vidíme, že zkoušející provádí dvě volby: Nejprve vhodně zvolí počet příkladů z algebry (nebo z geometrie) a pak pro takto zvolené počty příkladů vybere jednotlivé příklady. Předpokládejme, že zkoušející se rozhodl dát na písemku a příkladů z algebry, pak na písemce bude také 5 a příkladů z geometrie. Kolika způsoby může pro takto zvolené a sestavit písemku? Zkoušející vybírá a příkladů z 12 a nezávisle na tom vybírá 5 a příkladů z. Proto pro takto zvolené a může zkoušející sestavit písemku právě ( 12 a ) ( 5 a způsoby. Nyní se zabývejme, jakých hodnot může a nabývat. Podle předpokladu má platit a 2 a současně 5 a 1. Odtud odvodíme, že a {2, 3, 4}. Dohromady dostáváme, že zkoušející může sestavit písemku právě ( ) ( ) ( ) ( ) ( ) ( ) = způsoby. 1 )

2 Příklad 2.5. V pytlíku je různých lístků označených čísly 1 až. Kolika různými způsoby můžeme postupně vybrat 4 z nich, pokud se vybrané lístky do pytlíku nevracejí? Jedná se o typický příklad na variace. Počet všech možností je v(4, ) =! 4! = = 160. Příklad 2.6. Kamarádi Alice, Bob, Cecílie, David a Ema jdou spolu do kina. V kině si sednou do řady vedle sebe. Kolika způsoby si můžou posedat, pokud chtějí, aby (a) Bob seděl vedle Cecílie, (b) David neseděl vedle Alice, (c) nastaly obě možnosti (a) i (b) současně. (a) Použijeme následující trik. Na Boba a Cecílii budeme pohlížet jako na jedinou osobu. Počet všech uspořádání 4 osob je 4!. Toto číslo však musíme ještě vynásobit dvěma, nebot potřebujeme rozlišit v jakém pořadí sedí Bob a Cecílie (tj. zda vlevo sedí Bob a vpravo Cecílie, nebo vlevo sedí Cecílie a vpravo Bob). Celkový počet možností je tedy 2 4! = 24 2 = 4. (b) Označme N počet možností, kdy David nesedí vedle Alice. Dále označme M počet možností, kdy David sedí vedle Alice. Zřejmě N + M je počet všech uspořádání 5 osob, tedy N + M = = 120. Navíc, podle předchozího máme, že M = 4. Díky tomu snadno dopočítáme N: N = 120 M = = 72. (c) Postupujeme podobně jako v předchozích případech. Označme N počet možností, kdy Bob sedí vedle Cecílie, ale David nesedí vedle Alice. Dále označme M počet možností, kdy Bob sedí vedle Cecílie a současně David sedí vedle Alice. Zřejmě N + M je počet všech možností, kdy Bob sedí vedle Cecílie, tedy N + M = 4. Stačí spočítat M. Zajímá nás počet uspořádání 3 osob AD, BC, E, přičemž potřebujeme rozlišit mezi AD a DA a mezi BC a CB. To znamená, že Odtud již snadno dopočítáme N: M = 3! 2 2 = 24. N = 4 M = 4 24 = 24. 2

3 2.2. Kombinace, variace, permutace s opakováním Definice 2.7. Uspořádání (pořadí) n prvků, z nichž mezi některými nerozlišujeme, nazýváme permutace s opakováním. Tvrzení 2.. Necht je mezi n danými prvky p 1 prvků prvního druhu, p 2 prvků druhého druhu,..., p k prvků k-tého druhu, p 1 + p p k = n. Potom počet P (p 1, p 2,..., p k ) všech uspořádání (pořadí) techto prvků je n! P (p 1, p 2,..., p k ) = p 1! p k!. Příklad 2.9. Kolik existuje různých přesmyček slova ALIBABA takových, že (a) začínají souhláskou a končí samohláskou, (b) mezi písmeny B jsou právě dvě písmena. (a) Rozlišíme 4 případy podle toho jakým písmenem přesmyčka začíná a jakým končí. 1) Nejprve uvažme přesmyčky, které začínají písmenem L a končí písmenem A. Počet všech takovýchto slov je roven počtu všech přesmyček slova AIBAB a těch je 2! 2! = 30. 2) Nyní uvažme přesmyčky, které začínají písmenem B a končí písmenem A. Počet všech takovýchto slov je roven počtu všech přesmyček slova ALIAB a těch je 2! = 60. 3) Dále uvažme přesmyčky, které začínají písmenem L a končí písmenem I. Počet všech takovýchto slov je roven počtu všech přesmyček slova ABABA a těch je 3! 2! = 10. 4) Nakonec uvažme přesmyčky, které začínají písmenem B a končí písmenem I. Počet všech takovýchto slov je roven počtu všech přesmyček slova ALABA a těch je 3! = 20. Počet všech různých přesmyček slova ALIBABA, které začínají souhláskou a končí samohláskou, je pak = 120. (b) mezi písmeny B jsou právě dvě písmena. Protože délka slova je 7, můžeme písmena B umístit právě čtyřmi způsoby tak, aby mezi nimi byla právě dvě písmena. Zbylá 3

4 písmena lze rozmístit libovolně. Počet všech přesmyček s daným umístěním písmen B je roven počtu přesmyček slova ALIAA a těch je 3! = 20. To znamená, že počet všech různých přesmyček slova ALIBABA takových, že mezi písmeny B jsou právě dvě písmena, je 4 20 = 0. Definice Variace s opakováním je uspořádaná k-tice prvků z dané n-prvkové množiny, přičemž každý prvek množiny se může v této k-tici vyskytovat v libovolném počtu kopií. Tvrzení Počet V (n, k) všech variací s opakováním k-tého stupně třídy n je V (n, k) = n k. Příklad Kolik šesticiferných čísel lze sestavit z cifer jestliže chceme, aby (a) součin cifer byl sudý, (b) součet cifer byl sudý. 0, 1, 3, 6,, 9, (a) Nejprve určíme počet všech šesticiferných čísel, které jsme schopni z těchto číslic sestavit. Číslo nemůže začínat nulou, a proto je počet všech šesticiferných čísel, která jsme schopni z těchto cifer sestavit, roven číslu Součin cifer je sudý právě tehdy, když není lichý, přičemž součin cifer je lichý, právě tehdy když, všechny cifry jsou liché. To znamená, že počet šesticiferných čísel, jejichž ciferný součin je lichý, je 3 6 (používáme jen liché cifry a ty jsou 3-1,3,9). Pak počet šesticiferných čísel, jejichž ciferný součin je sudý, je (b) Zajímají nás šesticiferná čísla sestavená z těchto cifer, jejichž ciferný součet je sudý. V závislosti na součtu prvních pěti cifer volíme poslední cifru tak, aby ciferný součet byl sudý, tj. pokud ciferný součet prvních pěti cifer je lichý, poslední cifra musí být lichá a pokud je ciferný součet prvních pěti cifer sudý, pak musí být i poslední cifra sudá. Jelikož je počet lichých a sudých cifer stejný (totiž 3), nezávisí počet možností na paritě ciferného součtu prvních pěti cifer. Výsledek je tedy trojnásobek počtu pěticiferných čísel, které je možné sestavit z daných cifer, tj. 3 (5 6 4 ). Definice Kombinace s opakováním je neuspořádaná k-tice prvků z dané n-prvkové množiny, přicemž každý prvek množiny se může v této k-tici vyskytovat v libovolném počtu kopií. 4

5 Tvrzení Počet C(n, k) všech k-prvkových kombinací s opakováním z n prvků je pro všechna k 0 a n 1 ( ) k + n 1 C(n, k) =. k Příklad Do 7 obálek rozdělujeme stokorun a 11 dvousetkorun. Určete kolik způsoby lze bankovky do obálek rozdělit, jestliže (a) je rozdělujeme libovolně, (b) chceme, aby v každé obálce byla alespoň jedna stokoruna. Jedná se o příklad na kombinace s opakováním. (a) Počet rozdělení stokorun do 7 obálek je ( ) = ( ) 14 = Počet rozdělení 11 dvousetkorun do 7 obálek je ( ) ( ) = = Počet rozdělení stokorun a 11 dvousetkorun do 7 obálek je tedy ( ) 14 ( ) 17 = (b) V tomto případě dáme do každé obálky stokorunu, tedy jedna stokoruna nám zbude a tuto jednu stokorunu můžeme dát do libovolné obálky. Jinými slovy počet rozdělení stokorun do 7 obálek je za předpokladu, že v každé obálce je alespoň jedna stokoruna, roven číslu 7. Pak počet rozdělení stokorun a 11 dvousetkorun do 7 obálek je za předpokladu, že v každé obálce je alespoň jedna stokoruna, roven číslu ( ) 17 7 =

5.1. Klasická pravděpodobnst

5.1. Klasická pravděpodobnst 5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky

Více

Kombinatorika. November 12, 2008

Kombinatorika. November 12, 2008 Kombinatorika November 12, 2008 Příklad Do školní jídelny přišla skupina 35 žáků. Určete kolika způsoby se mohli seřadit do fronty u výdeje obědů. Řešení: Počet možností je 1 2... 35 = 35! (Permutace bez

Více

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Kód trezoru 1 je liché číslo.

Kód trezoru 1 je liché číslo. 1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

4. Kombinatorika a matice

4. Kombinatorika a matice 4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel

Více

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici [1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál.

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál. Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE

Více

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace 1. Určete počet všech čtyřciferných přirozených čísel sestavených z číslic 1, 3, 5, 8, 9 tak, že se v něm každá číslice vyskytuje nejvýše jednou. (120)

Více

9) Určete počet všech čtyřciferných přirozených čísel,

9) Určete počet všech čtyřciferných přirozených čísel, Kombinatorika konzultační příklady 1) Z města A do města B vedou 2 cesty. Z města B do města C vedou 3 cesty. Kolika způsoby lze dojít z města A do města C? 2) Určete počet všech přirozených trojciferných

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Přirozená čísla. Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů

Přirozená čísla. Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů Přirozená čísla Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů ( osob, zvířat, věcí). Číslo 0 mezi přirozená čísla nepatří. Množinu přirozených čísel označujeme N N = {1, 2,

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3 SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3 Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

1.5.7 Znaky dělitelnosti

1.5.7 Znaky dělitelnosti 1.5.7 Znaky dělitelnosti Předpoklady: 010506 Pedagogická poznámka: Příklad 1 je dořešení zadání z minulé hodiny. Je třeba se u něj nezdržovat. Př. 1: Na základní škole ses učil pravidla, podle kterých

Více

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít 0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ Čas ke studiu kapitoly: 30 minut Cíl: Po prostudování této kapitoly budete umět použít základní pojmy kombinatoriky vztahy pro výpočet kombinatorických úloh - 6 -

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Kombinatorika možnosti využití v učivu matematiky na základní škole

Kombinatorika možnosti využití v učivu matematiky na základní škole Kombinatorika možnosti využití v učivu matematiky na základní škole Růžena Blažková, Irena Budínová Kombinatorika je matematická disciplína, která se zabývá rozdělováním, uspořádáváním, výběrem prvků z

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou.

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou. KOMBINATORIKA Cíle: 1. Ovládat pojmy faktoriál, kombinační číslo, umět aktivně využít vlastností kombinačních čísel, Pascalův trojúhelník včetně příslušné terminologie a symboliky. 2. Chápat správně pojmy

Více

A 2.C. Datum: 13.5.2010

A 2.C. Datum: 13.5.2010 Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou

Více

Základní kombinatorické principy

Základní kombinatorické principy Základní kombinatorické principy 1.1 Princip bijekce je vzájemně jednoznačné přiřazení prvků dvou množin: jedna množina pro nás může být nepřehledná a vztahy v ní dokážeme těžko postihnout, zatímco druhá

Více

Kombinatorika. Irina Perfilieva. 19. února logo

Kombinatorika. Irina Perfilieva. 19. února logo Kombinatorika Irina Perfilieva Irina.Perfilieva@osu.cz 19. února 2008 Outline 1 Předmět kombinatoriky Základní kombinatorické konfigurace 2 Dvě základní pravidla kombinatoriky 3 Počet základních kombinatorických

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor004 Vypracoval(a),

Více

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: 8 4 8 4 + 4 8 4 4. Zjednodušte: [ 1680 ] 5 6 7 4 3 [ 840 ] [ 70 ] 5 1 8 + 9 1 30 9 3. Upravte na společného jmenovatele: 1 7 0

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2014, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,

56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší, 6 ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z8 1 Z číslic 1,2,,9 jsme vytvořili tři smíšená čísla a b c Potom jsme tato tři čísla správně sečetli Jaký nejmenší součet jsme mohli

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Vzorové řešení 6. série

Vzorové řešení 6. série Vzorové řešení 6. série Úloha 6.1. Konečně v Hloupětíně roztál všechen sníh a Kouma s Ňoumou se vydali na první jarní výlet na hrad Ftipín. U vstupu do hradu našli tento nápis: Ten, kdo středověký problém

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti METODICKÝ LIST DA7 Název tématu: Autor: Předmět: Dělitelnost znaky dělitelnosti, dělitelnost dvěma, třemi, pěti, deseti a dvaceti pěti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24)

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24) Kombinatorika 1. Variace 2. Permutace 3. Kombinace Název: I 1 9:11 (1 z 24) Název: I 1 10:02 (2 z 24) Variace Jsou to skupiny prvků, ve kterých: záleží na pořadí prvků značíme je Název: I 1 10:02 (3 z

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série Řešení Páté Série Úloha 1. Máte za úkol zaplnit následující útvar čísly od 1 do 13. Součet těchto čísel musí být v každé řadě trojúhelníků stejný. Je možné útvar takto zaplnit? Zdůvodněte své tvrzení.

Více

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Kombinatoria je obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé

Více

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1 1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8

Více

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem

Více

2 Důkazové techniky, Indukce

2 Důkazové techniky, Indukce Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

3. podzimní série. ... {z }

3. podzimní série. ... {z } 3. podzimní série Téma: Kombinatorika Datumodeslání: º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó Ýµ Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si,

Více

1. KOMBINATORIKA - PŘÍKLADY

1. KOMBINATORIKA - PŘÍKLADY 1. KOMBINATORIKA - PŘÍKLADY Úlohy k samostatnému řešení 1.1. Zjednodušte a vypočtěte: 1.2. Kolik třítónových akordů je možné zahrát z 8 tónů? 1.3. Kolik různých optických signálů je možno dát vytahováním

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Cvičení Programování I. Stručné poznámky ke cvičení ze

Cvičení Programování I. Stručné poznámky ke cvičení ze Cvičení Programování I Cvičící: Pavel urynek, KIM, pavel.surynek@seznam.cz emestr: Zima 2005/2006 Kroužek: Matematika/59 Rozvrh: Pátek 10:40-12:10 (učebna K2) tručné poznámky ke cvičení ze 14.10.2005 1.

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více