FINANČNÍ MATEMATIKA- ÚVĚRY

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "FINANČNÍ MATEMATIKA- ÚVĚRY"

Transkript

1 Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/ IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA- ÚVĚRY Auor Jazyk Hana Macholová Češina Daum vyvoření Cílová skupina Supeň a yp vzdělávání Druh učebního maeriálu Očekávaný výsup Anoace žáci le gymnaziální vzdělávání vzorové příklady a příklady k procvičení žák je schopen sesavi umořovací plán, vypočía výši anuiy při dané výši úvěru, úrokové míry, frekvenci spláek a době splácení, umí zjisi, kolik v akových případech klien zaplaí na úrocích a dokáže porovna, jak se bude liši výše úroku při různé době splácení resp. frekvenci spláek. Dále umí vypočía, jakou čásku si může klien, pokud ví, kolik je schopen po určiou dobu při dané úrokové míře ročně (či s jinou frekvencí) spláce. maeriál je vhodný nejen k výkladu a procvičování, ale i k samosané práci žáků, k jejich domácí přípravě, velké uplanění najde zejména při přípravě žáků k mauriní zkoušce

2 Poznámka: Úmor je spláka jisiny dluhu, edy čás spláky, o kerou se snižuje výše dlužné čásky. Umořovací plán je přehled výše spláek úvěru včeně úroků z hlediska jejich časového rozložení. Obsahuje výši spláky, výši úmoru dluhu, výši úroku z dluhu, sav dluhu po odečení úmoru (zbývající dlužnou čásku). Anuiní spláka (anuia) je spláka opakující se v pravidelných časových inervalech. Tyo plaby mohou bý sále sejné konsanní anuia, ale není o pravidlem. Při výpočech budeme používa následující označení: V výše úvěru s výše anuiní spláky i úroková míra vyjádřená deseinným číslem úrokovací období banky n poče anui Budeme využíva zv. německý sandard 0E/, což je meoda určování délky úrokovacího období, kdy počíáme, že každý měsíc má 0 dnů, edy rok má dnů. Využijeme zejména následující vzah: V i s 1 1 i n Samozřejmě v případě, že úrokovací období bude jeden rok, můžeme ze vzahů zlomek vynecha, proože když dosadíme za =, pak dosaneme zlomek 1.

3 Řešené úlohy: 1) Banka poskyla podnikaeli koncem roku 010 úvěr ve výši Kč. Roční úroková míra úvěru je 1% (úrokovací období je jeden rok) a podnikael ho má splai ve řech sejných splákách vždy na konci roku. První dvě spláky budou čini Kč. a) Určee výši řeí spláky. b) Jakou čásku zaplaí podnikael bance celkem. c) Sesave umořovací plán. a) Poslední spláka bude rovna výši dluhu na konci řeího roku (01). Určíme edy výše dluhu na koncích jednolivých le: Konec roku 011 před první splákou: Banka nejprve připíše úroky, edy dluh bude čini: Kč 0, Kč Kč Kč Kč Konec roku 011 po první spláce: Kč Kč Kč Konec roku 01 před druhou splákou: Banka nejprve připíše úroky, edy dluh bude čini: Kč 0, Kč Kč Kč Kč Konec roku 01 po druhé spláce: Kč Kč Kč Konec roku 01 před poslední splákou: Banka nejprve připíše úroky, edy dluh bude čini: Kč 0, Kč Kč 48768Kč Kč Výše řeí spláky bude Kč. b) Celkovou čásku získáme jakou souče jednolivých spláek, edy Kč Kč Kč 1696 Kč c) Umořovací plán: Spláka (Kč) Úrok (Kč) Úmor (Kč) Sav dluhu (Kč) Počáeční sav Konec r Konec r Konec r

4 ) Banka poskyla podnikaeli koncem roku 010 úvěr ve výši Kč. Roční úroková míra úvěru je 1 % (úrokovací období je jeden rok) a podnikael ho má splai ve řech konsanních anuiách (sejných splákách) vždy na konci roku (edy spláky budou na konci prosince 011, 01 a 01). Urči výši jedné spláky. Kolik peněz zaplaí podnikael na úrocích? Řešení: Příklad nejprve vyřešíme bez využií vzorce: Výši spláky označíme s: Konec roku 011 před první splákou: Banka nejprve připíše úroky, edy dluh bude čini: 1 0,1 Kč Kč 0, Kč Konec roku 011 po první spláce: 1 0, s Konec roku 01 před druhou splákou: Banka nejprve připíše úroky, edy dluh bude čini: 1 0, s 1 0,1 Konec roku 01 po druhé spláce: 1 0, s1 0, 1 s Konec roku 01 před poslední splákou: Banka nejprve připíše úroky, edy dluh bude čini: 1 0, s 1 0,1 s 1 0,1 Konec roku 01 po druhé spláce: 1 0, s1 0,1 s s 1 0, 1 Po řeí spláce již musí bý úvěr splacen, edy musí plai rovnice: 1 0, s 1 0,1 s 1 0,1 1, s1,1 s1,1 1, ,1s s 1,1 s 0 s 0 s 0 1, ,1 s 1,1s s 0 1, s 1,1 1, , s 1,1 1,1 1 s Kč 4

5 Rovnici jsme upravili a vyjádřili z ní neznámou s. Vypočíali jsme, že anuiní spláka bude čini Kč. Pozn.: Využili jsme zaokrouhlení na koruny (na nejbližší měnovou jednoku v oběhu), ale samozřejmě v případě bezhoovosní plaby by bylo možné zaokrouhlování i na haléře a záleželo by na smluvních podmínkách. Celkově ak podnikael zaplaí čásku: s Kč Na úrocích ak zaplail: Kč Kč Kč Nyní (pro ověření správnosi našeho výpoču) využijeme vzorec pro výpoče anuiy: Obecně pokud banka poskyne klienovi úvěr V s úrokovou mírou i při úrokovacím období dnů a dlužník splaí úvěr n anuiami, jež budou spláceny jednou za úrokovací období, pak výši anuiní spláky vypočíáme: V i s 1 1 i n , , ,1 11, ) Banka poskyla podnikaeli úvěr na 10 le ve výši Kč. Roční úroková míra úvěru je 9 % (úrokovací období je jeden rok) a podnikael ho má splai v desei sejných splákách vždy na konci roku. a. Urči výši jedné spláky (zaokrouhlené na Kč). b. Kolik peněz zaplaí podnikael na úrocích? Řešení: a. Opě bylo možné využí odvození z minulého příkladu, nyní však rovnou využijeme vzorec pro výpoče výše anuiy: V i s , n , i s Kč Výše jedné spláky je Kč. b. Celkem podnikael zaplaí 10 spláek po Kč, edy Kč. Na úrocích edy zaplaí =55800 Kč. 5

6 4) Pan Veselý získal hypoeční úvěr ve výši Kč na dobu 15 le a roční úrokovou mírou 5,5 % fixovanou na celou dobu splácení. Úvěr bude spláce měsíčními anuiami. a. Urči výši anuiy (zaokrouhlené na Kč) a celkovou čásku, kerou pan Veselý bance měsíčními anuiami splaí. Kolik by zaplail na úrocích? b. Urči výši anuiy v případě, že by pan Veselý měl daný úvěr na 0 le a čásku, kerou by celkem zaplail. Kolik by zaplail na úrocích? c. O kolik více zaplaí pan Veselý na úrocích při delší době splácení? a. Opě využijeme vzorec pro anuiní spláku a dosadíme: V Kč, i 0,055, 0, n V i s 1 1 i s 156 Kč n , , Výše anuiy je edy 156 Kč. Celkově klien bance zaplaí 180 spláek po 156 Kč, edy Kč Kč Na úrocích zaplaí: Kč Kč b. Kdyby pan Veselý získal sejný úvěr na 0 le, pak by plailo: V Kč, i 0,055, 0, n 10 s s 1 1 V i 1 1 i 8517 Kč n Výše anuiy edy byla 8517 Kč , , Celkově by pan Veselý zaplail spláek po 8517 Kč, edy 8517 Kč Kč Na úrocích by zaplail: Kč Kč Kč c. Rozdíl ve výši úroků v jednolivých varianách je Kč Při delší době splácení by pan Veselý na úrocích zaplail o Kč více. 6

7 5) Pan Nový je schopen každoročně po dobu desei le na konci roku spláce čásku Kč. Jak velkou půjčku si může vzí na roční úrok 15 %? Řešení: Opě vyjdeme ze vzorce pro výpoče konsanní anuiy a z něho vyjádříme proměnnou V: V i s 1 1 i s 1 V i 1 i n n V i 1 1 i n s[1 (1 i) ] (1 1,15 V i 0,15 V 5098 Kč 10 n )

8 Úlohy k procvičení: 1) Pan Novák získal od banky začákem roku úvěr na čyři roky, kerý splaí ve čyřech ročních splákách. Banka úročí jednou ročně. Zde je jeho neúplný umořovací plán: Spláka [Kč] Úrok [Kč] Úmor [Kč] Sav dluhu [Kč] Počáeční sav Konec 1. roku Konec. roku Konec. roku Konec 4. roku a. Vypočěe z abulky výši úrokové míry úvěru. b. Doplňe nevyplněné údaje umořovacího plánu. c. Určee výši poslední spláky. d. Kolik pan Novák zaplaí bance celkem? e. Kolik činí celkem úrok? [a. 15 %; b. viz abulka níže, Kč; Kč; Kč] Spláka [Kč] Úrok [Kč] Úmor [Kč] Sav dluhu [Kč] Počáeční sav Konec 1. roku Konec. roku Konec. roku Konec 4. roku ) Pan Novák získal od banky půjčku vy výši Kč na roční úrok 14 %. Jak velká musí bý každoroční spláka dluhu koncem roku, chce-li pan Novák splai dluh za 5 le? [8585 Kč] ) Pan Marek je schopen každoročně po dobu panáci le na konci roku spláce čásku Kč. a. Jak velkou půjčku si může vzí na roční úrok 9 %? b. Kolik zaplaí celkem na úrocích? [a Kč, b Kč] 4) Neklapilovi získali hypoéční úvěr ve výši Kč na dobu 15 le. Úroková míra bude po celou dobu splácení 7,5 %. a. Jaká bude výše spláky v případě, že budou úvěr spláce měsíčními anuiami, kolik v omo případě bance zaplaí celkem za 15 le? b. Jaká bude výše anuiy a kolik bance zaplaí celkem za 15 le v případě, že budou úvěr spláce ročními anuiami. [a Kč; Kč, b Kč; Kč] 8

9 Použié zdroje a lieraura: ODVÁRKO, Oldřich.: Maemaika pro gymnázia- Posloupnosi a řady. 1 vydání. Praha: Proméheus, ISBN ODVÁRKO, Oldřich. Úlohy z finanční maemaiky pro sřední školy. 1. vydání. Praha: Proméheus, 005. ISBN PETÁKOVÁ, Jindra. Maemaika: příprava k mauriě a přijímacím zkouškám na vysoké školy. 1. vydání. Praha: Promeheus, ISBN

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Frézování - řezné podmínky - výpočet

Frézování - řezné podmínky - výpočet Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu

Více

Finanční matematika I.

Finanční matematika I. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

STAVEBNÍ SPOŘENÍ. Finanční matematika 8

STAVEBNÍ SPOŘENÍ. Finanční matematika 8 STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13 HYPOTÉČNÍ ÚVĚRY Finanční matematika 13 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm13

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

Finanční matematika II.

Finanční matematika II. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

Ekonomické aspekty spolehlivosti systémů

Ekonomické aspekty spolehlivosti systémů ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 43. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupiny pro spolehlivos k problemaice Ekonomické aspeky spolehlivosi sysémů

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické

Více

Sada 1 Matematika. 06. Finanční matematika - úvod

Sada 1 Matematika. 06. Finanční matematika - úvod S třední škola stavební Jihlava Sada 1 Matematika 06. Finanční matematika - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1 ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY Finanční matematika 1 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

SPOŘÍCÍ ÚČET. Finanční matematika 7

SPOŘÍCÍ ÚČET. Finanční matematika 7 SPOŘÍCÍ ÚČET Finanční matematika 7 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm07

Více

FINANČNÍ MATEMATIKA Základní pojmy od A do O. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od A do O. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od A do O www.zlinskedumy.cz Finanční matematika = soubor obecných matematických metod uplatněných v oblasti financí např. poskytování krátkodobých a dlouhodobých úvěrů,

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534 VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK I.

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK I. I. Název školy Číslo projektu Autor Název šablony Střední odborná škola a Gymnázium Staré Město CZ.1.07/1.5.00/34.1007 Ing. Miroslava Kořínková III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Křížové pravidlo Používá se pro výpočet poměru hmotnostních dílů dvou výchozích roztoků jejichž smícháním vznikne nový roztok. K výpočtu musí

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

PODÍLOVÉ LISTY A AKCIE. Finanční matematika 16

PODÍLOVÉ LISTY A AKCIE. Finanční matematika 16 PODÍLOVÉ LISTY A AKCIE Finanční matematika 16 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm16

Více

Finanční matematika v českých učebnicích

Finanční matematika v českých učebnicích Finanční matematika v českých učebnicích 1 Teoretické minimum finanční matematiky In: Martin Melcer (author): Finanční matematika v českých učebnicích (Od Marchetovy reformy) (Czech) Praha: Matfyzpress

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy III Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_20a

Více

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky FINANČNÍ MATEMATIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 10/2003 Konvergence nominální a reálné výnosnosi finančního rhu implikace pro poby koruny v mechanismu ERM II Vikor Kolán INSTITUT PRO EKONOMICKOU A EKOLOGICKOU

Více

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu KMA/MAB.5.00 Lenka Skalová A08N085P leninkaskalova@centrum.cz Obsah Obsah... Zadání... Zdroj dat... Peněžní trh.... Definice peněžního

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

Elektronika I ISBN 978-80-7314-114-1. Vydavatel, nositel autorských práv, vyrobil: (C) Evropský polytechnický institut, 2007. Ing. Oldřich Kratochvíl

Elektronika I ISBN 978-80-7314-114-1. Vydavatel, nositel autorských práv, vyrobil: (C) Evropský polytechnický institut, 2007. Ing. Oldřich Kratochvíl Soukromá sředníí odborná školla, s.r.o. Osvobození 699, 686 04 Kunovice ell..:: 57 548 98,, emaiill::ssssoss@edukompllex..cczz Elekronika I Ing.. Olldřiich KATOHVÍL 007 3 Ing. Oldřich Kraochvíl Elekronika

Více

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7.

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Seznam šablon Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Číslo Označení Název Využití Očekávané výstupy Klíčové kompetence 1 CČ1

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 2/23 Inflace po vsupu do měnové unie vybrané problémy Jan Kubíček INSIU PRO EKONOMICKOU A EKOLOGICKOU POLIIKU A KAERA HOSPOÁŘSKÉ POLIIKY VYSOKÁ ŠKOLA EKONOMICKÁ

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut.

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut. Krok za krokem k nové maturitě Maturita nanečisto 005 MA MATEMATIKA společná část maturitní zkoušk Testový sešit obsahuje 0 úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu. Poznámk

Více

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Pavloková, Kaeřina

Více

BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola. Bankovní domy komerční banky, spořitelny + test

BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola. Bankovní domy komerční banky, spořitelny + test Číslo projektu CZ.1.07/1.5.00/34.0036 Název projektu Inovace a individualizace výuky Číslo materiálu VY_62_INOVACE_ZEL13 Název školy BEZPEČNOSTNĚ PRÁVNÍ AKADEMIE BRNO, s.r.o., střední škola Autor Ing.

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Charakteristika, hlavní východiska a cíle FG ve výuce

Charakteristika, hlavní východiska a cíle FG ve výuce 19. FINANČNÍ GRAMOTNOST Charakteristika, hlavní východiska a cíle FG ve výuce V aktuálním světě by FG bezpochyby měla patřit k celkovému přehledu a informovanosti moderního člověka. Proto FG začleňujeme

Více

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakula informaiky a saisiky ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY Josef Arl Markéa Arlová Eva Rublíková 00 Recenzeni: Prof. Ing. Franišek Fabian, CSc. Doc. Ing. Jiří

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK II.

PODMÍNKY A RIZIKA PŘI ZÍSKÁVÁNÍ PŮJČEK II. II. Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Střední odborná škola a Gymnázium Staré Město CZ.1.07/1.5.00/34.1007 Ing. Miroslava Kořínková III/2

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více