Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Rozměr: px
Začít zobrazení ze stránky:

Download "Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet."

Transkript

1 Umělá inteligence II Roman Barták, KTIML Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu domnělý stav a na základě přechodového ř modelu odhaduje, jak se svět může vyvíjet. domnělý stav reprezentuje možné skutečné stavy světa buď výčtově nebo logickou formulí (přes vlastnosti stavu) pomocí teorie pravděpodobnosti umíme kvantifikovat, které z domnělých stavů jsou pravděpodobnější teď přidáme pravděpodobnost k přechodům mezi stavy Pravděpodobností uvažování o čase reprezentace přechodů s pravděpodobností typy řešených ý úloh (otázek) základní odvozovací algoritmy temporální modely (skryté Markovské modely, dynamické Bayesovské sítě)

2 Čas a neurčitost Podobně jako v logické reprezentaci sloužil situační kalkulus, budeme dynamiku světa modelovat sérií časových řezů. Každý řez/stav / t bude popsán (stejnou) množinou náhodných proměnných, které se dělí na nepozorovatelné náhodné proměnné X t pozorované náhodné proměnné E t (konkrétní pozorované hodnoty označíme e t t) t je označení časového řezu (uvažujeme tedy diskrétní čas se stejnými časovými kroky) Notace: X a:b označuje množinu proměnných od X a po X b Modelová situace Uvažujme agenta pracujícího na tajné podzemní základně, ze které nikdy nevychází. Zajímá ho, zda venku prší. náhodná nepozorovatelná proměnná R t Jediné pozorování, které má k dispozici, je zda ráno ředitel přišel s či bez deštníku. náhodná pozorovaná proměnná U t

3 Přechodový model Přechodový model popisuje, jak je stav ovlivněn předchozími stavy. Přesněji popisuje pravděpodobnostní distribuci P(X t X 0:t-1 ). Problém č. 1: s rostoucím t neomezeně roste množina X 0:t-1 použijeme Markovský předpoklad: současný stav závisí pouze na pevně daném konečném počtu předchozích stavů hovoříme potom o obecných Markovských řetězcích/procesech např. současný stav závisí pouze na předchozím stavu Markovský proces prvního řádu P(X t X 0:t-1 ) = P(X t X t-1 ) Problém č. 2: pořád máme nekonečně mnoho různých přechodů použijeme předpoklad stacionárního procesu, tj. stav se vždy mění podle stejných pevně daných pravidel distribuce P(X t X t-1 ) je stejná pro všechny časy t Senzorický model Senzorický model popisuje na čem závisí pozorované náhodné proměnné E t. Ty mohou záviset i na proměnnýchě ýh z předchozích stavů, ale uděláme Markovský kýsenzorický předpoklad ř d pozorované proměnné závisí pouze na nepozorovatelných proměnných ě ýhx t ze stejného stavu. P(E t X 0:t, E 1:t-1 ) = P(E t X t )

4 Bayesovské sítě pro přechodový a senzorický model Přechodový a senzorický model můžeme popsat Bayesovskou sítí. Kromě tabulek P(X t X t-1 ) a P(E t X t ) musíme ještě zadat, jak to vše začalo P(X 0 ). Z vlastností Bayesovských sítí víme P(X 0t 0:t, E 1t 1:t ) = P(X 0 ) Π i P(X i X i-1 ) P(E i X i ) Zpřesnění modelu Markovský proces prvního řádu předpokládá, že stavové proměnné ě obsahují veškerou informaci i pro charakteristiku pravděpodobnostní distribuce dalšího stavu. Co když je tento předpoklad nepřesný? můžeme zvýšit řád Markovského procesu můžeme rozšířit množinu stavových proměnných např. přidáme proměnnou Season t nebo sadu proměnných Temperature t, Humidity t, Pressure t první případ (větší řád) lze vždy převést na druhý případ (více proměnných)

5 Řešené úlohy Filtrace: úloha zjistit pravděpodobnost aktuálního stavu na základě dosavadních pozorování P(X t e 1:t ) Predikce: úloha zjistit pravděpodobnost budoucího stavu na základě dosavadních pozorování P(X t+k e 1:t ) pro k>0 Vyhlazování: úloha zjistit pravděpodobnost minulého stavu na základě dosavadních pozorování P(X k e 1:t ) pro k: 0 k < t Nejpravděpodobnější průchod: úloha zjistit z posloupnosti pozorování nejpravděpodobnější posloupnost stavů, která tato pozorování generuje argmax P(x x 1:t 1:t e 1:t ) Filtrace Úkolem je zjistit pravděpodobnost aktuálního stavu na základě dosavadních pozorování P(X t e 1:t ). Dobrý finanční algoritmus odhaduje aktuální stav z odhadu předchozího stavu a aktuálního pozorování (rekurzivní odhad) P(X t+1 e 1:t+1 ) = f(e t+1,p(x t e 1:t )) Jak najdeme funkci f? P(X t+1 e 1:t+1 ) = P(X t+1 e 1:t,e t+1 ) Bayesovo pravidlo = α P(e t+1 X t+1,e 1:t ) P(X t+1 e 1:t ) = α P(e t+1 X t+1 ) P(X t+1 e 1:t ) = α P(e t+1 X t+1 ) Σ P(X x )P(x t t+1 x t,e 1:t t e 1:t ) p = α P(e t+1 X t+1 ) Σ P(X x t t+1 x t ) P(x t e 1:t ) Můžeme tedy použít techniku dopředné propagace zprávy: P(X t e 1:t ) = f 1:t f 1:t+1 = α FORWARD(f 1:t, e t+1 ) f 1:0 = P(X 0 ) Markovský senzorický předpoklad podmiňování P(Y) = Σ z P(Y z) P(z)

6 Filtrace P(R t+1 u 1:t+1 ) = α P(u t+1 R t+1 ) P(R t+1 u 1:t ) = α P(u t+1 R t+1 ) Σ r t P(R t+1 r t ) P(r t u 1:t ) příklad P(R 0 )= 0 0.5, P(R 1 ) = Σ P(R r 0 1 r 0 ) P(r 0 ) = 0.5, P(R 1 u 1 ) = α P(u 1 R 1 ) P(R 1 ) = α 0.9, , , P(R 2 u 1) = Σ P(R r t 2 r 1 ) P(r 1 u 1 ) = 0.7, , , P(R 2 u 1,u 2 ) = α P(u 2 R 2) P(R 2 u 1) = α 0.9, , = 0.883, Predikce Úkolem je zjistit pravděpodobnost p budoucího stavu na základě dosavadních pozorování P(X t+k e 1:t ) pro k>0. Jedná se v podstatě o filtraci bez přidávání dalších pozorování P(X t+k+1 e 1:t ) = Σ x t+k P(X t+k+1 x t+k ) P(x t+k e 1:t ) Po určité době (mixing time) konverguje předpovězená distribuce ke stacionární distribuci a nadále zůstane stejná.

7 Vyhlazování Úkolem je zjistit pravděpodobnost d minulého stavu na základě dosavadních pozorování P(X k e 1:t ) pro k: 0 k< t. Opět použijeme rekurzivní předávání zpráv, tentokrát ve dvou směrech. ě P(X k e 1:t ) = P(X k e 1:k,e k+1:t ) Bayesovo pravidlo = α P(X k e 1:k ) P(e k+1:t X k,ee 1:k ) podmíněná nezávislost = α P(X k e 1:k ) P(e k+1:t X k ) = α f 1:k b k+1:t P(e k+1:t X k ) = Σ P(e x k+1 k+1:t X k,x k+1 ) P(x k+1 X k ) podmiňování = Σ P(e x k+1 k+1:t x k+1 ) P(x k+1 X k ) = Σ P(e x e k+1 k+1,e k+2:t x k+1 ) P(x k+1 X k ) = Σ P(e x k+1 k+1 x k+1 ) P(e k+2:t x k+1 ) P(x k+1 X k ) Popíšeme jako zpětnou propagaci zprávy: P(e k+1:t X k ) = b k+1:t b k+1:t = BACWARD(b k+2:t, e k+1 ) b t+1:t = P(e t+1:t X t ) = P( X t ) = 1 podmíněná nezávislost podmíněná nezávislost P(R k u 1:t+1 ) = α P(R k u 1:k ) P(u k+1:t R k ) P(u k+1:t R k ) = Σ r k+1 P(u k+1 r k+1 ) P(u k+2:t r k+1 ) P(r k+1 R k ) P( R 2 ) = 1 P(u = 2 R 1 ) Σ P(u r )P( r 2 2 r 2 2 ) P(r 2 R 1 ) = , ,0.7 = 0.69,0.41 Vyhlazování příklad

8 Nejpravděpodobnější průchod Úkolem je zjistit z posloupnosti pozorování nejpravděpodobnější posloupnost stavů, která tato pozorování generuje argmax P(x x 1t 1t 1:t 1:t e 1:t ). Pozor, je to něco jiného než zjistit posloupnost nejpravděpodobnějších stavů! Na problém se můžeme podívat takto: hledáme cestu v grafu, kde uzly odpovídají možným stavům v každém časovém kroku díky Markovské vlastnosti víme, že nejpravděpodobnější cesta do daného stavu se skládá z nejpravděpodobnější cesty do některého předchůdce a přechodu do daného stavu tuto t vlastnost t opět můžeme popsat rekurzivně ě Viterbiho algoritmus nejpravděpodobnější cesta do daného stavu se skládá z nejpravděpodobnější cesty do některého předchůdce a přechodu do daného stavu max x1,,xt P(x 1,,x t,x t+1 e 1:t+1 ) = α P(e t+1 X t+1 ) max (P(X x t t+1 x t ) max x1,,xt-1 P(x 1,,x t e 1:t )) použijeme techniku dopředné propagace zprávy: m 1:t = max x1,,xt-1 P(x 1,,x t-1,x t e 1:t ) m 1:t+1 = P(e t+1 X t+1 ) max (P(X x t t+1 x t ) m 1:t )

9 Skryté Markovské modely Uvažujme, že stav světa je popsán jedinou náhodnou proměnnou X t (podobně pozorovaná proměnná E t bývá jediná). Hovoříme potom o skrytém (částečně pozorovaném) Markovském modelu (HMM Hidden Markov Model). Pro takový speciální případ můžeme úlohy řešit efektivně pomocí maticových operací. Uvažujme, že proměnná X t nabývá hodnoty z množiny {1, S}, tj. S je počet č možných stavů ů světa. pravděpodobnostní tabulku P(X t X t-1 ) pro přechody lze popsat maticí T o rozměrech S S, kde: T (i,j) = P(X t = j X t-1 =i) podobně můžeme popsat tabulku pro pozorování, kde využijeme toho, že konkrétní pozorování e t známe, takže popisujeme P(E t = e t X t =i), použijeme diagonální matici O t, kde: O t (i,i) = P(E t = e t X t =i) Dopředné zprávy (z filtrace) Maticový přístup P(X( t e 1:t ) = f 1:t f 1:t+1 = α P(e t+1 X t+1 ) Σ P(X x t t+1 x t ) P(x t e 1:t ) Pomocí matic (uvažujme, že zpráva f 1:t je ve tvaru jednoho sloupce) T (i,j) = P(X t = j X t-1 =i) O t (i,i) = P(E t = e t X t =i) (,) f 1:t+1 = α O t+1 T T f 1:t Zpětné zprávy (z vyhlazování) P(e k+1:t X k ) = b k+1:t b k+1:t = Σ P(e x k+1 k+1 x k+1 ) P(e k+2:t x k+1 ) P(x k+1 X k ) Pomocí matic (uvažujme, že zpráva b k:t je ve tvaru jednoho sloupce) b k+1:t = T O k+1 b k+2:t

10 Úplné vyhlazování Při vyhlazování nám typicky nejde pouze o jednu proměnnou, ě ale o vyhlazení všech proměnných ě najednou. P(X k e 1:t ) = α f 1:k b k+1:t pro vyhlazení jedné proměnné vzhledem k e 1:t potřebujeme čas O(t) triviální algoritmus tedy postup vyhlazení opakuje pro všechny yp proměnné čas O(t 2 ) lepší přístup používá dynamické programování, tj. pamatujeme si dopředné zprávy a při zpětném průchodu je spojíme se zpětnými zprávami čas O(t) algoritmus forward-backward nevýhodou přístupu je prostorová složitost O( f t) Úplné vyhlazování algoritmus forward-backward 1 to t do

11 Úplné vyhlazování Můžeme úplné vyhlazení udělat s menšími paměťovými nároky při zachování časové složitosti O(t)? Idea: pokud bychom uměli výpočet udělat pouze v jednom směru, stačí nám konstantní paměť (nezávislá na t) můžeme zprávu f 1:t získat ze zprávy f 1:t+1? potom bychom mohli dopřednou zprávu propagovat stejně jako zpětnou zprávu Použijeme maticový přístup f 1:t+1 = α O t+1 T T f 1:t f 1:t = α (T T ) -1 (O t+1 ) -1 f 1:t+1 Algoritmus nejprve dopředným průchodem vypočteme f 1:t efektivně potom při zpětném chodu dohromady počítáme f 1:k a b k+1:t Vyhlazování se zpožděním Uvažujme nyní případ, kde nás zajímá hodnota P(X t-d e 1t 1:t ) s pevně daným zpožděním d, tzv. vyhlazování s konstantním zpožděním. Ideálně chceme, aby výpočet při zvětšení t fungoval inkrementálně tj. v konstantním čase. máme P(X t-d e 1:t ) = α f 1:t-d b t-d+1:t chceme P(X t-d+1 e 1:t+1 )=α α f 1:t-d+1 b t-d+2:t+1 Inkrementální postup: umíme f 1:t-d+1 = α O t-d+2 T T f 1:t-d potřebujeme inkrementální výpočet b t-d+2:t+1 z b t-d+1:t b t-d+1:t = T O t-d+1 b t-d+2:t =(Π i=t-d+1,,t T O i ) b t+1:t = B t-d+1:t 1 b t-d+2:t+1 = (Π i=t-d+2,,t+1 T O i ) b t+2:t+1 = B t-d+2:t+1 1 B = -1-1 t-d+2:t+1 (O t-d+1 ) T B t-d+1:t T O t+1

12 Vyhlazování se zpožděním algoritmus Lokalizace Uvažujme případ, kdy náhodně pohybující se agent má mapu světa, senzory ukazující okolí a potřebuje zjistit, kde se nachází. Model: náhodná á proměnná ě X t popisuje lokaci v čase t možné hodnoty 1,..,n pro n možných pozic Nb(i) množina pozic v okolí pozice i, kam agent může přejít přechodová tabulka P(X t+1 =j X t =i) = 1/ Nb(i), pokud j Nb(i), jinak 0 senzorická proměnná E t popisuje výsledek pozorování okolí (čtyři senzory NSEW) hodnoty popisují přítomnost překážky NSEW (16 hodnot) uvažujme chybovost senzoru ε senzorická tabulka P(E t =e t X t =i) = (1-ε) 4-d it ε d it kde d it je počet odchylek pozorování e t od skutečného okolí pozice i příklad

13 Lokalizace ukázka P(X 1 E 1 =NSW) P(X 2 E 1 =NSW, E 2 =NS) chyba lokalizace (Manhattanská vzdálenost)

Markovské procesy. příklad: diabetický pacient, hladina inzulinu, léky, jídlo

Markovské procesy. příklad: diabetický pacient, hladina inzulinu, léky, jídlo Pravděpodobnostní usuzování v čase Markovské procesy příklad: diabetický pacient, hladina inzulinu, léky, jídlo předpokládáme, že se množina možných stavů S nemění v průběhu času předpokládáme diskrétní

Více

Teorie rozhodování (decision theory)

Teorie rozhodování (decision theory) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie

Více

Umělá inteligence II

Umělá inteligence II Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Pro zopakování Pravděpodobnost je formální mechanismus pro zachycení neurčitosti. Pravděpodobnost každé

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

Zabýváme se konstrukcí racionálních agentů.

Zabýváme se konstrukcí racionálních agentů. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Zabýváme se konstrukcí racionálních agentů. Agent je entita, co vnímá okolní prostředí prostřednictvím

Více

Markovovy modely v Bioinformatice

Markovovy modely v Bioinformatice Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

EM algoritmus. Proč zahrnovat do modelu neznámé veličiny

EM algoritmus. Proč zahrnovat do modelu neznámé veličiny EM algoritmus používá se pro odhad nepozorovaných veličin. Jde o iterativní algoritmus opakující dva kroky: Estimate, který odhadne hodnoty nepozorovaných dat, a Maximize, který maximalizuje věrohodnost

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Úvodem Pokud agent ví, kde je (plně pozorovatelný svět), potom pro každý stav umíme doporučit akci maximalizující

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristik často potřebujeme všetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více

Zpracování neurčitosti

Zpracování neurčitosti Zpracování neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 7-1 Usuzování za neurčitosti Neurčitost: Při vytváření ZS obvykle nejsou všechny informace naprosto korektní mohou být víceznačné, vágní,

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak

Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Agent s reflexy pouze převádí současný vjem na jednu akci. Agent s cílem umí plánovat několik akcí

Více

Bayesovská klasifikace

Bayesovská klasifikace Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Znalosti budeme nejčastěji vyjadřovat v predikátové logice prvního řádu. Metody:

Znalosti budeme nejčastěji vyjadřovat v predikátové logice prvního řádu. Metody: Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Znalosti v učení Umíme se učit funkce vstup výstup. Jedinou dodatečnou znalost, kterou jsme využili, byl

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

Statistika pro informatiku (MI-SPI) Cvičení č. 6

Statistika pro informatiku (MI-SPI) Cvičení č. 6 Statistika pro informatiku (MI-SPI) Cvičení č. 6 Přednášející: Rudolf Blažek Cvičící: J. Hrabáková, K. Klouda, M. Kupsa, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka

Více

Vzdálenost jednoznačnosti a absolutně

Vzdálenost jednoznačnosti a absolutně Vzdálenost jednoznačnosti a absolutně bezpečné šifry Andrew Kozlík KA MFF UK Značení Pracujeme s šifrou (P, C, K, E, D), kde P je množina otevřených textů, C je množina šifrových textů, K je množina klíčů,

Více

Základy umělé inteligence

Základy umělé inteligence Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Monte Carlo Lokalizace. Martin Skalský

Monte Carlo Lokalizace. Martin Skalský Monte Carlo Lokalizace Martin Skalský Proč Lokalizace? Problém určení pozice robota a věcí kolem něj. (filtrování dat, state estimation) Je důležitá Knowledge about where things are is at the core of any

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

Základní statistické modely Statistické vyhodnocování exp. dat M. Čada ~ cada

Základní statistické modely Statistické vyhodnocování exp. dat M. Čada   ~ cada Základní statistické modely 1 Statistika Matematická statistika se zabývá interpretací získaných náhodných dat. Snažíme se přiřadit statistickému souboru vhodnou distribuční funkci a najít základní číselné

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Měření dat Filtrace dat, Kalmanův filtr

Měření dat Filtrace dat, Kalmanův filtr Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Ústav teorie informace a automatizace. J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28

Ústav teorie informace a automatizace.   J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28 Úvod do bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky http://www.utia.cz/vomlel 30. října 2008 J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/2008

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Cvičení ze statistiky - 7. Filip Děchtěrenko

Cvičení ze statistiky - 7. Filip Děchtěrenko Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

13. cvičení z PSI ledna 2017

13. cvičení z PSI ledna 2017 cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Umělá inteligence I. Roman Barták, KTIML.

Umělá inteligence I. Roman Barták, KTIML. Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě

Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě Ý Ý Ě ÉŘ Á ó ě ě ě ů ě ů ě ě ě Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě Ý Ý Ě ÉŘ Á Č ó ě ě ě ě ě ě ě ě ě ě Č Ý Ý Ě Č ÉŘ Á Č Č ó ě ě ě ě ů É ě ě Ý Ý Ě ÉŘ Á ó ó ě ě ě ě ů ě ó ů Ž ě ě Ý Ý Ě Ý É Ř Á

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Měření dat Filtrace dat, Kalmanův filtr

Měření dat Filtrace dat, Kalmanův filtr Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah

Více

Š š š ž Ť š Ť č č ď ž č Ť ž č č Ť ž ž ž ž Í ž ž ž č ž Ť š č š ď Ť Ž Ó Ť Ť š š ž č Ž ž š š š Ť Ť Ť Ž Ť š š č Ť ž Í š š ž š ž ŤŽ Ť š ž Š ť ž Í ď č š š š

Š š š ž Ť š Ť č č ď ž č Ť ž č č Ť ž ž ž ž Í ž ž ž č ž Ť š č š ď Ť Ž Ó Ť Ť š š ž č Ž ž š š š Ť Ť Ť Ž Ť š š č Ť ž Í š š ž š ž ŤŽ Ť š ž Š ť ž Í ď č š š š ň Ť č Ť ž Ž Ť Ť č Ť Ťž š Ž č š ž Ť š ž Ť š ž š Ť ž Í Ť ď č ď Ž š Ž š Ť ž Í š Ť Ž š Ž Ť Ť ď ž Ť š Ť Ť ď Ž ž ž č ž š ž Ž č Ť š Ť š š Š Š šť š č Č ň šč Ť ž š Ť Ť ŤŽ Ť š š š š ž Ž Ť ŤŽ ň ď Ž Ť č Í š ž š š

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0. 11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15

Více

Intervalová data a výpočet některých statistik

Intervalová data a výpočet některých statistik Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a

Více

Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.

Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Simulace pohybu chodců pomocí celulárních modelů

Simulace pohybu chodců pomocí celulárních modelů Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický

Více