Obsah př. ky: obecná charakteristika. VIRY: obecná

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah př. ky: obecná charakteristika. VIRY: obecná"

Transkript

1 Obsah př ky: přednáš ednášky: Obecná charakteristika virů velikost a morfologie virů chemické složení virů virion Klasifikace virů RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc podle typu hostitele podle typu NK podle výskytu obalu Životní cyklus virů adsorpce penetrace replikace lyzogenní a lýtický cyklus bakteriofága Příklady virů a Trocha historie Studijní materiály na: VIRY: obecná obecná charakteristika lidský ERYTROCYT průměr: nm velmi malé nebuněčné formy života (~20-900nm) obligátní intracelulární parazité mají vlastní NK schopnou ovládnout genetický mechanismus hostitelské buňky nemetabolizují nerostou nedělí se Bakterie E. coli 3000 x 1000 nm cytoplazmatická membrána ERYTROCYTU: 10 nm

2 Rozmanitá morfologie virů Rozmanitá morfologie virů KUBICKÁ SYMETRIE (pravidelné mnohostěny) 20ti stěny = ikosahedrální symetrie 12ti stěny = dodekahedrická symetrie HELIKOIDÁLNÍ SYMETRIE (vlákna, tyčky) Virus kravských neštovic Paramyxoviry (virus spalniček, příušnic) Herpevirus Adenovirus (respirační n.) Rabdovirus (virus vztekliny) Bakteriofág T4 Virus chřipky KOMBINOVANÁ SYMETRIE (kubická symetrie hlavičky, vláknité tělo a bičíky) HELIKOIDÁLNÍ OVÁLNÁ SYMETRIE Polyomavirus Picornavirus (rýma) 1 µm ( = 1000 nm) Rozmanitá morfologie virů Chemické složen ení virů NUKLEOVÁ KYSELINA Jednovláknová nebo dvouvláknová RNA resp. DNA Obsahuje od několika genů (3-v. tabákové mozaiky) do několika set genů (tzv. miniviry až 1200 genů) Kóduje virové proteiny PROTEINY (glykoproteiny) Strukturální (proteiny matrix virionu) Nestrukturální (funkční proteiny), zodpovědné za přeprogramování hostitelské buňky pro potřeby viru a za virovou replikaci, např.: RNA polymeráza, reverzní transkriptáza, neuraminidáza FOSFOLIPIDY (glykolipidy) Pochází z hostitelské buňky

3 Chemické složen ení virů: Retrovirus VIRION LIPIDOVÁ membrána reverzni transkriptáza: funkční PROTEIN enzymy: funkční PROTEINY transmembránový GLYKOPROTEIN povrchový GLYKO- PROTEIN matrix strukturální PROTEIN Jako virion označujeme kompletní infekční virovou částici schopnou invaze PROTOMERY NUKLEOKAPSID NUKLEOVÁ KYSELINA (jedno- nebo dvouvláknová RNA nebo DNA) KAPSID proteinový plášť KAPSOMERA morfologická jednotka proteinového pláště PROTOMERA nejmenší funkční jednotka proteinového pláště (kapsomery) NUKLEOVÁ KYSELINA (ssrna, dsrna, ssdna, dsdna) strukturální PROTEIN kapsidu KAPSOMERA VNĚJŠÍ OBAL VNĚJŠÍ OBAL fosfolipidová dvojvrstva (vyskytuje se jen u tzv. obalených virů) KLASIFIKACE virů VIRY BAKTERIÍ: : Bakteriofág g T4 Viry bakterií - bakteriofágy Viry sinic cyanoviry Viry hub - mykoviry Viry rostlin - fytoviry Živočišné viry zooviry bezobratlých zooviry obratlovců RNA viry DNA viry KAPSIDA NUKLEOKAPSID LÍMEČEK DUTINA BIČÍKU HLAVOVÁ ČÁST NUKLEOVÁ KYSELINA STAŽITELNÝ BIČÍK Obalené viry Neobalené viry VLÁKNA BIČÍKU TĚLNÍ ČÁST Mezinárodní komise pro klasifikací virů ( ICTV International Comitee for Taxonomy of Viruses) vydává každoročně taxonomický seznam známých virů. - databáze všech virů podle ICTV BAZÁLNÍ DESTIČKA

4 BAKTERIOFÁG γ VIRY podle typu NK templát pro DNA templát pro mrna slouží jako mrna Retroviry HIV RNA-onkoviry (v. leukémie) Orthomyxovirus chřipka Paramyxoviry spalničky příušnice Rabdoviry vzteklina Pikornaviry rýma Togaviry v. zarděnek v. žluté zimnice v. encefalitidy Papovaviry Papilomaviry-rak.dělož.čípku bradavice Adenovirus běžná respirační n. - nachlazení Herpeviry Herpes simples-opar varicela zoster-plané neštovice Epstein-Barr virus- Poxvirus Pravé neštovice Zpět na klasifikaci Zpět na klasifikaci Reoviry Průjem, lehká respirační onemocnění Parvoviry Roseola (růžovka) VIRY neobalené a obalené Životní cyklus virů (reprodukce) OBALENÉ VIRY Segmentované jádro 1. ADSORPCE Nukleová kyselina 2. PRŮNIK (PENETRACE) kapsida 3. DESTRUKCE VIROVÝCH OBALŮ = ROZBALEMÍ Lipidový obal Glykoproteiny 4. REPLIKACE 5. MATURACE NEOBALENÉ VIRY Nukleokapsid 6. UVOLNĚNÍ NOVÝCH VIRIONŮ

5 1. ADSORPCE Přichycení virionu na povrch hostitelské buňky 2. PENETRACE Průnik viru do hostitelské buňky prostřednictvím receptor-vazebného místa na kapsidu nebo glykoproteinovém vnějším obale (tvar kapsy nebo výčnělku) receptor-vazebné místo rozpoznává odpovídající receptor na povrchu hostitelské buňky receptory hostitelské buňky jsou různé molekuly (proteiny, lipidy, oligosacharidy); často mají v buňce jiné přirozené funkce (endocytóza, rozpoznávání buněk-cd4,fcr, vazba ligandů, transport látek-glut1) adsorpce je podmíněna jak geneticky, tak řadou dalších faktorů (fyziologický stav, ph, koncentrace iontů aj.) Mechanismy průniku jsou velmi rozmanité, závislé na stavbě virionu. OBALENÉ VIRY Fůzí: splynutí virového obalu s cytoplazmatickou membránou hostitelské buňky. Do buňky proniká jen nukleokapsida Receptorovou endocytózou: NEOBALENÉ VIRY Přímo přes cytoplazmatickou membránu hostitelské buňky. BAKTERIOFÁG V místě uchycení rozruší bakteriofág enzymem lysozymem membránu hostitelské muňky. Do buňky se přenese jen genom, kapsid růstává vně buňky. 2. PENETRACE FŮZÍF 2. PENETRACE receptorovou endocytózou Retroviry (HIV), Herpeviry, Paramyxoviry (spalničky, příušnice) Zpět na penetraci Zpět na penetraci

6 2. PENETRACE BAKTERIOFÁGA 3. Destrukce virových obalů V místě adsorpce je enzymem lysozymem rozrušena membrána - do hostitelské buňky vstupuje jenom virový genom. Rozbalení ( svléknutí ) virů: Probíhá účinkem proteolytických enzymů v cytoplazmě, jádře nebo lysozomech hostitelské buňky. BAKTERIÁLNÍ HOSTITELSKÁ BUŇKA DNA bakteriofága 4. REPLIKACE Syntéza virové NK (replikace, transkripce) 4. REPLIKACE: +RNA jednovláknov knové viry Strategie reprodukce virionu je rozmanitá: * specifická pro jednotlivé skupiny virů * závislá na typu NK Virová RNA je po rozrušení kapsidy přímo využita jako mrna a je v ribozómech překládána do řetězců aminokyselin. 1. Rozrušení kapsidy 2. Virová RNA je přímo využita jako mrna a je překládána do řetězců aminokyselin na buněčných riborómech bezprostředně po průniku do buňky. 3. Replikace virového genomu probíhá přes dsrna za účasti virové RNA polymerázy (syntetizované po infekci buňky) Virová -RNA je nejprve přepsána do +RNA a je v ribozómech překládána do řetězců aminokyselin. +RNA vlákno je enzymem reverzní transkriptázou, přepsáno do -DNA a následně +DNA. Vzniklá dvoušroubovice DNA je zabudována do genomu hostitele. +RNA vlákno složí pro přepis do proteinů, -RNA vlákno je přepsáno do +RNA, která následně slouží k syntéze nových virových RNA. +RNA protein Kopie virového genomu K vláknu virové DNA je syntetizováno komplementární vlákno Vzniklá dsdna je přepsána do mrna a následně do řetězců aminokyselin. Virová DNA je přepsána do mrna a v ribozómech překládána do řetězců aminokyselin. Proteinová virová kapsida RNA polymeráza Ribosom hostitelské buňky Komplementární - RNA

7 4. REPLIKACE: -RNA jednovláknov knové viry Zpět na přehled 4. REPLIKACE: +RNA RETROVIRY (a) 1. RNA polymeráza je integrovanou součástí infekčního virionu. 2. Virová - RNA musí být ještě v kapsidě nejprve přepsána pomocí RNA polymerázy do meziproduktu dsrna. Ta slouží k syntéze kopií virové genomické - RNA RNA kopie je využita jako mrna a je překládána do řetězců aminokyselin na buněčných riborómech RNA Proteinová virová kapsida + Kopie virové RNA Virový protein +RNA vlákno virové je přepsáno reverzní transkriptázou (součást virionu) do komplementárního vlákna DNA. Vzniká přechodně hybridní RNA-DNA dvouvlákno a následně odbouráním RNA vlákna jen ssdna. Jedna z metod léčby infekce HIV Virová RNA RNA polymeráza Virová reverzní transkriptáza Přepisující RNA do DNA Ribosom hostitelské buňky Látka blokující reverzní transkriptázu 4. REPLIKACE: +RNA RETROVIRY (a) 4. REPLIKACE: +RNA RETROVIRY (b) RNA vlákno virové je přepsáno reverzní transkriptázou (součást virionu) do komplementárního vlákna DNA. Vzniká přechodně hybridní RNA-DNA dvouvlákno a následně odbouráním RNA vlákna jen ssdna Cirkulární dddna vstupuje do jádra hostitelské buňky a je zabudována do jejího genomu. Zabudovanou DNA v hostitelském genomu nazýváme provirovou DNA nebo provirus K ssdna je syntetizováno komplementární vlákno DNA. Vzniklne dvouvláknová molekula DNA, která se cirkularizuje. Přepisem provirové DNA pomocí buněčné RNA polymerázy vzniká mrna a také nová virová RNA.

8 4. REPLIKACE: +RNA RETROVIRY (c) 4. REPLIKACE: +RNA RETROVIRY (c) Translace probíhá v cytoplazmě. Primárním produktem jsou polyproteiny, které jsou proteázami štěpeny na konečné funkční peptidy. Jedna z metod léčby infekce HIV Translace probíhá v cytoplazmě. Primárním produktem jsou polyproteiny, které jsou proteázami štěpeny na konečné funkční peptidy Nově syntetizované virové polyproteiny Proteázy štěpící primární produkty translace Látka blokující proteázy Genová RNA vzniká přepisem provirové DNA. Tvorba nových virionů zahrnuje interakci virové RNA, Proteinů a glykoproteinů s cytoplazmatickou membránou. Viriony se uvolňují pučením. 4. REPLIKACE BAKTERIOFÁGA ( dsdna ) BAKTERIOFÁG T4: lýtický cyklus Bakteriofágy (dsdna) se rozmnožují dvěma alternativními cykly: Fág λ A: Lytický cyklus: Končí smrtí hostitelské buňky. Fágy rozmnožující se jen lyticky označujeme jako virulentní. B: Lyzogenní cyklus: Fágový genom se replikuje bez poškození hostitelské buňky a žijí v ní ve formě profága. 1. fág se přichycuje na povrch buňky 2. stažitelná část bičíku se stáhne a trubice bičíku pronikne do buňky 3. přes trubici pronikne do buňky nukleová kyselina Fágy schopné použít oba typy reprodukce = temperované fágy. Spouštěcí mechanismus změny lyzogenního do lytického cyklus: vlivy prostředí (radiace, chemické sloučeniny atd.). T4 bakteriofág 4. nukleová kyselina se pomnoží a začínají se tvořit nové viriony 5. jakmile je nových virionů moc, dochází k lýzi buňky

9 přichycení fága a průnik DNA do hostitelské buňky pomnožení virionů zabudování DNA fága do hostitelské buňky ve formě profága AKTIVACE (radiace, chemické vlivy aj.) dělení hostitelské buňky lýze hostitelské buňky VIRUS CHŘIPKY obecná charakteristika Anglický název influenza, zkráceně flu je odvozen od slova influences (vliv) věřilo se, že astrologické vlivy mají význam při šíření nemoci. čeleď Orthomyxoviridae - RNA obalený virus Velikost: 80 nm 3 TYPY CHŘIPKOVÝCH VIRU: Typ A infikuje savce a ptáky Typ B infikuje jen lidi Typ C infikuje lidi a prasata VIRUS CHŘIPKY symptomy Akutní respirační onemocnění, přenášené z osoby na osobu kapičkami slin vznikajícími při kašlání SYMPTOMY: horečka bolest hlavy únava, malátnost bolesti svalů a kloubů suchý kašel bolest v krku kýchání podrážděné oči zimnice

10 Virus chřipky TYP A: chemické chemické slož složení ení LIPIDOVÁ DVOJVRSTVA (z napadené buňky) (povrchový protein, shlukuje červené krvinky) H Transmembránový protein vystupující z povrchu viru IONTOVÝ KANÁL (Název je odvozen od schopnosti shlukovat erytrocyty) MATRIXOVÝ PROTEIN Hemaglutinin se specificky váže na sacharidové řetězce membránových glykoproteinů hostitelských buněk (klíčová role při tvorbě kapsidy) HEMAGLUTININ HEMAGLUTININ (H) MOLEKULY RNA Různé typy hemaglutininů jsou specifické ke konkrétním glykoproteinům určitých tkání resp. živočišných druhů (9 jednovláknových molekul RNA kódujících 11 typů proteinů virionu Je známo více jak 12 typů hemaglutininů u viru chřipky (H1, H2.atd.) NEURAMINIDÁZA (povrchový protein, pomáhá novým virionům vstoupit a opustit hostitelskou buňku) Virus chř chřipky a buň buňky tracheá tracheální lní sliznice Viry s typem hemaglutininu H1, H2 a H3 napadají dýchací sliznici člověka. Podtyp H5 se specificky váže na buňky trávicího traktu ptáků Poš Poškození kození buně buněk tracheá tracheální lní sliznice normální tracheální sliznice

11 NEURAMINIDÁZA obecná charakteristika Povrchový membránový protein (Synonyma: sialidáza, acetylneuraminidáza, acetylneuraminyl hydroláza) VLASTNOSTI-FUNKCE: Enzym, štěpící glykosidické vazby mezi terminální kyselinou sialovou a subterminálním cukrem, nejčastěji galaktózou v oligosacharidech, glykoproteinech a glykolipidech VÝSKYT: Savčí buňky, hl. v lyzozomech podílí se na degradaci glykoproteinů (pozn. Vrozený defekt neuzaminidázy vede ke vzácné tzv. střádací chorobě sialidáze) Povrch řady virů např. v. chřipky (Orthomyxoviridae) NEURAMINIDÁZA u virů chřipky Povrchový antigen viru (podle antigenní varianty neauraminidázy klasifikujeme viry na N1-N9) Faktor virulence viru FUNKCE při chřipkové nákaze: Štěpení hlenu dýchací sliznice (obnažením se stávají buňky pro virus přístupnější) Štěpení kys. sialové z obalu při uvolňování nově se tvořícího viru (nezbytné k oddělení nových virionů a zároveň proti shlukování oddělených virů) Animace: princip účinku antivirotik typu Tamiflu TAMIFLU inhibuje virovou neuraminidázu. Tím blokuje uvolnění viru z hostitelské buňky a jeho šíření. Užití antivirotika má efekt jen v počátku infekce N VIRUS CHŘIPKY IPKY antigenní posun (rekombinace) VIRUS CHŘIPKY IPKY epidemie v lidské populaci Virus ptačí chřipky Viry napadající člověka: 1957 Asijská chřipka 1 1,5 mil obětí 1968 Honkongská chřipka 0,7-1 mil obětí Prase je možným hostitelem jak lidských tak ptačích virů. Pokud se v jedné buňce hostitele sejde více typů virů, může dojít k rekombinaci a vzniku nového typu viru s antigeny, proti kterým nejsou v populaci hostitele protilátky Virus mexické (prasečí, nové) chřipky 1918 Španělská chřipka mil. obětí 1976 prasečí chřipka panika (USA)

12 RETROVIRY : Virus HIV - stavba HIV: virus x onemocnění Fosfolipidová dvojvrstva RNA Transmembránový gp 41 protein Reverzní transkriptáza Human Immunodeficiency Virus Kapsid CD4 koreceptor Povrchový gp 120 protein T lymfocyt Acquired Immune Deficiency Syndrome (nemoc, způsobená virem HIV) 4a. REPLIKACE HIV viru 4b. REPLIKACE HIV viru RNA vlákno virové je přepsáno reverzní transkriptázou (součást virionu) do komplementárního vlákna DNA. Vzniká přechodně hybridní RNA-DNA dvouvlákno a následně odbouráním RNA vlákna jen ssdna Cirkulární dddna vstupuje do jádra hostitelské buňky a je zabudována do jejího genomu. Zabudovanou DNA v hostitelském genomu nazýváme provirovou DNA nebo provirus K ssdna je syntetizováno komplementární vlákno DNA. Vzniklne dvouvláknová molekula DNA, která se cirkularizuje. Přepisem provirové DNA pomocí buněčné RNA polymerázy vzniká mrna a také nová virová RNA.

13 4c. REPLIKACE HIV viru AIDS: odhad počtu nemocných (2007) Translace probíhá v cytoplazmě. Primárním produktem jsou polyproteiny, které jsou proteázami štěpeny na konečné funkční peptidy Zpět na přehled Genová RNA vzniká přepisem provirové DNA. Tvorba nových virionů zahrnuje interakci virové RNA, Proteinů a glykoproteinů s cytoplazmatickou membránou. Viriony se uvolňují pučením. Herpes virus Viry bakterií Viry řas, hub a prvoků Herpes virus - animace Herpes virus - přichycení

14 Viry bezobratlých Viry obratlovců Viry rostlin Trocha historie Původ virů Původ virů Tři teorie Základní předpoklady Historie objevů První objevený virus Hledání virů Složení virů Elektronový mikroskop objev a vývoj První teorie Viry vznikly z odštěpků nukleových kyselin odštěpky nukleové kyseliny unikly ven z organismu DNA časem získaly schopnost zdvojovat se obalit se bílkovinou a tak zřejmě vznikly první viriony

15 Původ virů Původ virů Druhá teorie Viry vznikly zjednodušením svého těla SLOŽITÝ VIRUS, ČI JINÝ ORGANISMUS viry, jak víme, žijí parazitickým způsobem života BUNĚČNÁ STĚNA Třetí teorie Viry vznikly ještě před buňkami RNA-svět DNA -dnes- -dříve- někteří vědci předpokládají, že svět ve kterém dnes žijeme je tzv. DNA-svět DNA-svět časem zjistily, že k takovému životu nepotřebují vykonávat určité funkce a že k tomu jim jsou jisté organely nadbytečné a tak došlo k druhotnému zjednodušení těla před naším světem ale existoval tzv. RNA-svět a některé RNA-viry jsou posly z minulosti z tohoto světa Základní předpoklady Pokud viry vznikly až po buňkách pak: DNA a RNA viry nemají stejný původ PŘEDCHŮDCE DNA-VIRY RNA-VIRY První objevený virus Charles Chamberland svým objevem porcelánové filtru zároveň objevuhe i první popsaný virus virus tabákové mozaiky viry prokaryotických buněk vznikly v prokaryotických buňkách OK Viry prokaryotických buněk viry eukaryotických buněk vznikly v eukaryotických buňkách OK Viry eukaryotických buněk

16 Hledání virů po objevu viru tabákové mozaiky provádí ruský vědec Dimitrij Ivanovskij pokusy s napadenými listy a zjišťuje, že jsou infekční i po odfiltrování částic způsobujících nemoc těmito částicemi se zabývali i jiní a shodli se v jednom nejedná se o bakterie Hledání virů II slovo virus pochází z latiny a jeho český překlad zní jed poprvé jej používá nizozemský mikrobiolog Martinus Beijerinck blíží se 20.století a Frederick Twort zjišťuje, že viry mohou napadnout bakterie nezávisle na něm Felix d Herelle pěstuje viry na buněčných kulturách a pozorováním tzv. mrtvých oblastí určuje počet virů v kultuře Složení virů blíží se rok 1935 a lidstvo díky objevu Wendella Stanleyho, který krystalizoval virus tabákové mozaiky, zjišťuje, že se viry skládají z bílkovin nedlouho po tomto objevu se daří dalším vědcům rozdělit virus na bílkovinou část a nukleovou kyselinu Elektronový mikroskop vynález elektronového mikroskopu provedli roku 1931 němečtí inženýři Ernst Ruska a Max Knoll jejich mikroskop je však nepoužitelný pro praxi a první použitelný vyrábí až roku 1938 Eli Franklin Burton na Torontské univerzitě první elektronový mikroskop zvětšoval 400x a přesto dnešní mikroskopy fungují stále na stejném principu

Obsah přednášky: RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc

Obsah přednášky: RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Studijní materiály na: http://www.zoologie.upol.cz/osoby/fellnerova.htm Obsah přednášky: Obecná charakteristika virů velikost a morfologie

Více

Obsah přednášky: RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc

Obsah přednášky: RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Studijní materiály na: http://www.zoologie.upol.cz/osoby/fellnerova.htm Obsah přednášky: Obecná charakteristika virů velikost a morfologie

Více

Elektronoptický snímek viru mozaikové choroby tabáku. Mozaiková choroba tabáku. Schéma viru mozaikové choroby tabáku

Elektronoptický snímek viru mozaikové choroby tabáku. Mozaiková choroba tabáku. Schéma viru mozaikové choroby tabáku Obecná virologie Viry lat. virus šťáva, jed, v lékařské terminologii infekční činitel 1879 1882: první pokusný přenos virového onemocnění (mozaiková choroba tabáku) 1898: první pokusný přenos živočišného

Více

Nebuněčné organismy - viry

Nebuněčné organismy - viry Nebuněčné organismy - viry Nebuněčné organismy Kapsida (bílk.), NK (DNA a RNA) Vnější obalová vrstva ssrna, dsrna, ssdna, dsdna viry Reprodukční strategie: +RNA, - RNA, diplorna a retroviry Viriony, fágové

Více

VIRY obecná charakteristika

VIRY obecná charakteristika Ivana Fellnerová VIRY obecná charakteristika velmi malé nebuněčné formy života (~20-900nm) obligátní intracelulární parazité mají vlastní NK schopnou ovládnout genetický mechanismus hostitelské buňky nemetabolizují,

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním

Více

Cytosin Thymin Uracil

Cytosin Thymin Uracil ukleové kyseliny fosfát - P - nukleotid nukleová báze C 2 3' 4' 5' cukr 2 1' 2' 5' báze C 2 1' 3' 2' 4' nukleosidy C 2 3' báze 1' b-d- ribofuranóza b-d-deoxyribofuranóza 4' 5' 2' - P - 2 - P - Cytosin

Více

Neb Nebuněčná forma živé hmoty živé / neživé

Neb Nebuněčná forma živé hmoty živé / neživé 1 Nebuněčné organismy-virusy a viroidy LATINSKY VIRUS = JED, TOXIN Znaky nebuněčných organismů: Nebuněčné částice, jejichž struktura je minimalizována na molekulu genetické informace a bílkovinný obal

Více

NEBUNĚČNÁ ŽIVÁ HMOTA VIRY

NEBUNĚČNÁ ŽIVÁ HMOTA VIRY NEBUNĚČNÁ ŽIVÁ HMOTA VIRY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 11.3.2011 Mgr.Petra Siřínková Rozdělení živé přírody 1.nadříše.PROKARYOTA 1.říše:Nebuněční

Více

Autoři: Jana Kučerová (repa@emsbrno.cz) Zdeňka Vlahová (zdena.vlahova@centrum.cz) Gymnázium J.G. Mendela, Brno 1998. Maturitní téma č. 6.

Autoři: Jana Kučerová (repa@emsbrno.cz) Zdeňka Vlahová (zdena.vlahova@centrum.cz) Gymnázium J.G. Mendela, Brno 1998. Maturitní téma č. 6. Maturitní téma č. 6 VIRY - Vira STRUKTURA VIRU Jejich struktura je velice jednoduchá. Virovou částici tvoří nukleová kyselina, která je opatřena bílkovinným obalem (kapsidem). Nukleová kyselina může být

Více

Nebuněčné živé soustavy viry virusoidy viroidy

Nebuněčné živé soustavy viry virusoidy viroidy Nebuněčné živé soustavy viry virusoidy viroidy VIRA = VIRY nukleoproteinové částice nemají buněčnou stavbu => nebuněčné organismy mají schopnost infikovat hostitelské buňky a množit se v nich k rozmnožování

Více

Nebuněčné organismy Viry

Nebuněčné organismy Viry Nebuněčné organismy Viry Nebuněčné organismy Nanočástice elektronová mikroskopie (x chlamydie, riketsie x mimivirus) Izometrické a anizometrické (rozměry) Kapsida (bílk., kapsomery, 1 gen, krystalizace),

Více

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

VIRY - PŮVODCI NEMOCÍ ČLOVĚKA, ZVÍŘAT A ROSTLIN. Růžičková Vladislava

VIRY - PŮVODCI NEMOCÍ ČLOVĚKA, ZVÍŘAT A ROSTLIN. Růžičková Vladislava VIRY - PŮVODCI NEMOCÍ ČLOVĚKA, ZVÍŘAT A ROSTLIN Růžičková Vladislava Úvod Tento článek je určen k rozšíření výuky biologie na úrovni základních, ale zejména středních škol v problematice virů a virologie.

Více

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají

Více

Virus lidského imunodeficitu. MUDr. Jana Bednářová, PhD. OKM FN Brno

Virus lidského imunodeficitu. MUDr. Jana Bednářová, PhD. OKM FN Brno Virus lidského imunodeficitu MUDr. Jana Bednářová, PhD. OKM FN Brno HIV Human Immunodeficiency Virus AIDS Acquired Immunodeficiency Syndrome SIDA Syndrome d immuno-déficience acquise Historie původně opičí

Více

Nebuněční Viry, viroidy, priony

Nebuněční Viry, viroidy, priony Nebuněční Viry, viroidy, priony Viry - Stavba virionu Virové kapsidy Nukleová kyselina viru a) DNA - dvouřetězcová - jednořetězcová (jen u virů) b) RNA -dvouřetězcová (jen u virů) - jednořetězcová Lytický

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

CHŘIPKA. Mgr. Marie Vilánková. Joalis s.r.o. Všechna práva vyhrazena

CHŘIPKA. Mgr. Marie Vilánková. Joalis s.r.o. Všechna práva vyhrazena CHŘIPKA Mgr. Marie Vilánková 1 Chřipka nejčastější lidské onemocnění Ročně postihne 10 % lidské populace. Je to příčina úmrtí tisíců lidí ročně (odhadem 250-500 tis.). www.chripka.cz Sezónní výskyt chřipkových

Více

Stavba virové částice virionu: -nukleová kyselina JEN 1 TYP (1- či 2-řetězcová RNA nebo DNA) -ochranný proteinový obal = kapsida Velikost nm

Stavba virové částice virionu: -nukleová kyselina JEN 1 TYP (1- či 2-řetězcová RNA nebo DNA) -ochranný proteinový obal = kapsida Velikost nm Stavba virové částice virionu: -nukleová kyselina JEN 1 TYP (1- či 2-řetězcová RNA nebo DNA) -ochranný proteinový obal = kapsida Velikost 20-300 nm VIRY Obsahují pouze několik genů - informace pro -vytváření

Více

ZÁKLADY VIROLOGIE. Obecná charakteristika virů. Chemické složení virů. Stavba viru. Bílkoviny

ZÁKLADY VIROLOGIE. Obecná charakteristika virů. Chemické složení virů. Stavba viru. Bílkoviny Obecná charakteristika virů ZÁKLADY VIROLOGIE Nebuněčné mikroorganismy Genetické elementy, který se množí pouze uvnitř živé buňky Vnitrobuněčná a mimobuněčná forma Extracelulární forma virové částice se

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Číslo projektu CZ.1.07/1.5.00/34.0743. Název školy. Moravské gymnázium Brno, s.r.o. Autor. Mgr. Martin Hnilo. Biologie 1 Nebuněční viry.

Číslo projektu CZ.1.07/1.5.00/34.0743. Název školy. Moravské gymnázium Brno, s.r.o. Autor. Mgr. Martin Hnilo. Biologie 1 Nebuněční viry. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno, s.r.o. Autor Mgr. Martin Hnilo Tematická oblast Biologie 1 Nebuněční viry. Ročník 1. Datum tvorby 10.10.2012 Anotace Pracovní

Více

Mgr. Šárka Bidmanová, Ph.D.

Mgr. Šárka Bidmanová, Ph.D. Mgr. Šárka Bidmanová, Ph.D. Loschmidtovy laboratoře, Ústav experimentální biologie Přírodovědecká fakulta, Masarykova univerzita 77580@mail.muni.cz 1. Úvod do studia mikrobiologie 2. Archea 3. Bakterie

Více

Viry Základy biologie 2013

Viry Základy biologie 2013 Viry Základy biologie 2013 Charakteristika Definice: submikroskopické infekční nukleoproteinové částice Virus = jed (latinsky) Viry jsou nebuněčné organismy. Malé rozměry a jednoduchá struktura Rozmnoţují

Více

Základní charakteristika virů

Základní charakteristika virů VIRY Co je to virus Virus je drobná částice tvořená pouze bílkovinným pouzdrem, uvnitř kterého se skrývá dědičná informace ve formě DNA nebo RNA. Viry jsou mnohem menší než bakterie. To znamená, že nejsou

Více

Název: Viry. Autor: PaedDr. Pavel Svoboda. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: biologie

Název: Viry. Autor: PaedDr. Pavel Svoboda. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: biologie Název: Viry Výukové materiály Autor: PaedDr. Pavel Svoboda Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: biologie Ročník: 2. (1. vyššího gymnázia) Tematický

Více

9. Viry a bakterie. Viry

9. Viry a bakterie. Viry 9. Viry a bakterie Viry nebuněčné formy organismů. Mnohem menší a jednoduší než buňka. Prokaryotické organismy organismy, jejichž tělo tvoří prokaryotická buňka s jadernou hmotou volně uloženou v cytoplazmě

Více

Petra Lysková BIOLOGIE

Petra Lysková BIOLOGIE Petra Lysková BIOLOGIE 1877-1895 Louis PASTEUR zakladatel mikrobiologie 1890 Dimitrij IVANOVSKIJ a Martinus BEIJERINCK první virus = virus tabákové mozaiky 1898 Friedrich LOEFFLER a Paul FROSCH první virus

Více

Antivirotika. Včetně léčby AIDS

Antivirotika. Včetně léčby AIDS Antivirotika Včetně léčby AIDS Antivirová chemoterapeutika =látky potlačující virové onemocnění Virocidní látky přímo inaktivují virus (málopole neorané) Virostatické látky inhibují virový cyklus na buněčné

Více

Nebuněčný život (život?)

Nebuněčný život (život?) Nebuněčný život (život?) Nebuněčný život (život?) 1. viry 2. viroidy (infekční RNA) 3. satelity (subvirální infekční jednotky, jejichž replikace buňkou je zajištěna koinfekcí pomocným virem ) (a) satelitní

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Buněčné jádro a viry

Buněčné jádro a viry Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

The cell biology of rabies virus: using stealth to reach the brain

The cell biology of rabies virus: using stealth to reach the brain The cell biology of rabies virus: using stealth to reach the brain Matthias J. Schnell, James P. McGettigan, Christoph Wirblich, Amy Papaneri Nikola Skoupá, Kristýna Kolaříková, Agáta Kubíčková Historie

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Název materiálu: Viry, houby, parazité. Datum (období) vytvoření: Autor materiálu: MUDr. Zdeňka Kasková. Zařazení materiálu:

Název materiálu: Viry, houby, parazité. Datum (období) vytvoření: Autor materiálu: MUDr. Zdeňka Kasková. Zařazení materiálu: Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

CHŘIPKOVÉ VIRY STRUKTURA, REPLIKACE, ANTIGENY, GENETICKÉ ZVLÁŠTNOSTI EMIL PAVLÍK

CHŘIPKOVÉ VIRY STRUKTURA, REPLIKACE, ANTIGENY, GENETICKÉ ZVLÁŠTNOSTI EMIL PAVLÍK CHŘIPKOVÉ VIRY STRUKTURA, REPLIKACE, ANTIGENY, GENETICKÉ ZVLÁŠTNOSTI EMIL PAVLÍK ÚSTAV IMUNOLOGIE A MIKROBIOLOGIE A ÚSTAV KLINICKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1.LÉKAŘSKÉ FAKULTY KARLOVY UNIVERZITY

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Magnetické částice, izolace a detekce chřipky (hemaglutininu)

Magnetické částice, izolace a detekce chřipky (hemaglutininu) Název: Magnetické částice, izolace a detekce chřipky (hemaglutininu) Školitel: Ludmila Krejčová, MVDr. Datum: 7.11. 2013 Reg.č.projektu: CZ.1.07/2.4.00/31.0023 Název projektu: Partnerská síť centra excelentního

Více

VYBRANÉ KAPITOLY VIRO R LO L GIE

VYBRANÉ KAPITOLY VIRO R LO L GIE VYBRANÉ KAPITOLY Z VIROLOGIE Morfologie virů Viry byly poprvé popsány jako filtrabilní agens z důvodu jejich velmi malých rozměrů, které jim dovolují pronikat bakteriálními filtry. Velikost a struktura

Více

ZÁKLADY VIROLOGIE obecná virologie

ZÁKLADY VIROLOGIE obecná virologie ZÁKLADY VIROLOGIE obecná virologie Nestačí vědět, vědění se musí použít Goethe Tato skripta jsou určena pro studenty biologických oborů. Soustředí se na vybrané kapitoly z obecné virologie. Nekladou si

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

prokaryotní Znaky prokaryoty

prokaryotní Znaky prokaryoty prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Chřipka jako zoonóza

Chřipka jako zoonóza Chřipka jako zoonóza Doc. MVDr. Petr Lány, Ph.D. Prof. MVDr. Zdeněk Pospíšil, DrSc. Doc. MVDr. Dagmar Zendulková, CSc. Mgr. Kateřina Rosenbergová Ústav infekčních chorob a epizootologie Fakulta veterinárního

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

2) Vztah mezi člověkem a bakteriemi

2) Vztah mezi člověkem a bakteriemi INFEKCE A IMUNITA 2) Vztah mezi člověkem a bakteriemi 3) Normální rezistence k infekci Infekční onemocnění je nejčastější příčina smrti na světě 4) Faktory ovlivňující vážnost infekce 1. Patogenní faktory

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro

Více

Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup

Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Název vzdělávacího materiálu Imunita a infekční nemoci Anotace Pracovní list seznamuje žáka s druhy infekčních chorob a se způsoby jejich

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Struktura a organizace genomů

Struktura a organizace genomů CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut

Více

Martina Bábíčková, Ph.D. 4.2.2014

Martina Bábíčková, Ph.D. 4.2.2014 Jméno Martina Bábíčková, Ph.D. Datum 4.2.2014 Ročník 6. Vzdělávací oblast Člověk a příroda Vzdělávací obor Přírodopis Tematický okruh Základní struktura života Téma klíčová slova Názvy organismů, viry,

Více

Obsah. IMUNOLOGIE... 57 1 Imunitní systém... 57 Anatomický a fyziologický základ imunitní odezvy... 57

Obsah. IMUNOLOGIE... 57 1 Imunitní systém... 57 Anatomický a fyziologický základ imunitní odezvy... 57 Obsah Předmluva... 13 Nejdůležitější pojmy používané v textu publikace... 14 MIKROBIOLOGIE... 23 Mikroorganismy a lidský organismus... 24 Třídy patogenních mikroorganismů... 25 A. Viry... 25 B. Bakterie...

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Příslušníci čeledi Retroviridae mají neobvyklou, komplexní strukturu. Částice měří v průměru 100-120 nm. Mají lipidový obal, na jehož zevní straně

Příslušníci čeledi Retroviridae mají neobvyklou, komplexní strukturu. Částice měří v průměru 100-120 nm. Mají lipidový obal, na jehož zevní straně Retroviry AIDS Příslušníci čeledi Retroviridae mají neobvyklou, komplexní strukturu. Částice měří v průměru 100-120 nm. Mají lipidový obal, na jehož zevní straně jsou glykoproteinové výčnělky, na vnitřní

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,

Více

VY_32_INOVACE_02.06 1/6 3.2.02.6 Viry a bakterie Viry život bez buňky

VY_32_INOVACE_02.06 1/6 3.2.02.6 Viry a bakterie Viry život bez buňky 1/6 3.2.02.6 Viry život bez buňky cíl - popsat stavbu těla viru a jeho rozmnožování - vyjmenovat příklady virových onemocnění - chápat význam hygieny a prevence - malé, pozorovatelné pouze elektronickým

Více

Nebuněč. Vira) Milan Dundr

Nebuněč. Vira) Milan Dundr Nebuněč ěční viry (Vira( Vira) Milan Dundr Základní charakteristika: nitrobuněč ěční parazité nemají vlastní metabolický aparát nemají aparát t pro syntézu bílkovinb je to holý genetický program uvnitř

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

PRAPRVOCI A PRVOCI Vojtěch Maša, 2009

PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 Opakování Prokarytotické organismy Opakování Prokaryotické organismy Nemají jádro, ale jen 1 chromozóm neoddělený od cytoplazmy membránou Patří sem archea, bakterie

Více

Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů

Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc = ajor istocompatibility omplex Skupina genů na 6. chromozomu (u člověka) Kódují membránové glykoproteiny, tzv. MHC molekuly, MHC molekuly

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Mendelova 2. stupeň Základní Zdravověda

Více

Úvod do mikrobiologie

Úvod do mikrobiologie Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

RNDr. Zdeňka. Chocholouškov

RNDr. Zdeňka. Chocholouškov Srovnání rostlinné a živočišné buňky RNDr. Zdeňka Chocholouškov ková, Ph.D. Rostlinná buňka Buněčná stěna Vakuola Plastidy Plazmodezmy Živočišná buňka Lyzozóm Nebuněč ěčné živé soustavy (viry, viroidy

Více

V roce 1981 byly v USA poprvé popsány příznaky nového onemocnění, které později dostalo jméno AIDS /Acquired Immune Deficiency Syndrome/ neboli

V roce 1981 byly v USA poprvé popsány příznaky nového onemocnění, které později dostalo jméno AIDS /Acquired Immune Deficiency Syndrome/ neboli Lenka Klimešová V roce 1981 byly v USA poprvé popsány příznaky nového onemocnění, které později dostalo jméno AIDS /Acquired Immune Deficiency Syndrome/ neboli Syndrom získaného imunodeficitu. V roce 1983

Více

Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka,

Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka, Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka, Karolinum 2012 Doporučená literatura: Kočárek E. - Genetika.

Více

Viry a bakteriofágy. Databáze testových otázek. Zpracovaly: Veronika Čurečková a Iveta Vaňková

Viry a bakteriofágy. Databáze testových otázek. Zpracovaly: Veronika Čurečková a Iveta Vaňková Téma 1: Viry Viry a bakteriofágy Databáze testových otázek Zpracovaly: Veronika Čurečková a Iveta Vaňková 1. Virus obecně charakterizujeme jako: a) striktně intracelulární, potenciálně patogenní submikroskopický

Více

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Výukové materiály: http://www.zoologie.upol.cz/osoby/fellnerova.htm Prezentace navazuje na základní znalosti Biochemie a cytologie. Bezprostředně

Více

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.

Více

Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace

Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé

Více

Fatální forma influenzy drůbeţe v chovu krůt

Fatální forma influenzy drůbeţe v chovu krůt Fatální forma influenzy drůbeţe v chovu krůt Doc. MVDr. Petr Lány, Ph.D. Mgr. Kateřina Rosenbergová Ústav infekčních chorob a epizootologie MVDr. Miša Škorič, Ph.D. Ústav patologické morfologie Fakulta

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Antivirotika 6.1.2016. Úvod. DNA - viry. RNA viry

Antivirotika 6.1.2016. Úvod. DNA - viry. RNA viry Úvod Antivirotika Antivirotika Farmakoterapie HIV/AIDS viry Paramyxoviry spalničky, zarděnky, příušnice Rabdoviry vzteklina Retroviry HIV, viry působící zhoubné nádory Pikornaviry dětská obrna, rýma, HAV

Více