Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA

Rozměr: px
Začít zobrazení ze stránky:

Download "Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA"

Transkript

1 O OŠKLIVÉM LEMÁTKU PAVEL JAHODA Prezentace pro přednášku v rámci ŠKOMAM 2014.

2 Dělitelnost na množině celých čísel 3 dělí 6

3 Dělitelnost na množině celých čísel 3 dělí 6 protože

4 Dělitelnost na množině celých čísel 3 dělí 6 protože 6 = 2 3

5 Dělitelnost na množině celých čísel 2 dělí 7?

6 Dělitelnost na množině celých čísel 2 dělí 7? 7 = 3, 5 2

7 Dělitelnost na množině celých čísel 2 dělí 7? 7 = 3, 5 2 ale 3, 5 / Z

8 Dělitelnost na množině celých čísel 2 dělí 7? 7 = 3, 5 2 ale 3, 5 / Z, proto 2 nedělí 7

9 Dělitelnost na množině celých čísel Definice (a dělí b) Nechť a, b Z. Říkáme, že a dělí b (nebo také a je dělitel b, nebo b je násobek a), právě tehdy, když existuje k Z tak, že b = ka. V případě, že a dělí b budeme psát a b a skutečnost, že a nedělí b symbolicky zapíšeme a b.

10 Největší společný dělitel Největší společný dělitel čísel 12 a 16 :

11 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : značíme gcd(12, 16)

12 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : značíme gcd(12, 16) = 4

13 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4

14 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4

15 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4 2.) 4 12, 4 16

16 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4 2.) 4 12, 4 16 (je to společný dělitel)

17 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4 2.) 4 12, ) (d 12, d 16) d 4

18 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4 2.) 4 12, ) (d 12, d 16) d 4 (je největší v absolutní hodnotě)

19 Největší společný dělitel Největší společný dělitel čísel 12 a 16 : gcd(12, 16) = 4 1.) 4 0 (je to největší společný dělitel) 2.) 4 12, ) (d 12, d 16) d 4

20 Největší společný dělitel Největší společný dělitel čísel a a b : gcd(a, b) = d

21 Největší společný dělitel Největší společný dělitel čísel a a b : gcd(a, b) = d 1.) d 0

22 Největší společný dělitel Největší společný dělitel čísel a a b : gcd(a, b) = d 1.) d 0 2.) d a, d b

23 Největší společný dělitel Největší společný dělitel čísel a a b : gcd(a, b) = d 1.) d 0 2.) d a, d b 3.) (d a, d b) d d

24 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a 816.

25 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a =

26 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a =

27 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = =

28 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = =

29 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = =

30 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = =

31 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = =

32 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = =

33 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = = =

34 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = = =

35 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = = = =

36 Euklidův algoritmus Nalezněte největšího společného dělitele čísel 300 a = = = = = = Největším společným dělitelem čísel 300 a 816 je poslední nenulový zbytek v Euklidově algoritmu. To jest, gcd(300, 816) = 12.

37 Euklidův algoritmus Věta (Euklidův algoritmus) Nechť a, b N, b a. Jestliže a = b, potom gcd(a, b) = a. Jestliže b > a, potom existje n N {0} tak, že existují čísla r 1 = b, r 0 = a, q j N, r j N {0} pro j = 1,..., n + 1 takové, že pro každé i = 1,..., n 1 platí r i = q i+2.r i+1 + r i+2, 0 r i+2 < r i+1, a = r 0 > > r n+1 = 0. Největším společným dělitelem čísel a a b je pak číslo r n (poslední nenulový zbytek, případně r n = r 0 = a), tj. gcd(a, b) = r n.

38 Ošklivé lemátko Lema Nechť a, b Z. Potom existují čísla x 0, y 0 Z takové, že gcd(a, b) = x 0 a + y 0 b.

39 Ošklivé lemátko Lema Nechť a, b Z. Potom existují čísla x 0, y 0 Z takové, že gcd(a, b) = x 0 a + y 0 b. Příklad: gcd(5, 3) = 1

40 Ošklivé lemátko Lema Nechť a, b Z. Potom existují čísla x 0, y 0 Z takové, že gcd(a, b) = x 0 a + y 0 b. Příklad: gcd(5, 3) = 1 gcd(5, 3) = 1 = x y 0 3

41 Ošklivé lemátko Lema Nechť a, b Z. Potom existují čísla x 0, y 0 Z takové, že gcd(a, b) = x 0 a + y 0 b. Příklad: gcd(5, 3) = 1 gcd(5, 3) = 1 = x y 0 3 gcd(5, 3) = 1 = ( 3) 3

42 Ošklivé lemátko Lema Nechť a, b Z. Potom existují čísla x 0, y 0 Z takové, že gcd(a, b) = x 0 a + y 0 b. Příklad: gcd(5, 3) = 1 gcd(5, 3) = 1 = x y 0 3 gcd(5, 3) = 1 = ( 3) 3 gcd(5, 3) = 1 =

43 Lema Jestliže k ab, gcd(k, a) = 1, potom k b

44 Lema Jestliže a, b, c Z, potom gcd(ca, cb) = c gcd(a, b).

45 Věta Nechť a, b N. Potom platí n(a, b) = ab gcd(a, b).

46 Lema Nechť p je prvočíslo, s N. Jestliže p (a 1..a s ), potom p dělí alespoň jedno z čísel a 1,..., a s, tj. p a 1 p a s.

47 Lema Pro každé přirozené číslo k platí p P k+1<p 2k+1 p < 4 k.

48 Věta Nechť ac bc(mod m) a gcd(m, c) = 1. Potom a b(mod m).

49 Věta (O jednoznačnosti kanonického rozkladu - Základní věta aritmetiky) Pro každé přirozené číslo n 1 existuje právě jeden kanonický rozklad na součin prvočísel. Tj. pokud p 1,..., p m, q 1,..., q s jsou prvočísla (nemusí být navzájem různá) a platí n = p 1..p m = q 1..q s, (1) potom m = s a pro každé i {1,..., m} existuje j i {1,..., s} takové, že p i = q ji.

50 Lema Pro každé přirozené číslo n 2 platí p < 4 n. p P,p n

51 Věta Nechť gcd(a, m) = 1. Potom lineární kongruence ax b(mod m) má jediné řešení.

52 Věta (Fermatova - Eulerova) Nechť gcd(a, m) = 1. Potom a ϕ(m) 1(mod m).

53 Věta (První Čebyševova) Existují reálné konstanty c 1, c 2 > 0 takové, že pro každé x 2 platí c 1 x ln x < π(x) < c x 2 ln x.

54 RSA algoritmus šifrování + lema ověřující jeho korektnost: Lema Nechť p, q jsou dvě navzájem nesoudělná čísla potom pro každé k N platí p kϕ(pq)+1 p(mod pq).

Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22

Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22 Zbytky a nezbytky aneb stručný úvod do kongruencí Zbyněk Konečný Vazební věznice Orličky 2009 23. 27.2.2009 Kondr (Brkos 2010) Zbytky a nezbytky 23. 27.2.2009 1 / 22 O čem to dnes bude? 1 Úvod 2 Lineární

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Kritéria dělitelnosti Divisibility Criterions

Kritéria dělitelnosti Divisibility Criterions VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Kritéria dělitelnosti Divisibility Criterions 2014 Veronika Balcárková Ráda bych na tomto místě poděkovala

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Důkazové metody v teorii čísel

Důkazové metody v teorii čísel Důkazové metody v teorii čísel Michal Kenny Rolínek ØÖ ØºPříspěveknejenukazujeklasickátvrzenízelementárníteoriečísel, ale především ukazuje obvyklé postupy při jejich používání, a to převážně na úlohách

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Prvočísla, dělitelnost

Prvočísla, dělitelnost Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky

Více

Matematické algoritmy (11MAG) Jan Přikryl

Matematické algoritmy (11MAG) Jan Přikryl Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29 Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................

Více

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické

Více

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů

Více

MFF UK Praha, 22. duben 2008

MFF UK Praha, 22. duben 2008 MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod 2. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod 2. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 2. přednáška Úvod 2 http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

Historie matematiky a informatiky 2 7. přednáška

Historie matematiky a informatiky 2 7. přednáška Historie matematiky a informatiky 2 7. přednáška Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 5. října 2013 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitoly z teorie

Více

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21. Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:

Více

Čínská věta o zbytcích RSA

Čínská věta o zbytcích RSA Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah

Více

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01 Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı

Více

Pokročilá kryptologie

Pokročilá kryptologie Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

1 Teorie čísel. Základní informace

1 Teorie čísel. Základní informace 1 Teorie čísel Základní informace V této výukové jednotce se student seznámí se základními termíny z teorie čísel, seznámí se s pojmy faktorizace, dělitelnost, nejmenší společný násobek. Dále se seznámí

Více

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování. Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Algebra 2 Teorie čísel. Michal Bulant

Algebra 2 Teorie čísel. Michal Bulant Algebra 2 Teorie čísel Home Page Michal Bulant katedra matematiky, Přírodovědecká fakulta, Masarykova univerzita, Janáčkovo nám. 2a, 662 95 Brno E-mail address: bulant@math.muni.cz Page 1 of 103 Abstrakt.

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná METODICKÝ LIST DA9 Název tématu: Autor: Předmět: Dělitelnost Nejmenší společný násobek a největší společný dělitel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

Charakteristika tělesa

Charakteristika tělesa 16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Aritmetické funkce. Pepa Svoboda

Aritmetické funkce. Pepa Svoboda Aritmetické funkce Pepa Svoboda Abstrakt. V přednášce se seznámíme s aritmetickými funkcemi jako je Eulerova funkce nebo součet dělitelů. Ukážeme si jejich vlastnosti a spočítáme nějaké příklady. Ve druhé

Více

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Diffieho-Hellmanův protokol ustanovení klíče

Diffieho-Hellmanův protokol ustanovení klíče Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,

Více

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

příklad Steganografie Matematické základy šifrování šifrování pomocí křížů Hebrejské šifry

příklad Steganografie Matematické základy šifrování šifrování pomocí křížů Hebrejské šifry příklad Steganografie Matematické základy šifrování modulární aritmetika modulární inverze prvočísla faktorizace diskrétní logaritmus eliptické křivky generátory náhodných čísel šifrování pomocí křížů

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Algebra 2 Teorie čísel. Michal Bulant

Algebra 2 Teorie čísel. Michal Bulant Algebra 2 Teorie čísel Michal Bulant katedra matematiky, Přírodovědecká fakulta, Masarykova univerzita, Janáčkovo nám. 2a, 662 95 Brno E-mail address: bulant@math.muni.cz Abstrakt. Na této přednášce se

Více

Diskrétní matematika (KAP/DIM)

Diskrétní matematika (KAP/DIM) Technická univerzita v Liberci Zápisky z předmětu Diskrétní matematika (KAP/DIM) Autor: David Salač Vyučující: doc. Miroslav Koucký z akademického roku 2015 / 2016 19. prosince 2015 OBSAH 1 This work is

Více

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Metody řešení diofantických rovnic STUDIJNÍ TEXT Vypracoval: Jan Steinsdörfer Ústí nad Labem 2015 Obsah Úvod 2 1 Vznik diofantických

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

Matematika pro informatiku 10

Matematika pro informatiku 10 Matematika pro informatiku 10 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 4.dubna 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Vybrané problémy teorie čísel Prvočísla

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYBRANÉ KAPITOLY Z ELEMENTÁRNÍ ALGEBRY DIPLOMOVÁ PRÁCE Bc. Jiří KRYČ Učitelství pro 2. stupeň ZŠ, obor

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu. Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ A-Math-Net Síť pro transfer znalostí v aplikované matematice CZ.1.07/2.4.00/17.0100 ÚVOD DO TEORIE ČÍSEL Prof. Mgr. Radomír Halaš, Dr. Oponenti: RNDr. Jaroslav Švrček, CSc.

Více

2. V Q[x] dělte se zbytkem polynomy:

2. V Q[x] dělte se zbytkem polynomy: Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu. 1.teorie(1bod) Formulujte princip matematické indukce. Napište základní větu aritmetiky. Napište Bézoutovu rovnost v oboru celých čísel. Definujte,coznamenázápis a b(mod n),auveďtezákladnívlastnosti. Napište

Více

Okruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20

Okruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Okruh Z m Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Minule: 1 Slepování prvků Z modulo m: množina Z m. 2 Operace na Z m : m (sčítání), m (násobení). 3 Speciální prvky: [0] m a [1] m. 4 Vlastnosti

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

TEORIE ČÍSEL sbírka příkladů. Diplomová práce

TEORIE ČÍSEL sbírka příkladů. Diplomová práce Masarykova univerzita Přírodovědecká fakulta TEORIE ČÍSEL sbírka příkladů Diplomová práce Brno 2006 Jiří Růžička Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a použil přitom pouze uvedené

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

ZÁKLADY ARITMETIKY A ALGEBRY I

ZÁKLADY ARITMETIKY A ALGEBRY I 1 ZÁKLADY ARITMETIKY A ALGEBRY I (Cvičení) 1. Úvod, jazyk matematiky V učebnici Lineární algebra pročítejte definice a věty, uvědomujte si jejich strukturu, i když prozatím neznáte a nechápete (aaniprozatímchápatnemůžete)jejichmatematický

Více

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Úvod. Karel Klouda c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011

Úvod. Karel Klouda c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011 MI-MPI, Přednáška č. 11 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011 RSA potřiapadesáté šifrování Co potřebuje k zašifrování zprávy x: číslo n, které

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ZÁKLADY KVADRATICKÝCH TĚLES FUNDAMENTALS

Více

Úvod do kryptologie. 6. března L. Balková (FJFI ČVUT v Praze) Primality Testing and Factorization 6. března / 41

Úvod do kryptologie. 6. března L. Balková (FJFI ČVUT v Praze) Primality Testing and Factorization 6. března / 41 Testování prvočíselnosti L ubomíra Balková Úvod do kryptologie 6. března 2014 L. Balková (FJFI ČVUT v Praze) Primality Testing and Factorization 6. března 2014 1 / 41 Problémy 1 Primality problem: Rozhodni,

Více

1,2,3,6,9,18, 1,2,3,5,6,10,15,30.

1,2,3,6,9,18, 1,2,3,5,6,10,15,30. ARNP 1 2015 Př. 9 Společný dělitel a společný násobek Společný dělitel Příklad 1: Najděte množinu všech dělitelů čísla 18 a množinu všech dělitelů čísla 30. Řešení: Množina všech dělitelů čísla 18 je množina

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Elementární teorie čísel. Ročník 1. Datum

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy S Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 s Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více