BINÁRNÍ KÓDOVÁNÍ A HC ALGORITMUS

Rozměr: px
Začít zobrazení ze stránky:

Download "BINÁRNÍ KÓDOVÁNÍ A HC ALGORITMUS"

Transkript

1 BINÁRNÍ KÓDOVÁNÍ A HC ALGORITUS Radomil atouše Ústav automatizace a iformatiy, FSI VUT Bro Abstrat Aglicý evivalet ázvu horolezecý algoritmus je hill climbig, dále tedy HC algoritmus, ebo zráceě HCA. Název v podstatě charaterizuje přístup metody řešeí optimalizačího problémů, tj. postup horolezce, terý poud se má čeho chytit, může jít dál. V případě matematicy pojatého horolezecého algoritmu se tedy jedá o postup vhodým směrem, terým je samozřejmě rádoby extrém úlohy. Vhodost směru postupu je určea a záladě specificého prohledáváí oolí atuálího řešeí. Volbě tohoto oolí a metodě ódováí HCA, terý byl implemetová v prostředí atlab, je věová teto příspěve.. Biárě reprezetovaý HC algoritmus V otextu optimalizačích metod můžeme HC algoritmus zařadit metodám, teré směr ejvhodějšího postupu určují a záladě prohledáí svého oolí a určeí ejstrmějšího spádu (steepest descet) či růstu. Z tohoto fatu vyplývá, že výpočtu eí potřeba gradiet, ale pouze apriorí zalost hodot účelové fuce. Prezetovaý HCA je založe a biárí reprezetaci parametrů a jeho realizace odpovídá ásledujícímu postupu: o Pro atuálí řešeí (tj. i prví aproximace) se v metricém Hammigově prostoru geeruje pomocí oečého souboru trasformací určité oolí. o Poté se účelová fuce extremalizuje a tomto oolí, přičemž může být zahruto i původí (zdrojové) řešeí. o Zísaé řešeí se použije jao zálad pro geerováí ového oolí. o Uočovací ritérium může být voleo apřílad a záladě max. počtu iterací [3] ebo a záladě eschoposti algoritmu geerovat lepší řešeí []. Záladím roem algoritmu je vygeerovat oolí původího řešeí a záladě zvoleé metodiy. Příladem taovéhoto rou je realizovaé oolí 8-mi bitového řetězce a ásledujícím obrázu. Bitový řetězec uprostřed slouží jao zálad uvažovaé trasformace, tedy tzv. jádro, či střed. Oolí je vytvořeo vždy egací jedoho bitu. Bitové řetězce se ohodotí, a ejvhodější z ich postupuje do další iterace jao ové jádro. Obr. : Geerováí oolí 8-mi bitového řetězce pomocí jedobitové iverze.

2 Na valitě tohoto oolí pa bude bezprostředé záviset loálost či globálost uvedeého heuristicého postupu. Pro další popis metody uvažujme stadardí problém optimalizace fuce f(x) a disrétí oblasti D. Equatio Chapter (Next) Sectio { f x x D}, resp. max { f ( x) x D} mi ( ) Tedy hledáí taového x!, aby platilo: () x! = arg mi f ( x), resp. x! = arg max f ( x ). (2) x D Disretizace oblasti D R je dáa relací reprezetací a reálých proměých x. Protože platí řešeí úlohy () ásledující vztah (3). l a {0,} { } x D Γ: 0, l D, tedy zavedeou biárí x= Γ( a ), považujeme dále za optimálí ( ) a = arg mi f Γ( a ) (3) opt Nad touto biárí reprezetací defiujeme určitou relaci sousedosti, terá pro aždé přípusté a jádro umožňuje staovit oolí a oolí S(a jádro ). Volba trasformačí fuce S, bude determiovat chováí a charater HC algoritmu. Poud bude mít stochasticý charater, můžeme mluvit o stochastico-heuristicém HC algoritmu, v opačém případě o heuristicém HC algoritmu. Realizovaá atlab implemetace HC algoritmu má ásledující specifia: o Prví aproximace řešeí je algoritmem volea áhodě. o Následující aproximace jsou zísáy pomocí specificé (specificých) bitových trasformací. Tyto trasformace již mají determiisticou povahu. o Neí připuštěo zhoršeí hodot účelové fuce a iteračí cylus algoritmu je zastave poud eí daou trasformací alezeo lepší řešeí. % biárí HC algoritmus (miimalizace) a opt = áhodě vygeerovaý či zvoleý biárí vetor repeat a jádro = a opt a oolí = S(a jádro ) a = arg mi f Γ( a) util opt f a S ( ajádro ) ( ) ( Γ( aopt )) f ( Γ( a jádro) ) % předem zvoleá trasformačí fuce % výběr ejlepšího řešeí % test uočeí Obr. 2: Pseudo-ód: HC algoritmus s testem vality řešeí. Realizovaý HC algoritmus je tedy stochasticý pouze volbou své prví iterace a další průběh je pevě urče zvoleou trasformací. Iteračí výpočet je uoče v oamžiu, dy elze pomocí užité trasformace dosáhout lepšího řešeí.

3 # : F6_mi= x: x2: # 2: F6_mi= x: x2: # 3: F6_mi= x:-0.72 x2: # 4: F6_mi= x:-0.72 x2:-.230 # 5: F6_mi= x: x2:-.230 # 6: F6_mi= x: x2: # 7: F6_mi=.6208 x: x2: # 8: F6_mi=.4527 x: x2: # 9: F6_mi=.2964 x: x2: #0: F6_mi=.650 x: x2: #: F6_mi= x: x2: >> Obr. 3: Fučí optimalizace algoritmem HCA-HC - úloha F6, výpis z průběhu výpočtu. Uáza realizovaého výpočtu fučí miimalizace je demostrováa výpisem (Obr. 3). Použitá metoda trasformace S odpovídá azačeému postupu dle (Obr. ). Čísla s prefixem # ozačují číslo iterace výpočtu, biárí hodoty odpovídají příslušým a opt vetorům, dále ásleduje fučí hodota jao ritérium optimality a příslušé deódovaé reálé parametry, ze terých je tato hodota vypočtea. Pro rychlejší a ázorější popis úlohy ozačeé jao F6 je přílad doplě graficým zázorěím průběhu optimalizace (Obr. 4.). V příladu je užito deódováí pomocí Grayova biárího ódu. Zvoleá disretizace prostoru odpovídající 0 bitové reprezetaci reálých parametrů odpovídá hodotě možé chyby ε = 9.8E Obr. 4: Fučí optimalizace algoritmem HCA-HC - úloha F6, zobrazeí průběhu výpočtu.

4 Jaéoliv, v literatuře prezetovaé variaty HC algoritmu, jsou v podstatě založey a odlišé metodě trasformace S, tedy způsobu defiice relace sousedosti. K výzamým variatám můžeme zařadit:! HC algoritmus s mutací Teto algoritmus využívá tvorbě oolí, tedy vetorů a oolí, stochasticý operátor mutace popsaý v předchozím odstavci. Pomocí tohoto operátoru trasformuje biárí vetor a jádro a možiu vetorů a oolí. Kardialita této možiy je z oboru " a je předem daá.! HC algoritmus s učeím [5] Tato modifiace HC algoritmu se saží pomocí specificého mechaismu avrhout ové oolí vetoru a jádro ta, aby pravděpodobost vziu vetoru a oolí odpovídala jistým pravidlům. echaismus využívá tzv. pravděpodobostí vetor, terý determiuje pravděpodobosti stavů jedotlivých bitů geerovaých vetorů oolí a oolí. Vhodé astaveí tohoto pravděpodobostího vetoru je realizováo pomocí Hebbova pravidla učeí.! Tabu search (zaázaé prohledáváí) [6] Glover avrhl modifiaci HC algoritmu, terá využívá možiy přípustých trasformací a tzv. rátodobou paměť. Pomocí této paměti jsou zazameáy po jistý čas iverzí trasformace trasformací, teré vedly alezeí ejlepšího loálího řešeí. Tyto iverzí trasformace jsou při geerováí ového oolí vetoru a jádro zaázáy, tedy tabu. Rozšířeí metody zaázaého prohledáváí využívá dalšího mechaizmu, terý je ozače ja tzv. dlouhodobá paměť. Ta v podstatě slouží pealizaci těch trasformací, teré se v průběhu optimalizace využívaly příliš často. 2. Trasformačí fuce Navržeé a realizovaé HC algoritmy schématicy popsaé dle (Obr. 2) jsou založey a libovolé, ale pevě daé možiě trasformací příslušých biárích vetorů [2]. { } a 0,, pro " (...déla biárího vetoru) (4) ožiu avržeých trasformací ozačme H a jedotlivé trasformace jao t. { } H = t0, t,..., t (5) Užitím trasformace t H realizujeme zobrazeí biárího vetoru a jádro a možiu A oolí biárích vetorů a oolí, dále též ozačovaou jao matici A oolí. A a {,, }, = a a A = $, pro c " ac oolí c oolí (6)

5 ( ) { } { } t: a A, tedy t: 0, 0, jádro oolí Kardialita c možiy A oolí je dáa zvoleou trasformací t a délou biárího vetoru a jádro. c ( t, ) = Aoolí =, pro {0,,, }, (8) de idex ozačuje příslušost e orétímu prvu z možiy H dle (5). K realizaci možiy trasformací H je zavede systém matic. O matici příslušející daé trasformaci t budeme hovořit jao o matici -tého řádu a ozačíme ji, teto řád eí totožý s řádem čtvercové matice. c (7) t,, pro {0,,, } (9) Defiice: matice řádu, zráceě, je taová matice, jejíž řády reprezetují všechy body Hammigova metricého prostoru, se vzdáleostmi od počátu (tj. ulového vetoru dély ) ve smyslu Hammigovi metriy ρ H. Schéma možé ostruce matic je ásledující: ( 0 0 % 0 ) 0,,2, =, 0,2 % 0, 02, 2,2 = $ & 0c, c, # 2,,2 0,3 % 0, 2, 02,2 2,3 02, = $ & 0c 2, c2, c 2, $ 0,,2 %, 2, 02,2 = $ & c, 0 c, = (,,2 %, ). (0) Pro výpočet matice A oolí (6) připomeňme, že realizovaé operace jsou provedey v lieárím prostoru ad specificým tělesem Z 2 = {0,}.

6 K výpočtu matice A oolí je dále třeba zavést operaci realizující tzv. repliaci vetoru a jádro. Tato operace vytvoří matici A jádro obsahující po řádcích ideticé opie biárího vetoru a jádro. Počet řádů této matice odpovídá počtu řádů příslušé matice a tedy ardialitě c cílové možiy A oolí dle (8). A jádro a, jádro = $ c, jádro a () Nyí pomocí (9), respetive (0) může být realizováa příslušá trasformace t (7). t : A = A, pro t H a = 0,,..., oolí jádro (2) O trasformaci t lze říci, že geeruje úplou možiu vetorů, teré jsou ve smyslu metriy ρ H ( ρ ( xy, ) = x y ) vzdáley od počátu o hodotu. H i i i= t ρ ( a, a ) =, pro a A H jádro oolí oolí oolí (3) Zobecěí vztahu (2) pro libovolý, ale pevě daý výběr prvů z možiy H, je zřejmé. ožiu vybraých, a dále pro HC algoritmus (Obr. 2) pevě daých trasformací ozačíme H v. Hv H ožia H v vzájemě jedozačě určuje trasformaci S, terá je sjedoceím trasformací z této možiy. (4) A jádro, Hv S, a tedy S: A =, (5) OKOLÍ $ A jádro, v v de i I a I je idexová možia vybraých prvů z možiy H defiovaá výběrem H v. 3. Realizovaé trasformace a závěr Předchozí apitola uvedla avrhovaou třídu biárích trasformací H (5) a demostrovala matematicý aparát pro jejich realizaci (2), respetive (5). Vzhledem e ombiatoricé áročosti byly pro praticou realizaci vybráy trasformace t 0, t a t 2, respetive zbývající, ovšem modifiovaé trasformace z možiy H.

7 K další práci bylo pro výběr trasformací H v, respetive trasformaci S, zavedeo ásledující zjedodušující ozačeí:! trasformace ozačeé HC,HC2 a HC2 jsou z možiy H v = {t 0, t, t 2 },! trasformace ozačeé HCxR jsou výběrem H v z H, přičemž ardialita příslušých moži A oolí, i je reduovatelá. Pro apliaci HC algoritmů musí být zvážea povaha úlohy. Implemetovaé a teoreticy popsaé [2] variaty samozřejmě dispoují možostí volby způsobu biárího deódováí i rozsahem biárí reprezetace. Disutovaé algoritmy byly realizováy v prostředí atlab a jsou pro odzoušeí volě dispozici po dotazu a autora tohoto čláu. Referece [] atouše, R., Hill Climbig ad 0/ Kapsac Problem, 7 th Iteratio Coferece ENDEL 200, Bro, Czech Republic, 200, ISBN [2] atouše, R., Vybraé metody umělé iteligece implemetace a apliace, Ph.D. práce v oboru Techicá yberetia, VUT Bro, Bro, Czech Republic, [3] Kvasiča, V., Beňušová, Ĺ., Pospíchal, J., Faraš, I, Tiňo, P., Kráĺ, A.: Úvod do teórie euroových sietí. Vydavateĺstvo IRIS, Bratislava, 997, ISBN [4] Kvasiča, J., Pospíchal, J.: Evolučí algoritmy, Tabu search, Computer word 95, Praha, 995. [5] Kvasiča, V., Pospíchal, J., Peliá,.: Hill Climbig with Learig. Proceedigs of ENDEL 95, st Iteratioal Coferece o Geetic Algorithms, Bro, 995, pp [6] Glover, F.: Tabu Search Part I. ORSA Joural of Operatios Research., 998. Radomil atouše, matouse@fme.vutbr.cz ODBORNÝ ASISTENT ODBORU INFORATIKY ÚSTAV AUTOATIZACE A INFORATIKY, FSI VUT V BRNĚ TECHNICKÁ 2896/2, BRNO

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechiky a komuikačích techologií Ig. Radomil Matoušek, Ph.D. POKROČILÉ METODY POČÍTAČOVÉ INTELIGENCE Advaced Methods i Computatioal Itelligece TEZE HABILITAČNÍ

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Diskrétní Fourierova transformace

Diskrétní Fourierova transformace Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY 7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

2 Diferenciální počet funkcí více reálných proměnných

2 Diferenciální počet funkcí více reálných proměnných - 6 - Difereciálí počet fucí více proměých Difereciálí počet fucí více reálých proměých 1 Spoitost, limity a parciálí derivace Fuce více reálých proměých Defiice Pod reálou fucí reálých proměých rozumíme

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Autoři: Jan Krákora,, David Šebek, Quido Herzeq; ČVUT FELK Praha; Dne:

Autoři: Jan Krákora,, David Šebek, Quido Herzeq; ČVUT FELK Praha; Dne: NÁZEV EXPERIMENTU: NÁVRH, ŘÍZENÍ A PLÁNOVÁNÍ ROBOTU Autoři: Ja Krákora,, David Šeek, Quido Herzeq; ČVUT FELK Praha; De: 6.. Astrakt Optimálí řízeí rootu eí jedoduché, zvlášť pokud o pozici pracoví plochy

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

VaR analýza citlivosti, korekce

VaR analýza citlivosti, korekce VŠB-TU Ostrava, Ekoomická fakulta, katedra fiací.-. září 008 VaR aalýza citlivosti, korekce Fratišek Vávra, Pavel Nový Abstrakt Práce se zabývá rozbory citlivosti ěkterých postupů, zahrutých pod zkratkou

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Neuronové sítě. Biologický neuron. Modely neuronu. 1. Logický neuron (McCulloch, Pitts, 1943) w R, x, y {0, 1} Biologický neuron.

Neuronové sítě. Biologický neuron. Modely neuronu. 1. Logický neuron (McCulloch, Pitts, 1943) w R, x, y {0, 1} Biologický neuron. Biologický euro Neuroové sítě Biologický euro Modely eurou Schéma eurou 1. Logický euro (McCulloch, Pitts, 1943) w R, x, y {0, 1} P. Berka, 2019 1/23 2. DLINE (Widrow, 1960) x, w R, y {0, 1} SUM = w i

Více

TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM.

TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. Graf je útvar, terý je možo zázorit obrázem v roviě pomocí bodů (uzly

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

MDM teoretická příručka

MDM teoretická příručka Simulace a dyamia techico-eoomicých úloh pro tvorbu strategií v eoomice a maagemetu MDM teoreticá příruča Záladí použití Modifiovaého Dyamicého Modelu pro simulaci techico-eoomicých úloh MSM6840770006

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Náhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č.

Náhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č. Náhoda při i hřeh Martigale: Vsadíšřeěme dolar a barvu, terou si vybereš (červeáči čerá) a budeš stále sázet je a i. Roztočíš ruletu a čeáš Poud prohraješ, zdvojásobíš sázu, taže vsadíš příště dolary.

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Materiály k X33KUI, ČVUT, FEL, Vytvořeno dne 11/5/2006 7:07 PM. Seminární cvičení 2. Kódování a přenos informace

Materiály k X33KUI, ČVUT, FEL, Vytvořeno dne 11/5/2006 7:07 PM. Seminární cvičení 2. Kódování a přenos informace Materiály k X33KUI, ČVUT, FEL, Vytvořeo de /5/6 7:7 M Semiárí cvičeí Kódováí a přeos iformace Osova cvičeí k čemu se má dojít??? Motivace úvodí příklad - holub Základí pojmy Zpráva Symbol Abeceda - jakákoliv

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Kovariantní derivace. Kapitola Paralelní přenos

Kovariantní derivace. Kapitola Paralelní přenos [2.03,1.12,1.14,2.04,2.02,2.02,2.03,2.03,2.02,0,1.03] Kapitola 7 Kovariatí derivace Při zoumáí tezorových polí a varietách bychom rádi uměli charaterizovat změy těchto polí. Aparát difereciálí geometrie

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobýváí zalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické iformatiky Matematicko-fyzikálí fakulta Uiverzity Karlovy v Praze Dobýváí zalostí Pokročilé techiky pro předzpracováí dat Doc. RNDr. Iveta

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Obsah. skentest. 1. Úvod. 2. Metoda výpočtu Základní pojmy

Obsah. skentest. 1. Úvod. 2. Metoda výpočtu Základní pojmy Obsah sketest 1. ÚVOD... 1 2. METODA VÝPOČTU... 1 2.1. ZÁKLADNÍ POJMY... 1 2.2. SOUŘADNICOVÉ SYSTÉMY... 2 2.3. PŘÍPRAVEK... 3 2.4. POSTUP VÝPOČTU... 4 3. PROGRAM SKENTEST... 5 3.1. VSTUPNÍ SOUBOR... 5

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12 Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

DETEKCE UŽITEČNÉHO SIGNÁLU V APLIKACI HARMONICKÉHO RADARU S VYUŽITÍM MATLAB

DETEKCE UŽITEČNÉHO SIGNÁLU V APLIKACI HARMONICKÉHO RADARU S VYUŽITÍM MATLAB DETEKCE UŽITEČÉHO SIGÁLU V APLIKACI HARMOICKÉHO RADARU S VYUŽITÍM MATLAB R.. Pavlík, V. Poláček VOP-6 Šterberk, s.p., divize VTÚO Bro, Veslařská 3, 637 Bro E-mail: pavlik@vtuo.cz, polacek@vtuo.cz Úvod

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Identifikátor materiálu: ICT 2 59

Identifikátor materiálu: ICT 2 59 Idetifiátor materiálu: ICT 59 Registračí číslo projetu Název projetu Název příjemce podpory ázev materiálu (DUM) Aotace Autor Jazy Očeávaý výstup Klíčová slova Druh učebího materiálu Druh iterativity Cílová

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Markovovy řetězce s diskrétním časem (Discrete Time Markov Chain)

Markovovy řetězce s diskrétním časem (Discrete Time Markov Chain) Stochastcé rocesy Marovovy řetězce s dsrétím časem (Dscrete Tme Marov Cha) Stochastcý roces Stochastcým rocesem {X(t), tr} je moža áhodých velč X(t) závslých a jedom arametru t. Stavový rostor : moža možých

Více

KOMBINATORIKA VE VZTAHU K VYUČOVÁNÍ MATEMATICE NA 1. STUPNI ZÁKLADNÍ ŠKOLY

KOMBINATORIKA VE VZTAHU K VYUČOVÁNÍ MATEMATICE NA 1. STUPNI ZÁKLADNÍ ŠKOLY Idutíve a dedutíve prístupy v matematie, Smoleice 0. 4.-. 4. 005 KOMBINATORIKA VE VZTAHU K VYUČOVÁNÍ MATEMATICE NA. STUPNI ZÁKLADNÍ ŠKOLY JAROSLAV BERÁNEK Katedra matematiy, Pedagogicá faulta, Masaryova

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více