PRINCIP ZÁPISU AKORDU POMOCÍ AKORDOVÝCH ZNAČEK

Rozměr: px
Začít zobrazení ze stránky:

Download "PRINCIP ZÁPISU AKORDU POMOCÍ AKORDOVÝCH ZNAČEK"

Transkript

1 Střed 15 Prosinec :00 PRINIP ZÁPISU KORU POMOÍ KOROVÝH ZNČK Určitě už se vám stlo že jste nkoukli do zpěvníku chtěli zhrát nějkou olíenou píseň hned ve druhém tktu vás odrdil zápis typu 5 + /mj7/9 - /13 Tk jste zpěvník zse zvřeli rdši zhráli po pměti Ptáčt Neojte se Všechno má svojí logiku není to tk otížné jk se n první pohled zdá Jk jsem uváděl hned n zčátku jednoduchá písničk se dá zhrát n tři kordy Ve stupnici dur to yly kordy Není náhodou že jsou to právě tyto kordy Tóny v nich osžené totiž tvoří stupnici dur ze které jsou tyto kordy vygenerovány kordu postvenému n prvním tónu příslušné stupnice říkáme tónik (v nšem přípdě kordu n čtvrtém tónu říkáme sudominnt ( kordu n pátém tónu stupnice dominnt ( Z důvodů snžšího vysvětlování se teď přetrnsponujeme do stupnice dur Pokud z těchto několik předchozích řádků nejste příliš moudří věřím že následující výkld vám jejich význm osvětlívezměte ztím jko holý fkt že do stupnice dur ptří kordy kord (tónik se skládá z tónů 1 / 5

2 Střed 15 Prosinec :00 kord (sudominnt z tónů kord (dominnt z tónů H Teď si všechny vyjmenovné tóny poskládáme pěkně z seou dostneme tuto řdu: H Pokud vám tento shluk písmenek něco připomíná máte dosttečné hudení vzdělání ke zvládnutí celé hudení teorie Kdo hádl že se jedná o počáteční písmenk zuky se sice npoprvé netrefil le když npovím že se jedná o stupnici dur jistě se kždému vyví že už něco podoného někde slyšel Konkrétně se jedná o ditonickou durovou stupnici jónskou vyrl jsem pro výkld tuto stupnici proto že oshuje pouze celé tóny tk je kždé vyočení z této stupnice n první pohled ptrné (proto jsem opustil původní stupnici dur která oshuje tóny 2 / 5

3 Střed 15 Prosinec :00 lší důležitý pozntek který z předchozího textu vyplývá je že zákldní kord je tvořen třemi tóny Podíváme-li se n skldu jednotlivých kordů n stupnici ze které jsou vytvořeny pozorněji všimneme si že tóny v jednotlivých kordech jsou od see vždy vzdáleny o jeden tón ve stupnici Npř kord je tvořen tóny (1 ve stupnici (3 ve stupnici (5 ve stupnici Podle toho kde se jednotlivé tóny ve stupnici nchází se i jmenují: 1 tón = prim 2 tón = sekund 3 tón = tercie 4 tón = kvrt 5 tón = kvint 6 tón = sext 7 tón = septim konečně 8 tón = oktáv Nejjednodušší kord se tedy skládá ze tří tónů je tvořen primou tercií kvintou Proto se těmto třítónovým kordům říká kvintkordy Kvintkord může ýt uďto durový neo mollový K pochopení rozdílu mezi nimi si nejprve povíme něco o intervlech Kromě toho že existují celé tóny (to jsou právě tóny H můžeme tyto tóny ještě o půltónu zvýšit neo snížit Pokud tón zvýšíme připojíme z znčku tónu symol (křížek čteme s příponou -is =is =is =is =is =i s H =His Pokud tón snížíme připojíme z znčku tónu symol (éčko čteme s příponou -es =es =es =s =es 3 / 5

4 Střed 15 Prosinec :00 =es =s B =Bé Pokud je vám n tomto výčtu odvozených půltónů něco podezřelého máte prvdu Nejdříve si povšimneme tónů s s Bé čkoliv pojmenování snížených půltónů tvoříme připojením přípony es k oznčení původního celého tónu u těchto tónů se musíme smířit s tím že jko všude i zde vyjímk potvrzuje prvidlo U tónů s s se jedná pouze o zjednodušení protože es es y se přecejenom šptně vyslovovlo le u tónu Bé je to trochu komplikovnější V původním yzntském znčení které se dodnes používá v nglicky mluvících zemích neexistuje oznčení tónu H le tento tón znčí B Snížením tónu B dostneme tón B U nás se vžilo oznčení celého tónu H sníženého B (vychází z německé úprvy znčení tónů Čsto díky tomu dochází k nejsnostem pokud hrjete podle zhrničních mteriálů je doré si nejprve vyzkoušet který kord se tím myslí Pro snížený tón H proto v prxi doporučuji používt vždy znčení B (čti Bé lší zvláštnost která už se týká právě intervlů mezi jednotlivými tóny njdeme u tónů is His es es Pokud se vám podřilo prokoust se předcházejícím odstvečkem pochopili jste z něj lespoň to že kromě celých tónů existují tké půltóny si vás příliš nepřekvpí že vzdálenost mezi tóny nemusí ýt měřen vždy jenom celými tóny le že některé tóny od see mohou ýt vzdáleny tké o půltón Vzdálenosti mezi dvěm tóny říkáme intervl V prxi pokud zmčknete n kytře n liovolné struně liovolné políčko rnknete potom zmčknete sousední políčko rnknete opět n té smé struně zhráli jste dv tóny které jsou od see vzdáleny právě o jeden půltón y jste zhráli tóny vzdálené o jeden tón museli y jste zmčknout strunu o jedno pole Intervl půltónu je tedy n kytře jedno políčko tón jsou políčk dvě Pokud si rozeereme intervly mezi jednotlivými tóny durové stupnice zjistíme že mezi tóny je intervl jednoho tónu mezi tké jednoho tónu le mezi je pouze půltón Mezi už je zse celý tón H tké le mezi H je opět pouze půltón Proto pokud zvýšíme tón o půltónu dostneme sice oprvdu tón is le tento tón je totožný s tónem Stejně tk tón His = Pokud snížíme tón získáme tón es který je totožný s tónem H snížením dostneme es = Ke stejnému prolému se dostneme i u dlších tónů Npř pokud zvýšíme tón o půl tónu dostneme is pokud snížíme tón o půl tónu dostneme s Tyto tóny všk znějí stejně drží se n stejném políčku Jsou to tóny tzv enhr monické Přehled všech intervlů v rozshu jedné oktávy si ukážeme n tzv chromtické stupnici 4 / 5

5 Střed 15 Prosinec :00 která oshuje všechny půltóny Stejně tk jko v ditonické durové stupnici (ditonická proto že oshuje jk intervly tón tk půltón se jednotlivé stupně nějk jmenují (prim sekund tercie kvrt kvint sext septim oktáv i v chromtické používáme pro kždý stupeň ustálené oznčení hromtická stupnice Název (=intervl od zákl Číselné tónu oznčení stupně čistá prim 1 (= velká sekund 2 (= velká tercie (=zmenšená 3 kvrt (= 4 - čistá kvrt 4 zmenšená kvint (=zvětšená 5 kvrt - čistá kvint 5 (= velká sext 6 (=B H velká septim 7 c čistá oktáv 8 Tón c je o oktávu výš než tón proto používáme jednou mlé jednou velké písmenko Z uvedeného výčtu vidíme že jednotlivé stupně tedy i intervly mezi jednotlivými tóny mohou ýt čisté (prim kvrt kvint oktáv mlé neo velké (sekund tercie sext septim z menšené neo zvětšené (opět prim kvrt kvint oktáv Intervly prim kvrt kvint oktáv tedy mohou ýt uď čisté zmenšené neo zvětšené intervly sekund tercie sext septim mohou ýt pouze mlé neo velké přičemž v ditonické durové stupnici se tyto intervly vyskytují pouze jko velké Nyní se vrátíme k kordovým znčkám kvintkordu Víme že npřdurový kvintkord postvený n tónu má znčku Oshuje tři tóny: primu (zákldní tón = tercii ( kvintu ( Mollový kvintkord má znčku mi oshuje tóny Tón je od zákldního tónu vzdálen o mlou tercii prim kvint zůstly eze změny Zkrtk 5 / 5

, a). Zachovali jsme intervaly mezi jednotlivými prvky (akordy) harmonického celku (mezi C, Ami - velká sexta stejně jako mezi A, F #

, a). Zachovali jsme intervaly mezi jednotlivými prvky (akordy) harmonického celku (mezi C, Ami - velká sexta stejně jako mezi A, F # Transponování ž dosud jsme se ve výkladu setkali pouze s akordy odvozenými od tónu a stupnicemi vycházejícími z tóniny dur. Pro výklad je tato tónina vhodná z toho důvodu, že jónský modus diatonické durové

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

Jak na akordové značky

Jak na akordové značky Jak na akordové značky Cíl článku: Cílem článku je naučit Vás porozumět akordovým značkám a získat schopnost najít si a posléze zahrát na kytaru jakýkoliv akord. V článku rozhodně nenajdete zobrazení všech

Více

STUPNICE. ), jedná se o stupnici mollovou.

STUPNICE. ), jedná se o stupnici mollovou. STUPNICE Pokud chcete zahrát jakoukoliv melodii, sólo, či improvizaci, vždy používáte určitý sled tónů, který vychází z akordového doprovodu skladby nebo naopak na základě vámi použitého sledu tónů lze

Více

S pentatonikou můžeme pracovat modálním způsobem obdobně jako s předchozí stupnicí Cdur. Pentatonika má pět prvků, proto existuje pět modů.

S pentatonikou můžeme pracovat modálním způsobem obdobně jako s předchozí stupnicí Cdur. Pentatonika má pět prvků, proto existuje pět modů. Středa 16 Únor 2005 04:00 PENTATONIKA Pentatonika je pro kytaristu v praxi asi nejpoužívanější stupnice. Je to nejjednodušší stupnice která se velmi často používá ve všech hudeních stylech. Tato stupnice

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Vhodný výběr obratů akordů si ukážeme na příkladu harmonického schématu skladby Ja-Da od Boba Carletona. Ukázka č.1 a ukázka č. 2

Vhodný výběr obratů akordů si ukážeme na příkladu harmonického schématu skladby Ja-Da od Boba Carletona. Ukázka č.1 a ukázka č. 2 Vhodný výěr oratů akordů si ukážeme na příkladu harmonického schématu sklady JaDa od Boa Carletona. Ukázka&nsp;č.1 a ukázka č. 2 F D7 G7 C7 F C7 F F Fdim Gmi C F Fdim Gmi C F G7 C7 F Sklada je v tónině

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Otázky + nápověda a učební podklady na přezkoušení z hudební nauky

Otázky + nápověda a učební podklady na přezkoušení z hudební nauky Zákldní umělecká škol Prh 10, Olešská 2295 Otázky + nápověd učební podkldy n přezkoušení z hudební nuky 1. Ročník ) Teoretické znlosti Hudební beced (stupnice C dur) vyjmenuje: c, d, e, f, g,, h, c; c,

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

UNDECIMOVÉ AKORDY. Obraty C11. Akord C11 obsahuje tóny C, E, G, B b, d a f. Jako nejčastější zjednodušení používáme b a f.

UNDECIMOVÉ AKORDY. Obraty C11. Akord C11 obsahuje tóny C, E, G, B b, d a f. Jako nejčastější zjednodušení používáme b a f. UNDECIMOVÉ AKORDY Undecimové (v praxi "jedenáctky") jsou nejohatší, které lze na kytaře zahrát v plném tvaru. Jsou to šestitónové souzvuky, které ovšem praxi většinou zjednodušujeme neo nahrazujeme podonými.

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

NÁVODNÍK za 3. ročník Co musím umět do čtvrtého ročníku! Znám bezpečně noty v houslovém klíči v malé a dvoučárkované oktávě: Pomůcky:

NÁVODNÍK za 3. ročník Co musím umět do čtvrtého ročníku! Znám bezpečně noty v houslovém klíči v malé a dvoučárkované oktávě: Pomůcky: NÁVODNÍK za 3. ročník Co musím umět do čtvrtého ročníku! Znám bezpečně noty v houslovém klíči v malé a dvoučárkované oktávě: Znám noty v basovém klíči: Pomůcky: 1. pamatuji si polohu noty c malé! 2. Představím

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

U3V Matematika Semestr 1

U3V Matematika Semestr 1 U3V Matematika Semestr 1 Přednáška 0 Matematika a hudení harmonie Učíme se opět od starých Řeků Jaké prolémy z historie matematiky si dnes vyereme? Různé průměry a jejich vlastnosti Různé posloupnosti

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Automaty a gramatiky

Automaty a gramatiky Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Hudební nauka. přehled látky pro 1. a 2. ročník DÉLKA VÝŠKA SÍLA BARVA HLAVIČKA NOTY

Hudební nauka. přehled látky pro 1. a 2. ročník DÉLKA VÝŠKA SÍLA BARVA HLAVIČKA NOTY Hudební nauka přehled látky pro 1. a 2. ročník Vlastnosti tónu DÉLKA VÝŠKA SÍLA BARVA Prvky notace PŘEDZNAMENÁNÍ NOTA HLAVIČKA NOTY POMOCNÉ LINKY HOUSLOVÝ KLÍČ NOTOVÁ OSNOVA (linky i mezery se číslují

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

E E FIS E E E FIS E. Stupnice G dur má osm tónů, začíná a končí na tónu G. Má jedno předznamenání, křížek FIS. Tento křížek je vždy první.

E E FIS E E E FIS E. Stupnice G dur má osm tónů, začíná a končí na tónu G. Má jedno předznamenání, křížek FIS. Tento křížek je vždy první. Opakování Posuvky napsané k notám přímo v taktu, platí pouze pro ten takt, ve kterém jsou umístěny. Když napíšeme křížek, nebo béčko přímo za houslový klíč, změníme tím všechny noty, pro které je posuvka

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Hudební intervaly základní pojmy

Hudební intervaly základní pojmy Hudební intervaly základní pojmy Číslo projektu Kódování materiálu Označení materiálu Název školy Autor Anotace Předmět Tematická oblast Téma Očekávané výstupy Klíčová slova Druh učebního materiálu Ročník

Více

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny. 4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

1.3.8 Množiny - shrnutí

1.3.8 Množiny - shrnutí 1.3.8 Množiny - shrnutí Předpokldy: 010307 Pedgogická poznámk: Kpitol o množinách spolu s následujícími dvěm kpitolmi (výroky dělitelnost) slouží k nácviku učení. Součástí učení je tké příprv n písemky

Více

Akustika. Tónové systémy a ladění

Akustika. Tónové systémy a ladění Akustika Tónové systémy a ladění Harmonická řada Harmonická řada, tónový systém Harmonická řada je nerovnoměrná, záleží na volbě fundamentu, pak se ale nepotkávají alikvoty nižších pořadových čísel, hodně

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Pomůcka -> abychom si nemuseli hledat vždy šestý stupeň, můžeme vždy kouknout o tercii níže od základního tónu.

Pomůcka -> abychom si nemuseli hledat vždy šestý stupeň, můžeme vždy kouknout o tercii níže od základního tónu. NÁVODNÍK za 4. ročník Co musím umět do pátého ročníku! Znám všechny durové stupnice chápu princip kvartového a kvintového kruhu: U stupnic křížky odvozujeme další stupnici podle 5. stupně tedy kvinty ->

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46 Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod...

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod... Vol typu ložisk Prostorové nároky... 35 Ztížení... 37 Velikost ztížení... 37 Směr ztížení... 37 Nesouosost... 40 Přesnost... 40 Otáčky... 42 Tichý chod... 42 Tuhost... 42 Axiální posuvnost... 43 Montáž

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem.

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem. 2.5. Regulární výrzy [181012-1111 ] 21 2.5 Regulární výrzy 2.5.1 Regulární jzyky jsme definovli jko ty jzyky, které jsou přijímány konečnými utomty; ukázli, že je jedno, zd jsou deterministické neo nedeterministické.

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

grafický manuál květen 2004 verze 1.0

grafický manuál květen 2004 verze 1.0 květen 2004 verze 1.0 grfický mnuál Úvodní slovo Tento dokument slouží jko mnuál pro používání log Fondu soudržnosti. Součástí mnuálu je i zákldní grfický design pro tištěné elektronické mteriály sloužící

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

Výfučtení: Geometrické útvary a zobrazení

Výfučtení: Geometrické útvary a zobrazení Výfučtení: Geometrické útvry zorzení V geometrii očs nrzíme n to, že některé geometrické orzce vykzují jistou symetrii. Popřípdě můžeme slyšet, že nějké dv útvry jsou si podoné. V tomto Výfučtení udeme

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ h is D ur & # # is h is A ur & # # # h is is is E ur &

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

NÁVODNÍK za 5. ročník Co musím umět, abych mohl přestat chodit do nauky! Znám bezpečně kvintový a kvartový kruh:

NÁVODNÍK za 5. ročník Co musím umět, abych mohl přestat chodit do nauky! Znám bezpečně kvintový a kvartový kruh: NÁVODNÍK za 5. ročník Co musím umět, abych mohl přestat chodit do nauky! Znám bezpečně kvintový a kvartový kruh: Pomůcky pro určování tónin: křížky: Kouknu na poslední křížek (poslední křížek zvyšuje 7.

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

1. Tónová soustava. Řada tónů od c po h tvoří v tónové soustavě oktávu. Tónová soustava obsahuje devět oktáv: C1 D1 E1 F1 G1 A1 H1 A2 H2

1. Tónová soustava. Řada tónů od c po h tvoří v tónové soustavě oktávu. Tónová soustava obsahuje devět oktáv: C1 D1 E1 F1 G1 A1 H1 A2 H2 1. Tónová soustava Tónovou soustavu tvoří všechny tóny, které se využívají v hudbě. Základem tónové soustavy je sedm tónů: c, d, e, f, g, a, h, které se několikrát opakují v různých výškových polohách.

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

2.4.7 Shodnosti trojúhelníků II

2.4.7 Shodnosti trojúhelníků II 2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

FYZIKÁLNÍ VELIČINY A JEDNOTKY

FYZIKÁLNÍ VELIČINY A JEDNOTKY FYZIKÁLNÍ VELIČINY A JEDNOTKY 1. Mezinárodní soustv jednotek SI Slovo fyzik je odvozeno z řeckého slov fysis, které znmená přírod. Abychom správně popsli předměty, jevy děje, musíme zvést určité pojmy,

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Požadavky ke zkoušce z hudební nauky pro školní rok 2018/19

Požadavky ke zkoušce z hudební nauky pro školní rok 2018/19 Požadavky ke zkoušce z hudební nauky pro školní rok 2018/19 (týká se žáků, kteří mají individuální studium hudební nauky) 1. ročník Zvuk, tón, nota Notová osnova, houslový klíč Hudební abeceda Celý tón

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

FYZIKÁLNÍ VELIČINY A JEDNOTKY

FYZIKÁLNÍ VELIČINY A JEDNOTKY I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í FYZIKÁLNÍ VELIČINY A JEDNOTKY 1. Mezinárodní soustv jednotek SI Slovo fyzik je odvozeno z řeckého slov fysis, které znmená přírod. Abychom správně

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

Teorie jazyků a automatů I

Teorie jazyků a automatů I Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více