Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
|
|
- Štefan Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím čase pro vlnoplochy a) kulové, b) rovinné. 3. Jak se projeví Hyugensův princip, jestliže rovinná vlna dorazí na kolmou překážku s malým otvorem? Jak se bude vlnění šířit za otvorem? 4. Pomocí Hyugensova principu ukažte, že na rozhraní dvou optických prostředí platí Snellův zákon odrazu a lomu (využijte princip rekonstrukce rovinné vlny). 5. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah paprsků ve vzduchu a v daném prostředí, jestliže doba šíření paprsku ve vakuu je 1 s? 6. Určete rychlost elektromagnetických vln ve vodě (n = 1,33) a ve skle (n = 1,5). 7. Jakou geometrickou a jakou optickou dráhu urazí světelný paprsek šířící se nádobou akvária naplněného vodou, jestliže podélný rozměr nádrže je 80 cm a tloušťka skla 4 mm? Hodnoty indexů lomu obou prostředí naleznete v úkolu č Jaká je geometrická a optická dráha paprsku šířícího se nádobou akvária (zadání jako v úkolu č. 7), jestliže úhel dopadu paprsku na první rozhraní je a) 5, b) 10, c) 30? Výška stěny akvária je dostatečná k tomu, aby paprsek dopadl na protější stěnu akvária. 9. Který výrok je pravdivý? a) Vlna odražená na opticky řidším prostředí změní fázi o π. b) Vlna odražená na opticky hustším prostředí změní fázi o π. c) Vlna lomená do opticky řidšího prostředí změní fázi o π. d) Vlna lomená do opticky hustšího prostředí změní fázi o π. 10. Nalezněte vztah mezi dráhovým a fázovým rozdílem vlnění. 11. Který výrok je pravdivý? a) Vlna odražená na opticky řidším prostředí je dráhově posunuta o λλ. 2 b) Vlna odražená na opticky hustším prostředí je dráhově posunuta o λλ 2. c) Vlna lomená do opticky řidšího prostředí je dráhově posunuta o λλ 2. d) Vlna lomená do opticky hustšího prostředí je dráhově posunuta o λλ 2.
2 12. Jaký je dráhový a fázový rozdíl dvou paprsků, jestliže jeden z paprsků prochází skleněnou deskou o tloušťce 5 mm, zatímco druhý se šíří pouze vzduchem? Počáteční dráhový rozdíl před vstupem paprsku do skla uvažujte nulový. 13. Využijte výsledků z úkolů č. 7 a 8 a stanovte dráhový a fázový posuv mezi paprskem, který na stěnu akvária dopadá kolmo, a paprskem, který na stěnu dopadá pod úhlem dle zadání 8a). 14. K úplné polarizaci odraženého paprsku dojde v případě, že odražený a lomený paprsek svírají vzájemně úhel 90. Stanovte úhel dopadu paprsku dopadajícího ze vzduchu na vodní hladinu (n = 1,33), při kterém k polarizaci dojde. 15. Lze jev úplné polarizace odražené složky pozorovat i při dopadu paprsku z opticky hustšího na opticky řidší prostředí? 16. Ukažte, že poloha 1. maxima v Youngově pokusu závisí na vzdálenosti štěrbin, vlnové délce zdroje a poloze stínítka, kde proužky zobrazujeme. 17. Je vzájemná rozteč proužků ve dvouštěrbinovém experimentu konstantní, nebo se mění? 18. Jaký interferenční obrazec budeme pozorovat, použijeme-li jako zdroj dvě žluté čáry sodíkové výbojky, jejichž vlnové délky jsou 589,0 nm a 589,6 nm? Charakterizujte tento obrazec (intenzita proužků, počet proužků, fázová maxima, atp.) 19. Jaký je fázový a dráhový rozdíl paprsků interferujících ve 2. maximu při Youngově pokusu, jestliže použitý zdroj má jednu vlnovou délku λ = 546 nm? 20. Monochromatické zelené světlo o vlnové délce 550 nm osvětluje dvě rovnoběžné úzké štěrbiny, mezi jejichž středy je vzdálenost 7,70 mm. Vypočtěte úhlovou odchylku světlého proužku třetího řádu v radiánech a ve stupních. 21. Jestliže se rozteč mezi štěrbinami v Youngově experimentu dvakrát zvětši, jak se musí změnit vzdálenost stínítka od štěrbin, aby vzdálenost mezi proužky zůstala stejná? 22. Do kruhového rámečku o průměru 100 mm natáhneme mýdlovou blánu (n = 1,33). Určete tloušťku vrstvy, jestliže odražená složka bílého světla interferuje v maximu při vlnové délce 450 nm. 23. Jak se změní barevný vjem blány z úkolu č. 22, jestliže budeme jev pozorovat z druhé strany blány? 24. Světlo o vlnové délce 624 nm dopadá na mýdlovou blánu (n = 1,33) ve vzduchu. Pro které dvě nejmenší tloušťky teto blány dochází při odrazu ke konstruktivní interferenci? 25. Tenka vrstva ve vzduchu o tloušťce 0,410 mm je osvětlena bílým světlem, které dopadá kolmo na její povrch. Index lomu vrstvy je 1,50. Pro jaké vlnové délky viditelného světla odraženého od obou rozhraní dochází ke konstruktivní interferenci?
3 26. Uvažujte zadání dle úkolu č. 25. Nalezněte všechny vlnové délky viditelného spektra, které nebudou po odrazu viditelné. 27. Odraz kolmo dopadajícího bílého světla od mýdlové blány ve vzduchu má interferenční maximum při 600 nm a minimu při 450 nm, přitom mezi těmito hodnotami neexistuje žádné další minimum. Jaká je tloušťka vrstvy, jestliže její index lomu je n = 1,33? 28. Na klidné hladině rybníka (n2 = 1,32) se objevila olejová skvrna (n1 = 1,58), která se při kolmém pozorování jeví jako červená (630 nm). Určete nejmenší tloušťku vrstvy oleje na vodě. 29. Tenká vrstva hliníku byla napařena na skleněnou destičku, přičemž v určité oblasti byla depozice odstíněna. Tímto postupem vznikl jasně viditelný přechod mezi povrchem hliníkové vrstvičky a povrchem skleněného substrátu. Pomocí Michelsonova interferometru sledujeme posuv proužků způsobený delší dráhou paprsků odražených od povrchu skla. Zmíněný posuv činí 1,5 násobek rozteče proužků pro žlutozelené světlo zdroje (555 nm). Určete výšku schodu, tj. tloušťku hliníkové vrstvy. 30. Široky svazek světla o vlnové délce 630 nm dopadá kolmo na tenkou klínovou vrstvu s indexem lomu 1,50. V procházejícím světle vidí pozorovatel podél cele délky vrstvy 10 světlých proužků a 9 tmavých proužků. O kolik se na teto délce změnila tloušťka vrstvy? Jaký je vrcholový úhel klínu? 31. Posuneme-li zrcadlo v Michelsonově interferometru o 0,233 mm, posune se interferenční obrazec o 792 proužků. Jaká je vlnová délka světla vytvářejícího strukturu proužků? 32. Skloníme-li zrcadlo v měřicí větvi interferometru, bude v zorném poli interferometru pozorovatelných právě 10 interferenčních proužků. Určete úhel sklonu zrcadla, jestliže zdrojem světla je He-Ne laser. 33. O jakou vzdálenost je nutné posunout zrcadlo v měřicí větvi interferometru, aby zorným polem prošlo právě 200 proužků? Zdrojem světla je He-Ne laser. 34. Použitím sodíkového dubletu (dvě blízké vlnové délky 589,59 nm a 589,10 nm) v Michelsonově interferometru získáme v zorném poli dvě překrývající se sady interferenčních proužků s mírně odlišnou roztečí proužků. Určete, o jakou vzdálenost je nutné posunout zrcadlo v měřicí větvi interferometru, abychom z jednoho maxima kontrastu sad proužků přešli do následujícího maxima kontrastu. 35. Zrcadlo v měřicí větvi interferometru je skloněno tak, aby v zorném poli byl pozorovatelný systém proužků. Sloněné zrcadlo se posouvá určitou rychlostí v podélném směru vůči dopadajícím paprskům. Určete rychlost posuvu zrcadla, jestliže středem zorného pole prochází právě 5 proužků za čas 15 s. Zdrojem světla je žlutá čára sodíkové výbojky o vlnové délce 589 nm.
4 36. Vzduchotěsná komora 5,0 cm dlouhá se skleněnými okénky je umístěna v jedné větvi Michelsonova interferometru. Je použito světlo o vlnové délce λ = 500 nm. Jestliže je vzduch z komory zcela vyčerpán, dojde k posunutí o 60 proužků. Z těchto údajů nalezněte index lomu vzduchu při atmosférickém tlaku. 37. Optická difrakční mřížka má 800 vrypů na milimetr. Délka mřížky je 5 cm. Kolmo na ni dopadá monochromatické světlo o vlnové délce 500 nm. Jaké řády difrakce můžeme pozorovat? 38. Na optickou mřížku s mřížkovou konstantou 0,01 mm dopadá kolmo bílé světlo, jehož vlnové délky jsou od 390 nm do 790 nm. Jaká je šířka spojitého spektra prvního řádu, které se vytváří na stínítku umístěném ve vzdálenosti 3 m za mřížkou? Jaké úhlové šířce toto odpovídá? 39. Položíme-li DVD disk na vodorovnou plochu a kolmo jej osvětlíme světlem laserového ukazovátka o vlnové délce 650 nm, vytvoří se na stěně ve vzdálenosti 130 cm stopa maxima prvního řádu ve výšce 70 cm nad rovinou disku. Jaká je vzdálenost dvou sousedních záznamových stop na DVD disku? 40. Difrakční mřížka má 1, vrypů rovnoměrně rozmístěných v šířce 25,4 mm. Kolmo na ní dopadá modré světlo o vlnové délce 450 nm. Jaké úhly svírají s centrální osou maxima druhého řádu? 41. Mřížka má 315 vrypů/mm. Pro kterou vlnovou délku viditelného spektra lze pozorovat difrakci pátého řádu? 42. Světlo o vlnové délce 600 nm dopadá kolmo na difrakční mřížku. Úhly dvou sousedních maxim jsou určeny podmínkami sin θ = 0,2 a sin θ = 0,3. Maximum čtvrtého řádu chybí. Stanovte mřížkovou konstantu a určete úhlový rozsah viditelného spektra (pro vlnové délky 400 nm do 700 nm) ve všech pozorovatelných maximech. 43. Na mřížku kolmo dopadá bílé světlo (sestávající z vlnových délek od 400 nm do 700 nm). Ukažte, že druhý řád se překrývá s třetím řádem, a to nezávisle na hodnotě mřížkové konstanty d. 44. Stanovte energii fotonů pro vlnovou délku 632,8 nm. 45. Zelená čára rtuťové výbojky má vlnovou délku 546,1 nm. Určete frekvenci vlnění a energii fotonů pro danou vlnovou délku. 46. Monochromatický světelný zdroj o vlnové délce 589 nm má světelný výkon 100 W. Uvažujme, že zdroj je umístěn ve středu kulové plochy, jejíž povrch absorbuje veškeré záření, které na ni dopadá. Určete počet fotonů, které dopadnou na povrch plochy za 1 s. 47. Stanovte energii a velikost hybnosti fotonu, příslušející záření s vlnovou délkou λ = m (záření γ).
5 48. Monochromatické světlo dopadá na fotografický film. Jednotlivý foton se zaznamená, pokud má energii alespoň 0,6 ev, aby disocioval molekulu AgBr ve filmu. Jaká je největší vlnová délka světla, kterou můžeme zaznamenat? V jaké oblasti spektra se tato hodnota nachází? 49. Jak rychle se musí pohybovat elektrony, aby měly stejnou energii jako fotony sodíkového světla (λ = 589 nm)? 50. Speciální zdroj vyzařuje monochromatické světlo o vlnové délce 630 nm. Jeho příkon je 60W a účinnost převodu elektrické energie na světlo je 93 %. Kolik fotonů vyzáří zdroj za svou dobu života 730 h? 51. Jaká je hybnost fotonu, jehož energie se rovná klidové energii elektronu? Jaká je vlnová délka a frekvence příslušného záření? 52. Projektil o hmotnosti 40 g má rychlost 1 km.s 1. Jakou vlnovou délku můžeme projektilu přiřadit? 53. Určete vlnovou délku a) 1,00 kev elektronu, b) 1,00 kev fotonu a c) 1,00 kev neutronu. 54. Elektron a foton mají každý vlnovou délku 0,20 nm. Určete jejich energii a velikost hybnosti. 55. Jedenkrát nabité ionty uhlíku jsou urychleny napětím 300 V. Jakou hybnost získá takový iont? Jakou má de Broglieho vlnovou délku? 56. Mezní vlnová délka záření vyvolávající fotoelektrický jev u draslíku je 577 nm. Jaká je minimální energie světelného kvanta, při níž na draslíku dochází k fotoemisi? Určete maximální energii fotoelektronů, které byly z draslíku uvolněny světlem o vlnové délce 400 nm. Dále určete, jaké brzdné napětí je třeba použít k zastavení fotoelektrického jevu. 57. Při ozáření fotokatody ultrafialovým zářením o kmitočtu 2, Hz je třeba k zastavení fotoelektrického proudu působit na emitované elektrony brzdným napětím 6,6 V. Určete výstupní práci kovu, ze kterého je zhotovena fotokatoda. 58. Měděná koule dostatečně vzdálená od okolních těles je osvětlována elektromagnetickým zářením vlnové délky 200 nm. Na jaký maximální potenciál se koule nabije působením tohoto záření? Výstupní práce mědi Φ = 4,47 ev. 59. Ultrafialové záření o vlnové délce 200 nm dopadá na povrch hliníku. Hliník má výstupní práci 4,2 ev. Jaká je kinetická energie emitovaných elektronů? Jaký je v tomto případě brzdný potenciál? Jaká je prahová vlnová délka pro hliník? 60. Nalezněte závislost velikosti brzdného napětí na frekvenci dopadajících fotonů pro zvolený materiál terče.
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Vlnové vlastnosti světla. Člověk a příroda Fyzika
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla
VLNOVÁ OPTIKA - studium jevů založených na vlnové povaze světla: - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) - disperze (jev související se závislostí n n ) - studium
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Typové příklady ke zkoušce z Fyziky II
Typové příklady ke zkoušce z Fyziky II [1] Elektromagnetické pole. Vznik střídavého harmonického napětí. Oscilační obvod LC. Sériový rezonanční obvod RLC. Výkon střídavého proudu. 1) Oscilační obvod se
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Fyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:
Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití
OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.
1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
Fyzika 2 - rámcové příklady Geometrická optika
Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah
Určení Planckovy konstanty pomocí fotoelektrického jevu
Určení Planckovy konstanty pomocí fotoelektrickéo jevu Související témata: Externí fotoelektrický jev, výstupní práce elektronu z kovu, absorpce, energie fotonu Princip a úkol: Fotocitlivý prvek - fotonka
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Optika Elektromagnetické záření
Elektromagnetické záření Záření, jehož energie se přenáší prostorem prostřednictvím elektromagnetického vlnění, nazýváme elektromagnetické záření. Ke svému šíření nepotřebuje látkové prostředí, může se
OPTIKA. I. Elektromagnetické kmity
OPTIKA Optika se studuje elektromagnetické vlnění v určitém intervalu vlnových délek, které můžeme vnímat zrakem, a sice jevy světelné Rozlišujeme základní pojmy: Optické prostředí prostředí, kterým se
Vlnové vlastnosti světla
Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci
Odraz světla na rozhraní dvou optických prostředí
Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný
Lasery základy optiky
LASERY Lasery se staly jedním ze základních nástrojů moderních strojírenských technologií. Optimální využití laserových technologií předpokládá znalosti o jejich principech a o vlastnostech laserového
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb
1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev
Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený
Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
3.2.5 Odraz, lom a ohyb vlnění
3..5 Odraz, lom a ohyb vlnění Předpoklady: 304 Odraz a lom vlnění na rozhranní dvou prostředí s různou rychlostí šíření http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=16.0 Rovinná vlna dopadá šikmo
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla
S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí
5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102
5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Optika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
Fyzika aplikovaná v geodézii
Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu
STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ
Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
Interference a difrakce kolem nás
Zajímavá fyzika Tomáš Tyc, 2016 Interference a difrakce kolem nás Ze všech našich smyslů nám nejvíce informací o našem okolí poskytuje zrak, který reaguje na světlo. Fyzikové se dlouho přeli o tom, zda
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.
Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada
Fázový Dopplerův analyzátor (PDA) Základy geometrické optiky Index lomu látky pro světlo o vlnové délce λ je definován jako poměr rychlosti světla ve vakuu k rychlosti světla v látce. cv n = [-] (1) c
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
5.3.5 Ohyb světla na překážkách
5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
5.1.3 Lom světla I. Předpoklady: 5101, Pomůcky: Miska, voda, pětikoruna, akvárium, troška mléka,
5..3 Lom světla I Předpoklady: 50, 502 Pomůcky: Miska, voda, pětikoruna, akvárium, troška mléka, Pokus s mincí a miskou Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
Seminární cvičení z Fyziky II
[1] Elektromagnetická indukce. Faradayův zákon elektromagnetické indukce. Vlastní a vzájemná indukce. Energie magnetického pole. Vznik střídavého harmonického napětí. Oscilační obvod LC. Sériový rezonanční
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK,
Úloha 10: Interference a ohyb světla
Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
4.4. Vlnové vlastnosti elektromagnetického záření
4.4. Vlnové vlastnosti elektromagnetického záření 4.4.1. Interference 1. Charakterizovat význačné vlastnosti koherentních paprsků.. Umět definovat optickou dráhu v souvislosti s dráhovým rozdílem a s fázovým
FYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí
1 Petr Šafařík Astrofyzika Druhý Třetí 1,5 11 99,1kPa 61% Fyzikální praktika 11 Měření tloušt ky tenkých vrstev Tolanského metodou Průchod světla planparalelní deskou a hranolem Petr Šafařík 0. listopadu
Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako
Úkoly 1. Změřte divergenci laserového svazku. 2. Z optické stavebnice sestavte Michelsonův interferometr. K rozšíření svazku sestavte Galileův teleskop. Ze známých ohniskových délek použitých čoček spočtěte,
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr
FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY Sada interaktivních materiálů pro 7. ročník Fyzika CZ.1.07/1.1.16/02.0079 plocha čas délka hmotnost objem teplota Interaktivní materiály slouží k procvičování, upevňování
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž
Neživá příroda I. Optické vlastnosti minerálů
Neživá příroda I Optické vlastnosti minerálů 1 Charakter světla Světelný paprsek definuje: vlnová délka (λ): vzdálenost mezi následnými vrcholy vln, amplituda: výchylka na obě strany od rovnovážné polohy,
Měření závislosti indexu lomu kapalin na vlnové délce
Měření závislosti indexu lomu kapalin na vlnové délce TOMÁŠ KŘIVÁNEK Přírodovědecká fakulta Masarykovy univerzity, Brno Abstrakt V příspěvku je popsán jednoduchý experiment pro demonstraci a měření závislosti
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. úlohač.20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Ledvina stud.skup.14 dne:3.3.2010
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,
DUM č. 2 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 2 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 19.06.2014 Ročník: 4B Anotace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
Přednáška č.14. Optika
Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)
5.3.1 Disperze světla, barvy
5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 10: Interference a ohyb
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017
Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....
Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook
Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz