Algoritmy výpočetní geometrie

Rozměr: px
Začít zobrazení ze stránky:

Download "Algoritmy výpočetní geometrie"

Transkript

1 Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS 2010/11, Přednáška 12 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

2 Výpočetní geometrie Výpočetní geometrie Definice 1 Cílem výpočetní geometrie je analýza a návrh efektivních algoritmů pro určování vlastností a vztahů geometrických objektů (GO). Řešené problémy: geometrické vyhledávání, reprezentace scény, určení poloh objektů, zjišťování kolizí či vzdálenosti objektů, konstrukce konvexní obálky, konstrukce Voronoi diagramu,.... prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

3 Definice kvadrantového stromu (QuadTree) Čtvercová nebo obdélníková 2D scéna je rekurzivně dělena do kvadrantů. Každý kvadrant může obsahovat 1 (několik) GO. Pro jednoduchost budeme v BI-EFA předpokládat hmotné body, čili bezrozměrné GO. Definice 2 (Kvadrantový strom) Kvadrantový strom je plný 4-ární strom, který splňuje následující podmínky: 1 Každý vnitřní uzel 1 reprezentuje jeden kvadrant, rozdělený na 4 navzájem disjunktní podkvadranty, postupně značené SZ, SV, JZ a JV, 2 obsahuje souřadnice kříže pro dělení tohoto kvadrantu. 2 Každý list má definovanou maximální kapacitu GO obsažených v daném kvadrantu. Pokud je překročena (u dynamické scény), kvadrant se rozdělí zase na 4 podkvadranty a list se stane vnitřním uzlem. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

4 Použití kvadrantového stromu Kvadrantové stromy se používají pro efektivní reprezentaci GO (např. hmotných bodů, polygonů) zadaných souřadnicemi (středu) x a y v 2D prostoru (scéně), která umožňuje urychlení 2D grafických algoritmů (sledování paprsku), urychlení zpracování a analýzu obrazu, efektivní uložení a vyhledávání dat pro GIS, snížení paměťových nároků při zobrazování scény. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

5 PR kvadrantový strom PR kvadrantový strom (Point Region QuadTree) Definice 3 (PR kvadrantový strom) 1 Každý list (koncový kvadrant) obsahuje nejvýše 1 GO. 2 Dělení na podkvadranty se provádí, dokud se do kvadrantu má vložit druhý GO. 3 Kvadrant se pak rozdělí na 4 stejně velké podkvadranty. 4 Dělící kříž má proto střed vždy ve středu kvadrantu. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

6 PR kvadrantový strom Vložení GO do PR kvadrantového stromu Předpokládejme, že GO jsou reprezentovány trojicí ((x, y), obj). Postup pro vložení GO ((x, y), obj) je podobný vložení prvku do BVS, ve kterém klíče jsou uspořádané dvojice souřadnic (x, y). 1 Nejprve se podle souřadnic (x, y) nalezne list (koncový kvadrant), do kterého vkládaný GO patří: Souřadnice vkládaného GO se postupně porovnávají se středy kvadrantů a vybírá se podkvadrant, do kterého GO patří. 2 Pokud je list prázdný (koncový podkvadrant neobsahuje žádný GO), pak je GO obj vložen do tohoto listu. 3 Pokud list (=koncový kvadrant) obsahuje jiný GO, provede se jeho rozdělení na stejně velké podkvadranty. Vytvoří se jeho čtyři synovské listy-podkvadranty. Původně uložený GO v původním kvadrantu se přesune do odpovídajícího podkvadrantu (podle svých souřadnic). Rekurzivně se provede operace vložení do takto rozděleného kvadrantu. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

7 PR kvadrantový strom Vložení GO do PR kvadrantového stromu procedure insertprquadtree(r, (x, y), N ewobj) { (1) if (not isleaf(r)) then { (2) child chooseleaf(r, (x, y)); (3) insertprquadtree(child, (x, y), N ewobj) } (4) else (5) if (isempty(r)) then obj[r] N ewobj (6) else { (7) split(r, (x, y), NewObj); (8) child chooseleaf(r, (x, y)); (9) insertprquadtree(child, (x, y), N ewobj) } } prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

8 PR kvadrantový strom Vložení GO do PR kvadrantového stromu procedure split(r, (x, y), obj) { (1) createfourchildren(r); (2) point obj[r]; (3) obj[r] Null; (4) leaf chooseleaf(r, (x, y)); (5) obj[leaf] point; } procedure isempty(r) { (1) return obj[r] = Null; } procedure chooseleaf(r, (x, y)) Vrátí ukazatel na syna uzlu r, jehož kvadrant obsahuje bod (x, y). prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

9 PR kvadrantový strom Hledání GO v PR kvadrantovém stromu Algoritmus hledání koncového kvadrantu obsahujícího zadaný GO se souřadnicemi (x, y) v kvadrantovém stromu s kořenem r: Otestuje se, zda je kořen r listem. Pokud ano, otestuje se, zda je kořen plný (=obsahuje GO). Pokud ano, provede se porovnání (x, y) se souřadnicemi tohoto GO. Pokud ne, je hledání ukončeno jako neúspěšné. Pokud ne, provede se rekurzivně totéž pro odpovídající podkvadrant (test 4 možností). prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

10 PR kvadrantový strom Mazání GO z PR kvadrantového stromu 1 Nalezne se list (=koncový kvadrant), který má obsahovat zadaný GO (předchozí algoritmus). 2 Porovnají se souřadnice a pokud je shoda, dojde k smazání GO. 3 Otestují se sourozenci listu, zda jsou také listy a zda jsou prázdné: Pokud ano, stane se jejich otec listem. A vracíme se na bod 3. Pokud ne, konec. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

11 PR kvadrantový strom Diskuze vlastností PR kvadrantového stromu 1 Struktura PR kvadrantového stromu je nezávislá na pořadí vkládaných GO. 2 V případě hustých shluků GO roste hloubka stromu. 3 Proto v případě nerovnoměrného rozložení GO ve scéně je strom výškově nevyvážený. 4 Jednoduchá operace mazání. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

12 PR kvadrantový strom R Kvadrantový strom (Region QuadTree) Jedná se o speciální případ PR kvadrantového stromu. Strom reprezentuje černobílý bitmapový obrázek o velikosti 2 n 2 n pixelů. V listech stromu se uchovává hodnota Black/White. Použití: bezeztrátová komprese, hledání fraktálních artefaktů. 8 x x 4 2 x pixel prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

13 P Kvadrantový strom P kvadrantový strom (Point QuadTree) Definice 4 (P kvadrantový strom) Je to kvadrantový strom s těmito vlastnosti: 1 Dělící kříž není ve středu, ale je umístěn do existujícího GO. 2 Každý kvadrant obsahuje nejvýše 1 GO (=hmotný bod). prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

14 P Kvadrantový strom Vložení GO do P kvadrantového stromu Postup pro vložení GO, řekněme ((x, y), obj), je velmi podobný vložení do BVS, kde klíče jsou dvojice souřadnic (x, y). 1 Nejprve se podle souřadnic nalezne list (=koncový kvadrant), do kterého nově vkládaný GO patří. Souřadnice (x, y) postupně porovnáváme se souřadnicemi středu dělícího kříže kvadrantu, který reprezentuje navštívený uzel a vybíráme příslušný podkvadrant, do kterého souřadnice patří. 2 Pokud je koncový kvadrant prázdný (list neobsahuje GO), pak je GO ((x, y), obj) do něj vložen. 3 Pokud již obsahuje GO, provede se dekompozice uzlu: Vytvoří se čtyři synovské podkvadranty. Střed dělícího kříže je souřadnice stávajícího GO. Provede se vložení do jednoho z těchto kvadrantů. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

15 P Kvadrantový strom Hledání GO v P kvadrantovém stromu Algoritmus nalezení GO se zadanými souřadnicemi (x, y) v P kvadrantovém stromu s kořenem r: Otestuje se, zda uzel r obsahuje hledaný GO jako střed kříže. Pokud ano, končíme úspěšně. Pokud ne, otestuje se, zda je kořen r listem. Pokud ano, otestuje se, zda daný koncový kvadrant obsahuje GO. Pokud ano, provede se porovnání (x, y) se souřadnicemi tohoto GO a vrátí se výsledek. Pokud ne, je hledání ukončeno jako neúspěšné. Pokud ne, provede se rekurzivně totéž pro odpovídající podkvadrant (test 4 možností). prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

16 P Kvadrantový strom Mazání GO z P kvadrantového stromu 1 Nalezne se uzel, který má obsahovat zadaný GO (předchozí algoritmus). 2 Vymaže se GO z uzlu. 3 Pokud není uzel listem, musí být všechny GO v podstromech znovu vloženy. Tento postup mazání je neefektivní. Efektivním postupem je nahradit mazaný GO vhodným GO v podstromech, tak aby bylo potřeba minimum znovu vložení. V následující animaci stačí znovu vložit jen dva uzly. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

17 Oktalový strom Oktalový strom Používá se pro hierarchickou reprezentaci 3D scén. Zobecnění kvadrantového stromu pro 3D scény. Plný 8-ární strom: Počet synů vnitřního uzlu je právě 8. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

18 K-D strom K-D strom Definice 5 (K-D strom) K-D strom je BVS provádějící dělení scény střídavě podle x-ové a y-ové souřadnice. 1 Každý vnitřní uzel reprezentuje jedno dělení 2D podscény na 2 navzájem disjunktní oblasti podle x nebo podle y. 2 Každá oblast obsahuje nejvýše jeden GO. Existuje opět několik variant K-D stromů, např. 1 Dělené oblasti jsou vždy stejně velké (PR K-D stromy). 2 Dělení je prováděno podle jedné souřadnice vloženého GO jako u P kvadrantového stromu (tuto variantu budeme prezentovat). Důsledek: Každý vnitřní uzel má právě 2 syny. obsahuje souřadnice dělícího bodu a příznak x/y. prof. Pavel Tvrdík (FIT ČVUT) Výpočetní geometrie BI-EFA, 2010, Předn / 18

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Radek Mařík

Radek Mařík 2012-03-20 Radek Mařík 1. Pravá rotace v uzlu U a) v podstromu s kořenem U přemístí pravého syna U.R uzlu U do kořene. Přitom se uzel U stane levým synem uzlu U.R a levý podstrom uzlu U.R se stane pravým

Více

Datové struktury 1: Základní datové struktury

Datové struktury 1: Základní datové struktury Datové struktury 1: Základní datové struktury prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Stromové struktury v relační databázi

Stromové struktury v relační databázi Stromové struktury v relační databázi Stromové struktury a relační databáze Zboží Procesory Intel Pentium IV Celeron Paměti AMD Duron DDR DIMM Athlon http://interval.cz/clanky/metody-ukladani-stromovych-dat-v-relacnich-databazich/

Více

Definice. B-stromu. B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí:

Definice. B-stromu. B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí: B-Strom Definice B-stromu B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí: 1. Počet klíčů v každém vnitřním uzlu, je o jednu menší než je počet následníků (synů) 2.

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)

Více

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta 12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,

Více

ADT STROM Lukáš Foldýna

ADT STROM Lukáš Foldýna ADT STROM Lukáš Foldýna 26. 05. 2006 Stromy mají široké uplatnění jako datové struktury pro různé algoritmy. Jsou to matematické abstrakce množin, kterou v běžném životě používáme velice často. Příkladem

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Stromy. Jan Hnilica Počítačové modelování 14

Stromy. Jan Hnilica Počítačové modelování 14 Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A

Více

1. Vektorové algoritmy jejich výstupem je soubor geometrických prvků, např.

1. Vektorové algoritmy jejich výstupem je soubor geometrických prvků, např. Kapitola 5 Řešení viditelnosti Řešit viditelnost ve scéně umí většina grafických programů. Cílem je určit ty objekty, resp. jejich části, které jsou viditelné z určitého místa. Tyto algoritmy jsou vždy

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Semestrální práce 2 znakový strom

Semestrální práce 2 znakový strom Semestrální práce 2 znakový strom Ondřej Petržilka Datový model BlockFileRecord Bázová abstraktní třída pro záznam ukládaný do blokového souboru RhymeRecord Konkrétní třída záznamu ukládaného do blokového

Více

Binární vyhledávací stromy

Binární vyhledávací stromy Binární vyhledávací stromy Definice: Binární vyhledávací strom (po domácku BVS) je buďto prázdná množina nebo kořen obsahující jednu hodnotu a mající dva podstromy (levý a pravý), což jsou opět BVS, ovšem

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Datové struktury pro prostorové vyhledávání

Datové struktury pro prostorové vyhledávání Datové struktury pro prostorové vyhledávání 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ SpatialData 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané

Více

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury)

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury) definice ( tree) autoři: Rudolf Bayer, Ed McCreight vyvážený strom řádu m ( ) každý uzel nejméně a nejvýše m potomků s výjimkou kořene každý vnitřní uzel obsahuje o méně klíčů než je počet potomků (ukazatelů)

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

a) b) c) Radek Mařík

a) b) c) Radek Mařík 2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte

Více

Spojová implementace lineárních datových struktur

Spojová implementace lineárních datových struktur Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB

Více

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce) 13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

PROGRAMY PRO GIS. Formovat/formulovat problém pro aplikaci v počítači. Fungování GIS programů na základní úrovni - "uvažovat" jako počítač

PROGRAMY PRO GIS. Formovat/formulovat problém pro aplikaci v počítači. Fungování GIS programů na základní úrovni - uvažovat jako počítač PROGRAMY PRO GIS Formovat/formulovat problém pro aplikaci v počítači Fungování GIS programů na základní úrovni - "uvažovat" jako počítač Jak počítače řeší problémy procesor central processing unit - CPU

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující Stromy 2 AVL AVL stromy jména tvůrců stromů: dva Rusové Adelson-Velskii, Landis vyvážené binární stromy pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1

Více

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Více

k-dimenzionálním prostoru. problém: Zkonstruovat strom, který rozděluje prostor polorovinami

k-dimenzionálním prostoru. problém: Zkonstruovat strom, který rozděluje prostor polorovinami kd-stromy (kd-trees) k čemu to je: ukládání vícerozměrných dat (k-dimenzionální data) vstup: Množina bodů (nebo složitějších geometrických objektů) v k-dimenzionálním prostoru. problém: Zkonstruovat strom,

Více

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p

Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p Hanojská věž Stavový prostor 1. množina stavů S = {s} 2. množina přechodů mezi stavy (operátorů) Φ = {φ} s k = φ ki (s i ) zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah

Více

6. Základy výpočetní geometrie

6. Základy výpočetní geometrie 6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Složitosti základních operací B + stromu

Složitosti základních operací B + stromu Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +

Více

Hanojská věž. T2: prohledávání stavového prostoru. zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3]

Hanojská věž. T2: prohledávání stavového prostoru. zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] Hanojská věž zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah je lepší? (co je lepší tah?) P. Berka, 2012 1/21 Stavový prostor 1. množina stavů S = {s} 2. množina přechodů

Více

Programování v C++ 1, 16. cvičení

Programování v C++ 1, 16. cvičení Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené

Více

Dynamické datové struktury IV.

Dynamické datové struktury IV. Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.

Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol. Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start

Více

3. přednáška z předmětu GIS1 atributové a prostorové dotazy

3. přednáška z předmětu GIS1 atributové a prostorové dotazy 3. přednáška z předmětu GIS1 atributové a prostorové dotazy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí RASTR RASTROVÉ ANALÝZY

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí RASTR RASTROVÉ ANALÝZY SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí RASTR RASTROVÉ ANALÝZY TYPY PROSTOROVÝCH OBJEKTŮ Vektorová data geometrie prostorových objektů je vyjádřena za použití geometrických elementů základními

Více

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu geoprvků. Geometrická

Více

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů: Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.

Více

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color

Více

Dynamické datové struktury I.

Dynamické datové struktury I. Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Vyvažování a rotace v BVS, všude se předpokládá AVL strom

Vyvažování a rotace v BVS, všude se předpokládá AVL strom Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5 VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Rastrová reprezentace

Rastrová reprezentace Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,

Více

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální

Více

DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU

DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU ČVUT V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ JAN SCHMIDT A PETR FIŠER MI-PAA DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU EVROPSKÝ SOCIÁLNÍ FOND PRAHA A EU: INVESTUJEME DO VAŠÍ BUDOUCNOSTI Dynamické programování

Více

Abstraktní datové typy FRONTA

Abstraktní datové typy FRONTA Abstraktní datové typy FRONTA Fronta je lineární datová struktura tzn., že ke každému prvku s výjimkou posledního náleží jeden následník a ke každému prvku s výjimkou prvního náleží jeden předchůdce. Do

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

ADT prioritní fronta. Haldy. Další operace nad haldou. Binární halda. Binomické stromy. Časová složitost jednotlivých operací.

ADT prioritní fronta. Haldy. Další operace nad haldou. Binární halda. Binomické stromy. Časová složitost jednotlivých operací. ADT prioritní fronta Haldy množina M operace Přidej(M,x) přidá prvek x do množiny M Odeber(M) odeber z množiny M prvek, který je na řadě Zásobník (LIFO), Fronta (FIFO) Prioritní fronta: Přidej(M,x) přidá

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Datové struktury. Zuzana Majdišová

Datové struktury. Zuzana Majdišová Datové struktury Zuzana Majdišová 19.5.2015 Datové struktury Numerické datové struktury Efektivní reprezentace velkých řídkých matic Lze využít při výpočtu na GPU Dělení prostoru a binární masky Voxelová

Více

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika amortizovaná složitost, Fibonacciho halda, počítačová aritmetika Jiří Vyskočil, Marko Genyg-Berezovskyj 2009 Amortizovaná složitost Asymptotická složitost často dostatečně nevypovídá o složitosti algoritmů,

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

12. Globální metody MI-PAA

12. Globální metody MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d

KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d KMA/PDB Prostorové spojení Karel Janečka Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d Obsah Prostorové spojení pomocí hnízděných cyklů. Prostorové spojení pomocí R-stromů.

Více

Mělká a hluboká kopie

Mělká a hluboká kopie Karel Müller, Josef Vogel (ČVUT FIT) Mělká a hluboká kopie BI-PA2, 2011, Přednáška 5 1/28 Mělká a hluboká kopie Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky, Fakulta

Více

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra 8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,

Více

Počítačová geometrie. + algoritmy DG

Počítačová geometrie. + algoritmy DG Pojem výpočetní geometrie (počítačové) analýza a návrh efektivních algoritmů pro určování vlastností a vztahů geometrických objektů řešení geometrických problémů navrženými geometrickými algoritmy hlavním

Více