1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose.

Rozměr: px
Začít zobrazení ze stránky:

Download "1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose."

Transkript

1 1. V jakých jednotkách se yjadřuje proud ueďte náze a značku jednotky 2. V jakých jednotkách se yjadřuje indukčnost ueďte náze a značku jednotky 3. V jakých jednotkách se yjadřuje kmitočet ueďte náze a značku jednotky 4. Jaký je ztah mezi napětím a proudem na rezistoru zorec 5. Jaký je ztah mezi napětím a proudem na induktoru (obecně a případě konstantního napětí) zorce 6. V jakých jednotkách se yjadřuje napětí ueďte náze a značku jednotky 7. V jakých jednotkách se yjadřuje náboj ueďte náze a značku jednotky 8. V jakých jednotkách se yjadřuje úhloý kmitočet ueďte náze a značku jednotky 9. Jaký je ztah mezi napětím a proudem na kapacitoru zorec časoé oblasti 10. Napište ztah yjadřující energii uloženou induktoru 11. V jakých jednotkách se yjadřuje odpor ueďte náze a značku jednotky 12. V jakých jednotkách se yjadřuje magnetická indukce ueďte náze a značku jednotky 13. V jakých jednotkách se yjadřuje elektrický ýkon ueďte náze a značku jednotky 14. Jaký je ztah mezi napětím a proudem na induktoru zorec časoé oblasti 15. Napište ztah yjadřující energii uloženou kapacitoru 16. V jakých jednotkách se yjadřuje kapacita ueďte náze a značku jednotky 17. V jakých jednotkách se yjadřuje odiost ueďte náze a značku jednotky 18. V jakých jednotkách se yjadřuje elektrická práce (energie) ueďte náze a značku jednotky 19. Jaký je ztah mezi nábojem a proudem (obecně a případě konstantního proudu) zorce 20. Jaký rozměr základních jednotkách má náboj 21. Do kapacitoru s kapacitou 100 nf téká proud 1 ma, jaké napětí na něm bude za 1 ms pokud byl na počátku ybitý (nuloá počáteční podmínka) 22. Jaký je celkoý odpor tří paralelně spojených rezistorů s odpory Ra, Rb, Rc (obecně a pro Ra=2 kω, Rb=1 kω a Rc=2 kω), nakreslete schéma 23. Jaká je celkoá kapacita tří paralelně spojených kapacitorů s kapacitou Ca, Cb, Cc (obecně a pro Ca=2 μf, Cb=100 nf a Cc=10μF), nakreslete schéma 24. Jaká je celkoá indukčnost dou sérioě spojených induktorů La, Lb, mezi nimiž není magnetická azba (obecně a pro La=2 mh a Lb=220 μh), nakreslete schéma 25. Do kapacitoru s kapacitou 100 nf téká proud 1 ma, jaký náboj se tam uloží za 1 ms 26. Jaký je celkoý odpor tří sérioě spojených rezistorů s odpory Ra, Rb, Rc (obecně a pro Ra=2 kω, Rb=10 kω a Rc=2 kω), nakreslete schéma 27. Jaká je celkoá kapacita tří sérioě spojených kapacitorů s kapacitou Ca, Cb, Cc (obecně a pro Ca=2 μf, Cb=100 nf a Cc=10μF), nakreslete schéma 28. Jaká je celkoá indukčnost dou paralelně spojených induktorů La, Lb, mezi nimiž není magnetická azba (obecně a pro La=2*10mH a Lb=100mH), nakreslete schéma 29. Napište ýraz popisující impedanci uedeného jednobranu. Při jakém kmitočtu bude fázoý posun mezi napětím a proudem zdroje 60, pokud bychom znali hodnoty R1, R2 a C? R2 C 30. Napište ýraz popisující fázoroý přenos uedeného dojbranu. Při jakém kmitočtu bude fázoý posun mezi napětím zdroje a ýstupním napětím 60, pokud bychom znali hodnoty R a L? R U L 1 U 2

2 31. Napište ýraz popisující impedanci uedeného jednobranu Při jakém kmitočtu bude fázoý posun mezi napětím a proudem zdroje 60, pokud bychom znali hodnoty R1, R2 a L? R2 R1 L 32. Napište ýraz popisující fázoroý přenos uedeného dojbranu. Při jakém kmitočtu bude fázoý posun mezi napětím zdroje a ýstupním napětím 60, pokud bychom znali hodnoty R a C? R U C 1 U Zapište hodnotu časoé konstanty deriačního obodu. Vyznačte měřítko na časoé ose. 34. Zapište hodnotu časoé konstanty integračního obodu. Vyznačte měřítko na časoé ose. 35. Zapište hodnotu časoé konstanty deriačního obodu. Vyznačte měřítko na časoé ose.

3 36. Zapište hodnotu časoé konstanty integračního obodu. Vyznačte měřítko na časoé ose. 37. Zapište Laplaceů obraz ýstupního průběhu napětí integračního obodu. 38. Zapište Laplaceů obraz ýstupního průběhu napětí deriačního obodu. 39. Zapište Laplaceů obraz ýstupního průběhu napětí integračního obodu.

4 40. Zapište Laplaceů obraz ýstupního průběhu napětí deriačního obodu. 41. Ueďte zorec pro rezonanční kmitočet sérioého rezonančního obodu RLC 42. Ueďte zorec pro činitel jakosti Q sérioého rezonančního obodu RLC 43. Načrtněte odezu proudu sérioém RLC obodu na skok napětí pro různé hodnoty činitele jakosti Q 44. Jak elkou amplitudu bude mít napětí na induktoru sérioém rezonančním obodu, když amplituda napětí na napěťoém zdroji je 1 V, činitel jakosti je Q=50 a kmitočet je roen kmitočtu rezonančnímu? 45. Jak elkou amplitudu bude mít napětí na rezistoru sérioém rezonančním obodu, když amplituda napětí na napěťoém zdroji je 1 V, činitel jakosti je Q=50 a kmitočet je roen kmitočtu rezonančnímu? 46. Jakou impedanci má sérioý rezonanční obod RLC na rezonančním kmitočtu? 47. Jaký je fázoý posu mezi fází napětí na napěťoém zdroji a fází proudu obodu při rezonanci? 48. Jaké parametry popisují lastnosti homogenního bezeztrátoého edení 49. Jak se přenášejí impulsy dlouhým bezeztrátoým edením 50. Kdy musíme spojení mezi obody nebo systémy poažoat za dlouhé edení 51. Jak zabráníme odrazům impulsů na edení 52. Co se míní pod pojmem přizpůsobení na stupu edení a na ýstupu edení 53. Ve stacionárním ustáleném stau ypočítejte: Jaké napětí bude bodech 1, 2, 3 (proti zemní sorce)? Jaké mezi uzly 2 a 3? Jaké napětí bude bodech 1, 2, 3, když yjmeme rezistor R5? 54. Ve stacionárním ustáleném stau ypočítejte: Jaké napětí bude bodech 1, 2, 3 (proti zemní sorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

5 55. Ve stacionárním ustáleném stau ypočítejte: Jaký proud uedeném obodu dodáá zdroj u_1 a jaký zdroj u_2? Jaké je napětí mezi uzly 2 a 1? 56. Ve stacionárním ustáleném stau ypočítejte: Jaké je napětí je uedeném obodu mezi uzly 2 a 1? Jaký odpor by musel mít rezistor R4, aby napětí bylo nuloé? 57. Ve stacionárním ustáleném stau ypočítejte: Jaký proud poteče rezistorem R=10kΩ, R=5 kω, R=20 kω obodu na obrázku? Jaký proud bude uedených případech dodáat zdroj napětí?

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1 Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte

Více

FBMI. Teoretická elektrotechnika - příklady

FBMI. Teoretická elektrotechnika - příklady FBMI Teoretická elektrotechnika - příklady 1. Vypočítejte kapacitu kapacitoru, který akumuluje energii 400 J při napětí 10 V. Jak dlouho by trvalo jeho nabíjení konstantním proudem 5 A? 2. Vypočítejte

Více

Fázory, impedance a admitance

Fázory, impedance a admitance Fázory, impedance a admitance 1 Dva harmonické zdroje napětí s frekvencí jsou zapojeny sériově a S použitím fázorů vypočítejte časový průběh napětí mezi výstupními svorkami, jestliže = 30 sin(100¼t);u

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Otázky z ELI 1/10. 15. Jaký je vztah mezi napětím a proudem na induktoru (obecně a v případě po určitou dobu konstantního napětí)

Otázky z ELI 1/10. 15. Jaký je vztah mezi napětím a proudem na induktoru (obecně a v případě po určitou dobu konstantního napětí) Otázky z ELI 1. V jakých jednotkách se vyjadřuje napětí Volt 2. V jakých jednotkách se vyjadřuje proud Amper 3. V jakých jednotkách se vyjadřuje odpor Ohm 4. V jakých jednotkách se vyjadřuje kapacita Farad

Více

Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry

Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry Přenosoé linky Na obr. je znázorněno náhradní schéma jednofázoého edení s rozprostřenými parametry o délce l (R označuje podélný odpor, X podélnou reaktanci, G příčnou konduktanci a B příčnou susceptanci,

Více

1. Vypočítejte kapacitu kapacitoru, který akumuluje energii 400 J při napětí 10 V. Jak dlouho by trvalo jeho nabíjení konstantním proudem 5 A?

1. Vypočítejte kapacitu kapacitoru, který akumuluje energii 400 J při napětí 10 V. Jak dlouho by trvalo jeho nabíjení konstantním proudem 5 A? 1. Vypočítejte kapacitu kapacitoru, který akumuluje energii 400 J při napětí 10 V. Jak dlouho by trvalo jeho nabíjení konstantním proudem 5 A? 2. Vypočítejte napětí na kapacitoru s kapacitou 45 µf, akumuluje-li

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1

Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 28. Obvody 1. V obvodu na obrázku je dáno E 1 = 6, 0 V, E 2 = 5, 0 V, E 3 = 4, 0 V, R 1 = 100 Ω, R 2 = 50 Ω. Obě baterie jsou ideální. Vypočtěte a) [0,3 b] napětí mezi body a a b a b) [0,7 b]

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

Základy elektrotechniky (ZELE)

Základy elektrotechniky (ZELE) Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze Z předchozích přednášek víme, že kapacitor a induktor jsou setrvačné obvodové prvky, které ukládají energii Dosud jsme se zabývali ustáleným stavem předpokládali jsme, že v minulosti byly všechny kapacitory

Více

Interakce ve výuce základů elektrotechniky

Interakce ve výuce základů elektrotechniky Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky OBVODY RLC Číslo projektu

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY

ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky

Více

Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření Seznam použitých přístrojů 1. 2. 3. 4. 5. 6. Laboratorní zdroj DIAMETRAL, model P230R51D Generátor funkcí Protek B803 Číslicový multimetr Agilent, 34401A Číslicový multimetr UT70A Analogový

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

elektrické filtry Jiří Petržela filtry se syntetickými bloky

elektrické filtry Jiří Petržela filtry se syntetickými bloky Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová

Více

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní Bohumil Brtník TEORETICKÁ ELEKTROTECHNIKA Praha 2017 Bohumil Brtník Teoretická elektrotechnika Recenzovali: David Matoušek, Fakulta elektrotechniky a informatiky Univerzity Pardubice Miroslav Stehlík,

Více

ENERGETICKY OPTIMÁLNÍ NABÍJENÍ KAPACITORU

ENERGETICKY OPTIMÁLNÍ NABÍJENÍ KAPACITORU ENERGETICKY OPTIMÁLNÍ NABÍJENÍ KAPACITORU Zdeněk Biolek SŠIEŘ Rožnov pod Radhoštěm, zdenek.biolek@roznovskastredni.cz Abstract: Příspěvek se zabývá problematikou účinnosti transportu energie ze zdroje

Více

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = =

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = = B 4:00 hod. Elektrotechnika Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něho byl ze zdroje dodáván maximální výkon. Vypočítejte pro tento případ napětí, proud a výkon rezistoru.

Více

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

20ZEKT: přednáška č. 3

20ZEKT: přednáška č. 3 0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

E L E K T R I C K Á M Ě Ř E N Í

E L E K T R I C K Á M Ě Ř E N Í Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní

Více

Jednoduché rezonanční obvody

Jednoduché rezonanční obvody Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody ELEKTŘNA A MAGNETZMUS Řešené úlohy a postupy: Řízené L Obvody Peter Dourmashkin MT 6, překlad: Jan Pacák (7) Obsah 9. ŘÍZENÉ L OBODY 3 9. ÚKOLY 3 9. OBENÉ LASTNOST ŘÍZENÝH L OBODŮ 3 ÚLOHA : ŘÍZENÉ OSLAE

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

zdroji 10 V. Simulací zjistěte napětí na jednotlivých rezistorech. Porovnejte s výpočtem.

zdroji 10 V. Simulací zjistěte napětí na jednotlivých rezistorech. Porovnejte s výpočtem. Téma 1 1. Jaký odpor má žárovka na 230 V s příkonem 100 W? 2. Kolik žárovek 230 V, 60 W vyhodí pojistk 10 A? 3. Kolik elektronů reprezentje logicko jedničk v dynamické paměti, když kapacita paměťové bňky

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

1 Zadání. 2 Teoretický úvod. 4. Generátory obdélníkového signálu a MKO

1 Zadání. 2 Teoretický úvod. 4. Generátory obdélníkového signálu a MKO 1 4. Generátory obdélníkového signálu a MKO 1 Zadání 1. Sestavte generátor s derivačními články a hradly NAND s uvedenými hodnotami rezistorů a kapacitorů. Zobrazte časové průběhy v důležitých uzlech.

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz.

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz. FYZKA. OČNÍK Příklady na obvody střídavého proudu A. rčete induktanci cívky o indukčnosti 500 H v obvodu střídavého proudu o frekvenci 50 Hz. = 500 0 3 H =?. = ω = π f = 57 Ω ívka á induktanci o velikosti

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Studium klopných obvodů

Studium klopných obvodů Studium klopných obvodů Úkol : 1. Sestavte podle schématu 1 astabilní klopný obvod a ověřte jeho funkce.. Sestavte podle schématu monostabilní klopný obvod a buďte generátorem a sledujte výstupní napětí.

Více

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem).

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem). FEROREZONANCE Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem). Popis nelineárními diferenciálními rovnicemi obtížné nebo nemožné

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

Obvodové prvky a jejich

Obvodové prvky a jejich Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící

Více

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6 List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: ( 23 ± 2 ) C 1 Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs 1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti

Více

List 1 z 6. Akreditovaný subjekt podle ČSN EN ISO/IEC 17025:2005: FORTE a.s. Metrologická laboratoř Mostkovice 529

List 1 z 6. Akreditovaný subjekt podle ČSN EN ISO/IEC 17025:2005: FORTE a.s. Metrologická laboratoř Mostkovice 529 List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) ºC 1. Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

1. V jakých jednotkách se vyjadřuje náboj - uveďte název a značku jednotky Náboj Q se vyjadřuje v coulombech [ C ].

1. V jakých jednotkách se vyjadřuje náboj - uveďte název a značku jednotky Náboj Q se vyjadřuje v coulombech [ C ]. 1. V jakých jednotkách se vyjadřuje náboj - uveďte název a značku jednotky Náboj Q se vyjadřuje v coulombech [ C ]. 2. Jaký je vztah mezi napětím a proudem na rezistoru - vzorec Jsou si přímo úměrné dle

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Czech Audio společnost pro rozvoj technických znalostí v oblasti audiotechniky IČ : 266728847

Czech Audio společnost pro rozvoj technických znalostí v oblasti audiotechniky IČ : 266728847 Příspěvek k odrušení napájecího zdroje audiozařízení Petr Komp Tento text vychází z (). Z anglického originálu jsem zpracoval zkrácený překlad pro použití v audiotechnice, který je doplněn vlastními výsledky

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE (2.2, 2.3 a 2.4) Ing. Pavel VYLEGALA 2014 Kapacitní snímače Vyhodnocují kmity oscilačního obvodu RC. Vniknutím předmětu do elektrostatického pole kondenzátoru

Více

Osnova kurzu. Základy teorie elektrických obvodů 3

Osnova kurzu. Základy teorie elektrických obvodů 3 Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie

Více

Studium tranzistorového zesilovače

Studium tranzistorového zesilovače Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

TEORIE ELEKTRICKÝCH OBVODŮ

TEORIE ELEKTRICKÝCH OBVODŮ TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Identifikátor materiálu: VY_32_INOVACE_352

Identifikátor materiálu: VY_32_INOVACE_352 dentifikátor materiálu: VY_32_NOVACE_352 Anotace Autor Jazyk Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu. ng. Vadim Starý Čeština

Více

Harmonický průběh napětí a proudu v obvodu

Harmonický průběh napětí a proudu v obvodu Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K Praktikum II Elektřina a magnetismus Úloha č. V Název: Měření osciloskopem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 1.1.28 Odevzdal dne:...

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

TDA7000. Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a

TDA7000. Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a 4. Experiment s FM přijímačem TDA7000 (návod ke cvičení z X37LBR) Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a ověřit jeho základní vlastnosti. Nejprve se určí

Více

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory K620ZENT Základy elektroniky Přednáška ř č. 6 Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory Bistabilní klopný obvod Po připojení ke zdroji napájecího napětí se obvod ustálí tak, že jeden

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

4.1 OSCILÁTORY, IMPULSOVÉ OBVODY

4.1 OSCILÁTORY, IMPULSOVÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1 OSCILÁTORY, IMPULSOVÉ OBVODY 4.1.1 OSCILÁTORYY Oscilátory tvoří samostatnou skupinu elektrických obvodů,

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

W1- Měření impedančního chování reálných elektronických součástek

W1- Měření impedančního chování reálných elektronických součástek Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu

Více

Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE)

Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE) FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE) Autoři textu: Ing. Jan Varmuža Květen 2013 epower

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

elektrické filtry Jiří Petržela pasivní filtry

elektrické filtry Jiří Petržela pasivní filtry Jiří Petržela výhody asivních filtrů levné a jednoduché řešení filtrace není nutné naájení aktivních rvků nevýhody asivních filtrů maximálně jednotkový řenos v roustném ásmu obtížnější kaskádní syntéza

Více

9.1 Přizpůsobení impedancí

9.1 Přizpůsobení impedancí 9.1 Přizpůsobení impedancí Základní teorie Impedančním přizpůsobením rozumíme stav, při kterém v obvodu nedochází k odrazu vln a naopak dochází k maximálnímu přenosu energie ze zdroje do zátěže. Impedančním

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

Měření na nízkofrekvenčním zesilovači. Schéma zapojení: Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Základní informace o této fyzikální veličině Symbol vlastní indukčnosti je L, základní jednotka henry, symbol

Více

8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH Úvod. Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem)

8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH Úvod. Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem) 8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH 8.1. Úvod Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem) zkratový výkon v PCC výkon nelin. zátěže (všech zátěží) R = S sce sc /

Více

Czech Technical University in Prague Faculty of Electrical Engineering. České vysoké učení technické v Praze. Fakulta elektrotechnická

Czech Technical University in Prague Faculty of Electrical Engineering. České vysoké učení technické v Praze. Fakulta elektrotechnická Výkon v HUS Rezistor: proud, procházející rezistorem, ho zahřívá, energie, dodaná rezistoru, se tak nevratně mění na teplo Kapacitor: elektrický proud, protékající obvodem dodává kapacitoru elektrický

Více

1 Jednoduchý reflexní přijímač pro střední vlny

1 Jednoduchý reflexní přijímač pro střední vlny 1 Jednoduchý reflexní přijímač pro střední vlny Popsaný přijímač slouží k poslechu rozhlasových stanic v pásmu středních vln. Přijímač je napájen z USB portu počítače přijímaný signál je pak připojen na

Více