Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti"

Transkript

1 Katedra pravděpodobosti a matematické statistiky Oborový semiář χ 2 test ezávislosti Petr Míchal 27 listopadu 2017

2 Situace 2 X {1,, I}, Y {1,, J} Jsou X a Y ezávislé? K dispozici máme áhodý vyběr (X 1, Y 1 ),, (X, Y ) (X, Y )

3 Začeí Model: X {1,, I}, Y {1,, J}, Náhodý vyběr (X 1, Y 1 ),, (X, Y ) (X, Y ) N i,j = k=1 1 [X k = i, Y k = j] pozorovaé četosti N i,+ = J j=1 N i,j, N +,j = I i=1 N i,j pozorovaé margiálí četosti p i,j = P (X 1 = i, Y 1 = j) pravděpodobosti jedotlivých skupi p i,+ = J j=1 p i,j, p +,j = I i=1 p i,j margiálí pravděpodobosti p (i),j = P (Y 1 = j X 1 = i), p i,(j) = P (X 1 = i Y 1 = j) podmíěé pravděpodobosti 3

4 Kotigečí tabulky 4 Y X 1 J Σ 1 p 1,1 p 1,J p 1,+ Y X 1 J Σ 1 N 1,1 N 1,J N 1,+ I p I,1 p I,J p I,+ Σ p +,1 p +,J 1 I N I,1 N I,J N I,+ Σ N +,1 N +,J (N 1,1,, N 1,I,, N J,1,, N I,J ) Mult I J (, (p 1,1,, p I,J ))

5 Testováí ezávislosti 5 X {1,, I}, Y {1,, J} Testujeme H 0 : X Y proti H 1 : H 0, Ekvivaletí zápisy ulové hypotézy: p i,j = p i,+ p +,j i, j p i,(j) = p i,+ i, j shodost rozděleí ve sloupcích p (i),j = p +,j i, j shodost rozděleí v řádcích

6 Testováí ezávislosti 5 X {1,, I}, Y {1,, J} Testujeme H 0 : X Y proti H 1 : H 0, Ekvivaletí zápisy ulové hypotézy: p i,j = p i,+ p +,j i, j p i,(j) = p i,+ i, j shodost rozděleí ve sloupcích p (i),j = p +,j i, j shodost rozděleí v řádcích Máme áhodý vyběr (X 1, Y 1 ),, (X, Y ) (X, Y ) (N 1,1,, N 1,I,, N J,1,, N I,J ) Mult I J (, (p 1,1,, p I,J )) Idea: porovat pozorovaé četosti N i,j a očekávaé četosti za H 0 tj p i,j = p i,+ p +,j

7 Testováí ezávislosti 6 Máme MVO p i,j za H 0 ve tvaru N i,j / Testová statistika χ 2 = I i=1 j=1 J (N i,j N i,+n +,j N i,+ N +,j ) 2

8 Testováí ezávislosti 6 Máme MVO p i,j za H 0 ve tvaru N i,j / Testová statistika χ 2 = I i=1 j=1 J (N i,j N i,+n +,j N i,+ N +,j ) 2 Asymptotické rozděleí: Za platosti hypotézy χ 2 d χ 2 (I 1)(J 1), Kritický obor: Zamítáme pro velké hodoty χ 2, tj a (asymptotické) hladiě α zamíteme H 0, je-li χ 2 χ 2 (I 1)(J 1)(1 α) P-hodota: P-hodotu spočteme jako 1 F (I 1)(J 1) (t), kde t je spočteá hodota χ 2 a F (I 1)(J 1) je distribučí fukce rozděleí χ 2 (I 1)(J 1)

9 Ilustračí příklad 7 Souvisí barva vlasů s barvou očí? Příklad z čláku Goodma (1985), u 592 lidí zazameáa barva očí a vlasů

10 Ilustračí příklad Souvisí barva vlasů s barvou očí? Příklad z čláku Goodma (1985), u 592 lidí zazameáa barva očí a vlasů Barva vlasů Barva očí Čerá Hědá Zrzavá Blod Σ Hědá Modrá Oříšková Zeleá Σ χ 2 = 13829, p-hodota < = zamítáme hypotézu ezávislosti, barva vlasů a očí spolu souvisí 7

11 Ilustračí příklad Souvisí barva vlasů s barvou očí? Příklad z čláku Goodma (1985), u 592 lidí zazameáa barva očí a vlasů Barva vlasů Barva očí Čerá Hědá Zrzavá Blod Σ Hědá Modrá Oříšková Zeleá Σ χ 2 = 13829, p-hodota < = zamítáme hypotézu ezávislosti, barva vlasů a očí spolu souvisí Nevíme ale ic o charakteru závislosti, ai které skupiy svědčí ejvíce o porušeí ezávislosti

12 Pearsoova rezidua 8 Idea: u každé buňky se podívat a vhodě zormovaý rozdíl pozorovaé a očekáveé četosti

13 Pearsoova rezidua 8 Idea: u každé buňky se podívat a vhodě zormovaý rozdíl pozorovaé a očekáveé četosti Pearsoovo reziduum pro buňku (i, j) E i,j = N i,j N i,+n +,j N i,+ N +,j Platí χ 2 = I J i=1 j=1 E i,j 2, vlastě rozklad χ2 přes jedotlivé buňky

14 Pearsoova rezidua 8 Idea: u každé buňky se podívat a vhodě zormovaý rozdíl pozorovaé a očekáveé četosti Pearsoovo reziduum pro buňku (i, j) E i,j = N i,j N i,+n +,j N i,+ N +,j Platí χ 2 = I J i=1 j=1 E i,j 2, vlastě rozklad χ2 přes jedotlivé buňky Za platosti H 0 mají E i,j asymptoticky ormálí rozděleí s ulovou středí hodotou Asymptotické rozptyly jsou obecě meší ež jeda

15 Stadardizovaá rezidua 9 Chtěli bychom zámé rozděleí reziduí E i,j Zormujeme rezidua, dostaeme stadardizovaá rezidua E i,j, E i,j = ( 1 N i,+ E i,j ) ( 1 N +,j ) = N i,j, Ni,+N+,j ( ) ( N i,+ N +,j 1 N i,+ 1 N +,j )

16 Stadardizovaá rezidua 9 Chtěli bychom zámé rozděleí reziduí E i,j Zormujeme rezidua, dostaeme stadardizovaá rezidua E i,j, E i,j = ( 1 N i,+ E i,j ) ( 1 N +,j ) = N i,j, Ni,+N+,j ( ) ( N i,+ N +,j 1 N i,+ 1 N +,j ) Za platosti H 0 mají stadardizovaá rezidua E i,j asymptoticky rozděleí N(0, 1) při Příliš velké hodoty Ei,j svědčí o porušeí ezávislosti v daé buňce (uvádí se Ei,j > 2)

17 Pokračováí příkladu Tabulka: Tabulka reziduí a (stadardizovaých reziduí) Barva vlasů Barva očí Čerá Hědá Zrzavá Blod Hědá (613) (216) (-010) (-832) Modrá (-425) (-339) (-231) (996) Oříšková (-057) (205) (098) (-273) Zeleá (-228) (-050) (257) (073) 10

18 Pokračováí příkladu Tabulka: Tabulka reziduí a (stadardizovaých reziduí) Barva vlasů Barva očí Čerá Hědá Zrzavá Blod Hědá (613) (216) (-010) (-832) Modrá (-425) (-339) (-231) (996) Oříšková (-057) (205) (098) (-273) Zeleá (-228) (-050) (257) (073) Pozorujeme apř více blod atých s modrýma očima, aproti tomu méě blod atých s hědýma očima ež bychom očekávali za ezávislosti 10

19 Rozklad χ 2 11 Idea: rozložit statistiku χ 2, můžeme lépe odhalit vliv daé kategorie a porušeí H 0 a vztahy mezi kategoriemi Chtěli bychom vyjádřit χ 2 jako součet ezávislých χ 2 i H 0 platí χ 2 i d χ 2 1, pro, kde za platosti

20 Rozklad χ 2 11 Idea: rozložit statistiku χ 2, můžeme lépe odhalit vliv daé kategorie a porušeí H 0 a vztahy mezi kategoriemi Chtěli bychom vyjádřit χ 2 jako součet ezávislých χ 2 i H 0 platí χ 2 i d χ 2 1, pro, kde za platosti Výhodější pracovat se statistikou G 2, test poměrem věrohodostí Test ezávislosti poměrem věrohodostí, testová statistika G 2, I J ( ) G 2 Ni,j = 2 N i,j log N i,+ N +,j Za platosti H 0 platí G 2 i=1 j=1 d χ 2 (I 1)(J 1) pro

21 Rozklad χ 2 Idea: rozložit statistiku χ 2, můžeme lépe odhalit vliv daé kategorie a porušeí H 0 a vztahy mezi kategoriemi Chtěli bychom vyjádřit χ 2 jako součet ezávislých χ 2 i H 0 platí χ 2 i d χ 2 1, pro, kde za platosti Výhodější pracovat se statistikou G 2, test poměrem věrohodostí Test ezávislosti poměrem věrohodostí, testová statistika G 2, I J ( ) G 2 Ni,j = 2 N i,j log N i,+ N +,j Za platosti H 0 platí G 2 i=1 j=1 d χ 2 (I 1)(J 1) pro Obecě: U χ 2, V χ 2 m ezávislé, pak U + V χ 2 +m 11 Naopak, W χ 2 k jde vyjádřit jako součet ezávislých áhodých veliči s χ 2 rozděleím s ižšími stupi volosti, které se sečtou do k

22 Rozklad G 2 12 Rozdělíme G 2 a (asymptoticky) ezávislé kompoety se stupěm volosti 1, ty odpovídají podtabulkám příslušé kotigečí tabulky

23 Rozklad G 2 12 Rozdělíme G 2 a (asymptoticky) ezávislé kompoety se stupěm volosti 1, ty odpovídají podtabulkám příslušé kotigečí tabulky Tabulky 2 J můžeme dělit ásledově: Uvažme 1 a 2 sloupec, vzike tabulka 2 2, příslušá G 2 1 statistika má (asymptoticky) jede stupeň volosti Dále uvažme kombiaci (sečteí) prvích dvou sloupců a třetí, atd až kombiaci (sečteí) prvích J 1 sloupců a posledího sloupce, Dostaeme vyjádřeí G 2 = G G2 J 1, kde za platosti H 0 Gi 2 d χ 2 1, pro a jedotlivé G2 i jsou (asymptoticky) ezávislé

24 Rozklad G 2 12 Rozdělíme G 2 a (asymptoticky) ezávislé kompoety se stupěm volosti 1, ty odpovídají podtabulkám příslušé kotigečí tabulky Tabulky 2 J můžeme dělit ásledově: Uvažme 1 a 2 sloupec, vzike tabulka 2 2, příslušá G 2 1 statistika má (asymptoticky) jede stupeň volosti Dále uvažme kombiaci (sečteí) prvích dvou sloupců a třetí, atd až kombiaci (sečteí) prvích J 1 sloupců a posledího sloupce, Dostaeme vyjádřeí G 2 = G G2 J 1, kde za platosti H 0 Gi 2 d χ 2 1, pro a jedotlivé G2 i jsou (asymptoticky) ezávislé Pro podtabulky můžeme spočíst i χ 2 i, je se esečtou přesě do celkového χ 2

25 Obecá pravidla pro děleí 13 Růzé možosti děleí Pro ezávislost podtabulek existují pravidla děleí,

26 Obecá pravidla pro děleí 13 Růzé možosti děleí Pro ezávislost podtabulek existují pravidla děleí, Hlaví pravidla: 1 Stupě volosti u podtabulek se musí sečíst do stupě volosti pro celou tabulku 2 Každá buňka celé tabulky musí být použita (sama o sobě) právě jedou 3 Každá margiálí četost celé tabulky musí být margiálí četost právě jedé podtabulky

27 Příklad děleí pro tabulky I J 14 Rozdělíme tabulku I J a (I 1) (J 1) tabulek 2 2,

28 Příklad děleí pro tabulky I J 14 Rozdělíme tabulku I J a (I 1) (J 1) tabulek 2 2, Pro i = 2,, I a j = 2,, J sestavíme podtabulku ásledově a<i b<j N a,b b<j N i,b a<i N a,j N i,j Toto děleí pochází z čláku Lacaster (1949)

29 N 1,1 N 1,2 N 1,3 N 1,J N 2,1 N 2,2 N 2,3 N 2,J N i,j N I,1 N I,2 N I,3 N I,J

30 N 1,1 N 1,2 N 1,3 N 1,J N 2,1 N 2,2 N 2,3 N 2,J N i,j N I,1 N I,2 N I,3 N I,J

31 N 1,1 N 1,2 N 1,3 N 1,J N 2,1 N 2,2 N 2,3 N 2,J N i,j N I,1 N I,2 N I,3 N I,J

32 N 1,1 N 1,2 N 1,3 N 1,J N 2,1 N 2,2 N 2,3 N 2,J N i,j N I,1 N I,2 N I,3 N I,J

33 Pokračováí příkladu Čer Hě Hě G 2 = 972 Mod χ 2 = 929 Čer+Hě Hě G 2 = 023 Mod χ 2 = 023 Zrz Čer+Hě+Zrz Hě G 2 = Mod χ 2 = Bl Čer Hě Hě+Mod G 2 = 205 Oří χ 2 = 197 Čer+Hě Hě+Mod G 2 = 085 Oří χ 2 = 034 Zrz 19

34 Pokračováí příkladu Čer+Hě+Zrz Hě+Mo G 2 = 811 Oří χ 2 = 717 Blo Čer Hě Hě+Mod+Oří G 2 = 338 Zel χ 2 = 301 Čer+Hě Hě+Mod+Oří G 2 = 678 Zel χ 2 = 799 Zrz Čer+Hě+Zrz Hě+Mod+Oří G 2 = 051 Zel χ 2 = 053 Blo 20

35 Pokračováí příkladu Čer+Hě+Zrz Hě+Mo G 2 = 811 Oří χ 2 = 717 Blo Čer Hě Hě+Mod+Oří G 2 = 338 Zel χ 2 = 301 Čer+Hě Hě+Mod+Oří G 2 = 678 Zel χ 2 = 799 Zrz Čer+Hě+Zrz Hě+Mod+Oří G 2 = 051 Zel χ 2 = 053 Blo Po sečteí G 2 = 14644,χ 2 = U původí tabulky G 2 = 14644,χ 2 =

36 Implemetace v 21 Fukce chisqtest(), [1] "statistic" "parameter" "pvalue" "method" "dataame" "observed" [7] "expected" "residuals" "stdres" Pearsoova rezidua: chisqtest()$residuals Stadardizovaá rezidua: chisqtest()$stdres

37 Literatura AGRESTI, A (2002) Categorical Data Aalysis Druhé vydáí Wiley Series i Probability ad Statistics, Gaiesville, Florida ISBN ANDĚL, J (2007) Základy matematické statistiky Druhé opraveé vydáí Matfyzpress, Praha ISBN GOODMAN, L A (1985) Discussio: Testig for idepedece i a two-way table: New iterpretatios of the chi-square statistic The Aals of Statistics, 13(3), KULICH, M NMSA 331, pozámky k předášce http: //msekcekarlimffcuicz/~omelka/soubory/msa331/ms1pdf LANCASTER, H O (1949) The derivatio ad partitio of χ 2 i certai discrete distributios Biometrika, 36(244),

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Kateřia Jaoušková Dvouvýběrové testy Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Studijí program:

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM Kombiatorika- 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické iformatiky FIT České vysoké učeí techické v Praze c Josef Kolar, 2011 Základy diskrétí matematiky, BI-ZDM ZS 2011/12, Lekce 8 Evropský sociálí

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michaela Kurková. Katedra pravděpodobnosti a matematické statistiky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michaela Kurková. Katedra pravděpodobnosti a matematické statistiky Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Michaela Kurková Dvouvýběrový T-test v případě estejých rozptylů Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Kvantily. Problems on statistics.nb 1

Kvantily. Problems on statistics.nb 1 Problems o statistics.b Kvatily 5.. Nechť x a, kde 0 < a

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Kapitola 6. : Neparametrické testy o mediánech

Kapitola 6. : Neparametrické testy o mediánech Kapitola 6 : Neparametrické testy o mediáech Cíl kapitoly Po prostudováí této kapitoly budete umět - provádět testy hypotéz o mediáu jedoho spojitého rozložeí - hodotit shodu dvou ezávislých áhodých výběrů

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

DVOUVÝBĚROVÉ PODMÍNĚNÉ POŘADOVÉ TESTY VANALÝZEPŘEŽITÍ

DVOUVÝBĚROVÉ PODMÍNĚNÉ POŘADOVÉ TESTY VANALÝZEPŘEŽITÍ ROBUST 2000, 3 8 c JČMF 200 DVOUVÝBĚROVÉ ODMÍNĚNÉ OŘADOVÉ TESTY VANALÝZEŘEŽITÍ LENKA KOBLÍŽKOVÁ Abstrakt The preset paper deals with coditioal rak tests i survival aalysis for two sample problem with radomly

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

McNemarův test, Stuartův test, Test symetrie

McNemarův test, Stuartův test, Test symetrie Tereza Burgetová McNemarův test, Stuartův test, Test symetrie 11. prosince 2017 McNemarův test - motivace Analýza kontingenčních tabulek, kdy není cílem provést klasický test nezávislosti. Příklad: Před

Více

FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE

FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

ANALÝZA SÍLY VYBRANÝCH KLASICKÝCH A ROBUSTNÍCH TESTŮ NORMALITY PROTI BIMODÁLNÍMU ROZDĚLENÍ

ANALÝZA SÍLY VYBRANÝCH KLASICKÝCH A ROBUSTNÍCH TESTŮ NORMALITY PROTI BIMODÁLNÍMU ROZDĚLENÍ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 6 Číslo 6, 009 ANALÝZA SÍLY VYBRANÝCH KLASICKÝCH A ROBUSTNÍCH

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Testy homoskedasticity v lineárním modelu

Testy homoskedasticity v lineárním modelu Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Ja Vávra Testy homoskedasticity v lieárím modelu Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Studijí

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika 4.11.011 REGRESNÍ DIAGNOSTIKA Chemometrie I, David MILDE Regresí diagostika Obsahuje postupy k posouzeí: kvality dat pro regresí model (přítomost vlivých bodů), kvality modelu pro daá data, splěí předpokladů

Více

Neparametrické metody

Neparametrické metody Neparametrické metody EuroMISE Cetrum Kotakt: Literatura: Obecé iformace Zvárová, J.: Základy statistiky pro biomedicískéobory I. Vydavatelství Karolium, UK Praha 00 Zvára, K.: Roser, B.: EuroMISE cetrum

Více

Fisherův exaktní test

Fisherův exaktní test Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým

Více

PoznÁmky k přednášce

PoznÁmky k přednášce NMSA331 Matematická statistika 1 PozÁmky k předášce Naposledy upraveo de 15. úora 2019. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text představuje

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...

Více

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI 8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -

Více

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A ); 1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Dynamická pevnost a životnost Statistika

Dynamická pevnost a životnost Statistika DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické

Více

ASYMPTOTICKÉ TESTY HYPOTÉZ V MODELECH S RUŠIVÝMI PARAMETRY

ASYMPTOTICKÉ TESTY HYPOTÉZ V MODELECH S RUŠIVÝMI PARAMETRY ROBUST 2000, 25 34 c JČMF 200 ASYMPTOTICKÉ TESTY HYPOTÉZ V MODELECH S RUŠIVÝMI PARAMETRY MICHAL KULICH Abstrakt. We discuss likelihood ratio, Wald ad Rao test statistics for testig several parameters i

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více