Přednáška č. 5. Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů.

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška č. 5. Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů."

Transkript

1 Přednáška č. 5 Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů.

2 Třída prvků Kromě vzácných plynů se vyskytuje v elementárním stavu ještě dalších asi 20 prvků. Tyto pak rozdělujeme na kovy, polokovy a nekovy. Kovy mají jednoduchou strukturu a rozdělují se do tří skupin: 1. skupina zlata zlato, stříbro, měď a olovo 2. skupina platiny - platina, palladium, iridium a osmium 3. skupina železa - v závislosti na podílu Ni Kromě toho se v kovovém stavu nacházejí rtuť, tantal, cín a zinek. Polokovy se dělí do dvou skupin: 1. arsen, antimon, bismut 2. selen, telur Důležitými nekovy jsou síra a uhlík (grafit, diamant).

3 ZLATO Au Symetrie: kubická Forma výskytu: Krystaly jsou vzácné, častější jsou drátky, valounky nebo plíšky s charakteristickými trojúhelníčkovými výrůstky Obsah v zemské kůře: 0,004 ppm Diagnostické znaky: vysoká hustota, vysoký lesk, měkký a kujný kov Zlato - velikost 5 cm, lokalita Brusson (zdroj Lapis)

4 ZLATO Fyzikální vlastnosti: T 2,5-3; H 19,3; typický je hákovitý lom, intenzivně žlutá barva. Složení a struktura: Téměř vždy je přítomna příměs stříbra, nad 20% Ag se mluví o elektru. Ryzost se vyjadřuje jako počet dílků zlata z Vznik a výskyt: Nejčastěji se vyskytuje na hydrotermálních křemenných žilách spjatých s granitickými horninami Velkou skupinu tvoří hydrotermální a metamorfogenní ložiska zlata. Častá je kombinace zlata s Sb minerály. Velmi častá a z ekonomického hlediska výhodná jsou rozsypová ložiska, vzniklá zvětrávacími pochody. Naleziště: Roudný u Vlašimi (křemenné žíly), Mokrsko (granitické horniny), Zlaté Hory, Zlatý Chlum (metamorfogenní ložiska), Otava (rýžoviště), Witwatersrand - Jihoafrická republika (zlatonosné metakonglomeráty) Použití: Platidlo, zubní lékařství, elektroprůmysl, kosmický výzkum, šperkařství.

5 SÍRA S Symetrie: rombická Forma výskytu: Krystaly bývají dipyramidální méně tabulkovité. Agregáty jsou celistvé, krápníkovité, práškovité nebo ledvinité. Fyzikální vlastnosti: H = 2,05; T = 1,5-2,5; barva nejčastěji žlutá, může být i zelená nebo červená. Štěpnost nedokonalá, lesk diamantový, vryp bílý, je křehká. Síra je špatným vodičem tepla a rozpadá se po zahřátí v dlani. Vznik a výskyt: Je to nerost spojený s vulkanickou činností - sráží se z vulkanických par. V sedimentech může vznikat síra redukcí sulfátů za přispění baktérií. V neposlední řadě vzniká síra spalováním pyritem bohatého uhlí (požáry slojí, hořící haldy). Naleziště: Radvanice u Trutnova, Oslavany, Kladno (hořící haldy), Tarnobrzeg - Polsko (sedimentární ložisko), Sicílie (sopečný původ).

6 SÍRA Použití: Základní surovina chemického průmyslu. Používá se pro např. výrobu insekticidů a při vulkanizaci gumy. Síra ze Sicílie, velikost 2 cm (zdroj Ďuďa, 1990)

7 SÍRA Výskyt elementární síry v přírodě: nadloží solných dómů v USA a Mexiku - síra vznikla redukcí usazenin síranů působením anaerobních baktérií. sedimentární ložiska v Polsku - síra vznikla redukcí usazenin síranů působením anaerobních baktérií. ložiska sopečného původu - vznik sublimací ze sopečných plynů. Těžba: Do počátku 20. století převážně z ložisek sopečného původu. Vyskytují se v hornatých oblastech kolem Tichého oceánu (Amerika, Nový Zéland, Filipíny, Kamčatka) a v oblasti Středozemního moře (Sicílie, Turecko). Dnes se z těchto ložisek těží v Japonsku, Turecku, Mexiku, Jižní Americe. Z nadloží solných dómů se síra těží v Louisianě, Texasu a Mexiku. Sedimentární (evaporitní) ložiska se vyskytují v jihovýchodním Polsku (Tarnobrzeg) a na Ukrajině, Uzbekistánu, Tadžikistánu, Iráku.

8 SÍRA Síra jako prvek se nezískává jen z ložisek elementární krystalické síry, ale i z jiných nerostů.

9 UHLÍK C Vyskytuje se ve dvou modifikacích - grafit a diamant. Symetrie: diamant je kubický, grafit je hexagonální, Forma výskytu: Diamant krystaluje převážně v osmibokých krystalech, časté jsou zaoblené plochy a hrany. U grafitu jsou krystaly vzácné, zpravidla se vyskytuje v jemně až hrubě lupenitých agregátech nebo celistvých či zemitých masách. Diamant, krystal 0,5 cm, Kimberley (zdroj Ďuďa, 1990)

10 UHLÍK C Fyzikální vlastnosti: Diamant H = 3,5; T = 10; dokonalá štěpnost podle (111), diamantový až mastný lesk (závisí na kvalitě ploch), vysoký index lomu se silnou disperzí světla (tzv. oheň ). Barva je zpravidla šedá, světle žlutavá nebo je bezbarvý. Grafit H = 2,1-2,3; T = 1; dokonalá štěpnost podle (001), lesk zemitý až polokovový. Barva je černá, snadno se otírá. Dobře vodí teplo a elektrický proud.

11 UHLÍK C Obě polymorfní modifikace mohou existovat za běžných pokojových podmínek. Důvodem je, že rekonstruktivní přeměna mezi oběma probíhá velmi pomalu. Diamant vzniká za vysokých tlaků, grafit vzniká zpravidla z organických látek postupným zvyšováním teploty. Vznik a výskyt: Primárním zdrojem diamantů jsou kimberlitové trubky (peridotity ze spodní části kontinentální kůry). Díky značné odolnosti přecházejí i do náplavů. Výskyty grafitu jsou spjaty převážně s metamorfovanými horninami. Naleziště: Nejznámější naleziště diamantů jsou v JAR, Indii nebo v jakutské oblasti v Rusku. Grafit se u nás vyskytuje v rulách u Velkého Vrbna a v okolí Českého Krumlova.

12 UHLÍK C Použití: Zlomek diamantů lze využít na šperkařské účely, ostatní těžba je využita k výrobě brusných materiálů nebo řezání skla. Z velké části se ale používají synteticky vyrobené diamanty. Grafit se využívá ve slevárenství jako tavné kelímky, přidává se do olejů a samomazných ložisek, používá se i v elektrotechnice. Diagnostické znaky: Diamant má vysokou tvrdost, grafit je měkký a snadno otiratelný.

13 Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým leskem a opakností). Obecný vzorec pro tuto třídu minerálů je X m Z n, kde X představuje kovový prvek a Z nekovový prvek. Poměr X : Z se používá i při rozdělení do jednotlivých oddělení.

14 Některé sulfidické minerály (minerály vytištěné tučně se vyskytují hojně nebo jsou důležité jako rudy)

15 GALENIT PbS Symetrie: kubická Forma výskytu: Krystaly kubického méně kubooktaedrického typu, může dvojčatět podle (111) nebo (114). Běžné jsou zrnité nebo celistvé agregáty. Spojky galenitu, zleva {110} a {111}, {100} a {110}, {100} a {110} (zdroj Slavík, 1974)

16 GALENIT PbS Fyzikální vlastnosti: H = 7,5; T = 2,5; barva olověně šedá se silným kovovým leskem. Štěpnost dokonalá podle krychle (100), kruchý. Složení a struktura: Tvoří izomorfní řadu se selenidem olova clausthalitem, přítomno je často velké množství jiných prvků jako Ag, Bi, Cd, Te, As a další. Galenit zpravidla obsahuje velké množství inkluzí, takže některé stopové prvky prokázané analýzou nemusí nutně vstupovat do struktury galenitu. Struktura galenitu je typu NaCl. Každý atom Pb je obklopen šesti atomy síry. Lze si to představit jako tělesově centrované kubické buňky atomů S a Pb, posunuté navzájem o 1/4 tělesové úhlopříčky.

17 GALENIT PbS Velikost krystalů cca 3 cm.

18 GALENIT PbS Vznik a výskyt: Galenit (často doprovázený sfaleritem) se vyskytuje na hydrotermálních žilách Pb-Zn, na žilách a metasomatických ložiscích mladých pásemných pohoří, je častým sulfidem fluorit - barytových žil, vyskytuje se na ložiscích Pb-Zn vulkanosedimentárního typu. Naleziště: Příbram, Vrančice, Stříbro (hydrotermální žilná ložiska), Harrachov (fluorit - barytové žíly), Mežica (Slovinsko), Tri State - Oklahoma (obě v karbonátových horninách). Použití: Důležitá ruda olova a stříbra, přičemž olovo se používá např. pro výrobu baterií, ve zbrojařském průmyslu, nebo se využívá při ochraně před RTG ionizujícím zářením. Diagnostické znaky: kovový lesk, dokonalá štěpnost

19 SFALERIT (Fe, Zn)S Symetrie: kubická Forma výskytu: Krystaly zpravidla tetraedrického vzhledu nebo zdvojčatělá podle (111) nebo (112). Kontaktní a penetrační srůsty způsobují rýhování štěpných ploch. Agregáty kusové, jemně až hrubě zrnité. Krystal sfaleritu a dvojčata podle (111); o (111), h (100), d (110), zdroj Ježek, 1932.

20 SFALERIT (Fe, Zn)S Fyzikální vlastnosti: H = 4,0; T = 3,5-4; barva je závislá na chemickém složení (obsah Fe) od téměř čirých sfaleritů přes žluté, červené, hnědé až k černým. Dokonalá štěpnost podle (110), lesk na krystalech až diamantový. V UV záření jeví různé luminiscenční barvy - modrou, žlutou nebo oranžovou. Složení a struktura: Sfalerit nikdy nebývá čistý, obsahuje poměrně značné množství izomorfních příměsí: Fe, Cd, Mn, Hg, Cu, In, As, Ag a další. Struktura sfaleritu je příbuzná se strukturou diamantu. Atomy Zn jsou obklopeny čtyřmi atomy síry v tetraedrické koordinaci, přičemž Zn atomy tvoří plošně centrovanou kubickou mřížku.

21 SFALERIT (Fe, Zn)S Vznik a výskyt: Sfalerit často doprovází galenit a i jejich podmínky vzniku jsou podobné, takže se vyskytuje na stejných typech ložisek. Naleziště: Kutná Hora, Příbram, Nová Ves u Rýmařova, Zlaté Hory, Horní Benešov Světová naleziště leží v Kanadě, USA, Austrálii Použití: důležitá ruda zinku( přes 90% Zn se získává ze sfaleritu), kadmia a india. Zinek se využívá při galvanizaci Fe (antikorozní povlaky 35-40% produkce), na výrobu slitin, v elektrických bateriích nebo k výrobě barev (ZnO), skla, ů, glazur, důležitý biogenní prvek (tělo dospělého člověka obsahuje asi 2 g Zn) Příprava: Ruda se praží na ZnO, který se dále upravuje elektrolyticky nebo se taví s koksem. Přitom získáváme také Cd nebo Pb (rudy PbS a ZnS se často vyskytují společně). Světová produkce Zn je asi 6 mil.tun ročně. Diagnostické znaky: tvar krystalů, dokonalá štěpnost

22 PYRHOTIN FeS Symetrie: hexagonální při teplotách nad 254 C, pro teploty nižší monoklinický. Forma výskytu: Prizmatické hexagonální krystaly jsou vzácné, zpravidla tvoří zrnité nebo celistvé agregáty, často bývá vtroušený. Fyzikální vlastnosti: T = 4; H = 4,6 (závisí na složení); barva je světle až tmavě bronzově hnědá s kovovým leskem. Zvláště monoklinické polymorfy jsou silně magnetické. Složení a struktura: Rovný poměr síry a železa mají pyrhotiny pouze za vysokých teplot ( C). Složení běžného monoklinického pyrhotinu se pohybuje kolem stechiometrie Fe 7 S 8. Časté jsou příměsi niklu.

23 PYRHOTIN FeS

24 PYRHOTIN FeS Vznik a výskyt: Pyrhotin vzniká zpravidla za vysokých teplot, proto je charakteristický pro bazické vyvřelé horniny (gabra, diority), dále vzniká na kyzových polymetalických asociacích, objevuje se na siderit - sulfidických žilách, méně častý je ve skarnech a pegmatitech, vzácný je v sedimentech. Naleziště: Staré Ransko, Norilsk - Rusko, Sudbury - Kanada (vše bazické vyvřeliny), Kutná Hora (polymetalická asociace), Měděnec (skarn) Použití: je ruda Ni, těží se zpravidla spolu s minerály Ni, Cu a Pt Diagnostické znaky: významný magnetismus, bronzová barva

25 PYRIT FeS 2 Symetrie: kubická Forma výskytu: Krystaly pyritu se vyskytují až v 60-ti různých krystalových tvarech, z nichž nejběžnější je krychle a pentagondodekaedr. S typickým rýhováním krystalových ploch se setkáváme hlavně u krychle. Typická jsou i dvojčata podle (110) - tzv. železný kříž. Běžně se vyskytuje v kusových, zrnitých nebo vtroušených agregátech. Je častým fosilizačním materiálem. Krystaly pyritu: (a) rýhovaná krychle, (b) pentagon dodekaedr, (c) spojka krychle a pentagon dodekaedru, (d)(e) spojky oktaedru a pentagon dodekaedru (f) penetrační dvojče (110) - železný kříž (zdroj Klein a Hurlbut, 1993)

26 Krystal pyritu (2 cm) Španělsko (zdroj Ďuďa, 1990) Krystal pyritu Hnúšťa (Herčko, 1984)

27 PYRIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,9-5,2; barva je mosazně žlutá, ale může pestře nabíhat, vryp je hnědočerný. Lesk je kovový, lom lasturnatý, štěpnost nezřetelná. Vznik a výskyt: Pyrit je jeden z nejběžnějších sulfidických minerálů, který vzniká za nejrůznějších podmínek od magmatického procesu, přes pegmatitovou fázi, hydrotermální vznik, vzniká v sedimentech i v metamorfním procesu. Běžný je i ve skarnech, alpských žilách a mořských sedimentech. Naleziště: Kutná Hora (hydrotermální vznik), Dolní Bory (pegmatit), Horní Benešov, Zlaté Hory (metamorfogenní ložiska) a řada dalších. Použití: Používal se pro výrobu kyseliny sírové, často se těží pro obsahy zlata. Diagnostické znaky: vysoká tvrdost, snadno se mění na limonit

28 MARKAZIT FeS 2 Symetrie: rombická Forma výskytu: Krystaly mohou být tabulkovité podle (001), pyramidální nebo sloupcovité podle a, typická jsou kopinatá dvojčata podle (110) příp. jejich polysyntetické opakování či hřebenovité prorůstání. Tvoří velké bohatství agregátových forem - ledvinité, krápníkovité, kulovité a další. Srostlice markazitu (2,5 cm) Komořany (zdroj Ďuďa, 1990) Krystal markazitu, cyklická a kopinatá srostlice; c (001), m (110), l (011), r (014), zdroj Slavík, 1974

29 MARKAZIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,85-4,9; barva zpravidla mosazně žlutá s výraznými náběhovými barvami. Štěpnost dokonalá podle (110), lesk kovový. Složení a struktura: Nad 450 C se mění na pyrit. Základem struktury jsou nejtěsněji uspořádané atomy síry s Fe v šestičetné koordinaci. Vztahy markazit - pyrit nejsou v některých ohledech dostatečně známé. Struktura markazitu (zdroj Klein a Hurlbut, 1993)

30 MARKAZIT FeS 2 Vznik a výskyt: Je nízkoteplotním minerálem, vznikajícím i za povrchových podmínek, a při stoupající teplotě se mění na pyrit. Může vznikat jako pozdní minerál v pegmatitech a na hydrotermálních žilách. Významné jsou i akumulace v sedimentech - uhlí nebo jílech. Naleziště: Příbram, Stříbro, Chvaletice, sokolovská pánev Použití: podobné jako u pyritu, ale v menším měřítku Diagnostické znaky: krystalové tvary, přeměna na limonit nebo melanterit

31 Třída halogenidů V této třídě minerálů je dominantní přítomnost silně elektronegativního prvku ze 7.sloupce periodické tabulky (Cl -, F -, I - a Br - ). Tyto poměrně velké anionty lehce vytvářejí sloučeniny s poměrně velkými jednomocnými kationty a výsledkem je zpravidla strukturní uspořádání s vysokou symetrií. Vazby v těchto sloučeninách jsou převážně iontové, sloučeniny jsou zpravidla měkké, nevodivé, se středním nebo vyšším bodem tání. Některé jsou velmi dobře rozpustné ve vodě.

32 HALIT NaCl Symetrie: kubická Forma výskytu: Krystaly jsou převážně kubické. Agregáty jsou celistvé, drobně zrnité, stébelnaté, může tvořit kůry a povlaky. Krystal halitu (3,5 cm), Searles Lake, Kalifornie (zdroj Lapis)

33 HALIT NaCl Fyzikální vlastnosti: T = 2; H = 2,16; barva bílá, hnědá, červená nebo modrá (je to vše výsledkem přítomnosti nečistot), čistá přírodní sůl je bezbarvá. Štěpnost dokonalá podle krychle, lesk skelný, slabě hygroskopický, ve vodě dobře rozpustný. Průměrný podíl v mořské vodě je 3,5%. Složení a struktura: Izomorfně může do struktury halitu místo Na vstupovat draslík (za vyšších teplot), často obsahuje heterogenní nečistoty jílových minerálů nebo hematitu, které jsou zodpovědné za zbarvení halitu. Struktura NaCl (zdroj Klein a Hurlbut, 1993)

34 HALIT NaCl Vznik a výskyt: Obrovská ložiska halitu vznikají evaporizací (odpařováním) mořské vody, kdy jsou těžena hlavně fosilní ložiska tohoto typu často spolu se sádrovcem a anhydritem. Halit může vznikat i na sopečných fumarolách, nebo tvoří výkvěty na půdách v aridních oblastech. Naleziště: Ostrava (v dolech krápníky vznikající ze solného obsahu nadloží), Prešov; Hallstadt, Bad Ischel (Rakousko - trias), Wieliczka (Polsko), záliv Karabogaz (Kaspické moře), oblast Hannoveru (Dolní Sasko) Použití: halit je důležitá biogenní sloučenina, používá se v potravinářství a chemickém průmyslu Diagnostické znaky: tvrdost, barva, forma výskytu

35 HALIT NaCl Nejvýznamnější naleziště soli na světě

36 HALIT NaCl Použití NaCl v USA (1974, 42,5 mil tun)

37 Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla jako akcesorické minerály s vysokou odolností a schopností přecházet do klastických sedimentů. Principielně jsou oxidy sloučeniny kyslíku s kovem a dělí se podle složitosti na oxidy jednoduché a komplexní. Jednoduché oxidy jsou sloučeninou kyslíku a jednoho kovu v různých poměrech (např. CaO, Cu 2 O), zatímco komplexní oxidy obsahují alespoň dva nestejné kovy v různých strukturních pozicích. Další dělení se provádí na základě přítomnosti vody ve struktuře. Vazby jsou v oxidech převážně iontové. Mezi oxidy je řada minerálů, které mají obrovský ekonomický význam pro získávání Fe, Cr, U, Sn, Ti a dalších prvků.

38 HEMATIT Fe 2 O 3 Symetrie: hexagonální Forma výskytu: Krystaly čočkovité, tabulkovité. Agregáty jsou celistvé, zrnité nebo zemité, ledvinité agregáty s radiálně paprsčitou stavbou se nazývají lebníky, častá je forma oolitického hematitu, lístkovité agregáty se označují jako železná slída (spekularit) a v neposlední řadě jsou to nejrůznější zemité agregáty většinou ve směsi s dalšími oxidy a hydroxidy. Krystal hematitu (2 cm), Švýcarsko (zdroj Ďuďa, 1990)

39 HEMATIT Fe 2 O 3 Hematit - lebník (7 cm), Ibrg, Harz (zdroj Muller, 1990) Krystaly hematitu r (10-11), n (22-43), u (10-14), e (01-12), c (12-32) (zdroj Ježek, 1932)

40 HEMATIT Fe 2 O 3 Fyzikální vlastnosti: T = 6-6,5 (u krystalů, agregáty až kolem 1); H = 5,26 (krystaly); barva červená, červenohnědá až černá, vryp světle až tmavě červený, lesk krystalů kovový a u některých agregátů pouze matný. Složení a struktura: Zpravidla mívá příměsi Ti, Mn a inkluze SiO 2. Nad 950 C je zcela mísitelný s ilmenitem. Vznik a výskyt: Vzniká při různých teplotách a je obecně rozšířeným červeným pigmentem minerálů a hornin. Ekonomický význam mají ložiska páskovaných hematitů v jaspilitech (prekambrická ložiska) a metamorfovaná forma těchto ložisek (itabirity). Menší ložiskový význam mají oolitická a detritická sedimentární ložiska hematitu a reziduální ložiska Fe a Al rud v tropických oblastech. Naleziště: Lahn - Dill v Porýní, Krivoj Rog na Ukrajině (hemtit v jaspilitech), Itabira v Brazílii, okolí Železného Brodu (itabirity), Mníšek u Prahy (oolitický hematit), Rudňany, Slovinky (Slovensko, siderit - sulfidické žíly se spekularitem), Horní Blatná, Horní Halže (lebníky na mladých rudních žilách), Příbram (na rudních žilách), Elba (světoznámé krystaly). Použití: Významná ruda Fe Diagnostické znaky: barva vrypu

41 KASITERIT SnO 2 Symetrie: tetragonální Forma výskytu: Habitus krystalů je závislý na teplotách vzniku: vysokoteplotní krystaly bývají dipyramidální zpravidla zdvojčatělé, hydrotermálně vzniklé krystaly jsou jehličkovité a v epitermálních podmínkách je kolomorfní. Téměř vždy (i zdánlivé monokrystaly) bývá zdvojčatělý podle (101) a to i polysynteticky nebo cyklicky. Agregáty zpravidla zrnité. Kasiterit (2,5 cm), Cínovec (zdroj Ďuďa, 1990) Dvojčata kasiteritu podle (011); a (100), m (110), e (101), s (111) (zdroj Ježek, 1932)

42 KASITERIT SnO 2 Fyzikální vlastnosti: T = 6-7, H = 6,8-7,1; barva zpravidla hnědá až černá, může být ale i bezbarvý, lesk kovový, štěpnost nedokonalá. V závislosti na příměsích může být polovodičem. Složení a struktura: Izomorfně může být přítomno Fe, Nb a Ta. Vznik a výskyt: Je typickým minerálem cínonosných žul (greiseny) a některých pegmatitů. Je běžný na hydrotermálních Sn - W žilách, vyskytuje se ve skarnech, velký význam mají i subvulkanická ložiska Sn a barevných kovů bolivijského typu. Běžně se těží v náplavech. Naleziště: Cínovec, Krupka, Horní Slavkov (hydrotermální Sn - W mineralizace), Otov, Rožná, Hagendorf - Bavorsko (pegmatity) Použití: základní ruda Sn; používá se pro výrobu slitin, ve zbrojařském průmyslu

43 MAGNETIT Fe 3 O 4 Symetrie: kubická Forma výskytu: Běžně tvoří oktaedrické krystaly, které mohou být zdvojčatělé podle (111), agregáty hrubě zrnité. Magnetit (2 cm), Švýcarsko (zdroj Ďuďa, 1990) Fyzikální vlastnosti: T = 6, H = 5,18; barva černá, lesk kovový, vryp černý, lom lasturnatý. Je magnetický.

44 MAGNETIT Fe 3 O 4 Složení a struktura: Běžné jsou příměsi - Cr, Mg, Al nebo V, za vyšších teplot Ti. Struktura je inverzní spinelová. Vznik a výskyt: Převážně vysokoteplotní minerál, vzniká ale i za pokojových teplot. V magmatických horninách (hlavně bazických a ultrabazických) tvoří akumulace, hojný je ve skarnech. Na hydrotermálních žilách spíše vzácný, na alpských žilách běžný. Pěkné krystaly bývají v chloritických a mastkových břidlicích, vzniká i v sedimentech za nízkých teplot. Naleziště: Obří důl - Krkonoše, Vlastějovice, Měděnec, Nedvědice (skarny), Bushveldský komplex - JAR (magmatity), Sobotín (v mastkových břidlicích), Použití: ruda Fe Diagnostické znaky: magnetismus, vryp

45 Třída karbonátů Základem struktury karbonátů jsou aniontové skupiny (CO 3 ) -2, které mezi sebou navzájem nesdílí kyslíkové atomy. Vazba mezi uhlíkem a kyslíky je poměrně pevná, ne však tolik jako v CO 2. Důležité bezvodé karbonáty spadají do tří strukturních skupin: řada kalcitu, řada aragonitu a řada dolomitu.

46 KALCIT CaCO 3 Forma výskytu: U kalcitu bylo popsáno přes 500 krystalových tvarů a 1500 spojek těchto tvarů. Mezi nejběžnější patří: sloupcovité krystaly, klenec, skalenoedr. Agregáty kalcitu jsou kusové, zrnité, stébelnaté, tvoří oolity, konkrece a krápníky. Kalcitová drůza, Nižná slaná (zdroj Herčko, 1984)

47 KALCIT CaCO 3 Fyzikální vlastnosti: T = 3; H = 2,71; barva je bílá, šedá, žlutá, hnědavá, růžová nebo je bezbarvý, lesk skelný, dokonale štěpný podle klence. Složení a struktura: Ca může být izomorfně zastupováno Fe, Mn nebo Mg (dokonalá izomorfní mísitelnost je za vyšších teplot). Krystaly kalcitu horní řada: klenec pozitivní a negativní, prostřední řada: různé spojky klenců, dolní řada zleva skalenoedr, spojka skalenoedru a klence a spojka dvou skalenoedrů (zdroj Ježek, 1932)

48 KALCIT CaCO 3 Vznik a výskyt: Velmi rozšířený minerál, vznikající během mnoha nejrůznějších procesů. Může vznikat v magmatickém cyklu - je součástí karbonatitů, je velmi častou hlušinovou výplní hydrotermálních žil nejrůznějších typů, vzniká na termálních pramenech, vzniká přímým srážením z mořské vody, je tedy podstatnou součástí sedimentů (vápence, slínovce) a při metamorfóze je součástí mramorů. Často fosilizuje organické zbytky. Velmi časté je nahrazování kalcitu jinými minerály (pseudomorfózy) např. křemenem, limonitem a naopak - kalcit tvoří pseudomorfózy po aragonitu, barytu, fluoritu a dalších. Naleziště: Příbram, Stříbro (krystaly na rudních žilách), Černý důl v Krkonoších, Štramberk (krystaly ve vápencích) a mnoho dalších. Použití: výroba cementu, čiré krystaly se používají jako nikoly Diagnostické znaky: štěpnost

49 ARAGONIT CaCO 3 Symetrie: rombická Forma výskytu: Sloupcovité krystaly (někdy zploštělé podle (010)), jehlicovité krystaly podle osy c. Dvojčatí podle (110) často i cyklicky tak, že vzniká pseudohexagonální symetrie. Agregáty stébelnaté, paprsčité, vřídlovcovité, keříčkovité nebo krápníkovité. Fyzikální vlastnosti: T = 3,5-4; H = 2,94; barva bílá, šedá, žlutá, nazelenalá nebo je bezbarvý, lesk skelný až mastný, štěpnost podle (010) málo zřetelná.

50 ARAGONIT CaCO 3 Složení a struktura: Omezeně může na pozici Ca vstupovat Sr a Pb. Třením v achátové misce může kalcit přecházet na aragonit - ten je stabilnější za vyšších tlaků. Vznik a výskyt: Vzniká za nízkých teplot v připovrchových podmínkách. Objevuje se v pozdních fázích na něktrých hydrotermálních žilách, vzniká během supergenních pochodů na mnoha ložiscích, je běžný produkt vylučování z horkých pramenů (vřídlovec), zvětráváním Ca minerálů v bazaltech nebo se tvoří v jílových sedimentech. Naleziště: Hřídelec u Nové Paky, Hořenec u Bíliny (v bazaltech), Příbram, Špania Dolina (supergenní zóna ložiska) Diagnostické znaky: štěpnost, hustota

51 MALACHIT Cu 2 CO 3 (OH) 2 Symetrie: monoklinická Forma výskytu: Krystaly sloupcovité nebo jehlicovité, zpravidla zdvojčatělé podle (100). Agregáty ledvinité s vrstevnatou stavbou, krápníky, povlaky nebo výplně. Fyzikální vlastnosti: T = 3,5-4; H = 3,9-4,03; barva v různých odstínech zelené, někdy až do černa. Lesk podle formy výskytu skelný až zemitý, dokonale štěpný podle báze, vryp zelený. Řez kolomorfním agregátem malachitu, Zair (zdroj Ďuďa, 1990)

52 MALACHIT Cu 2 CO 3 (OH) 2 Složení a struktura: Základem struktury jsou koordinační oktaedry CuO 2 (OH) 4 a CuO 4 (OH) 2. Ty jsou hranami propojeny do řetězců ve směru osy c. Jednotlivé řetězce jsou pak prostorově provázány pomocí skupin CO Vznik a výskyt: Běžný produkt oxidace Cu rud v gosanech nejrůznějších typů ložisek. Naleziště: Tsumeb (Namíbie), Špania Dolina (Slovensko), Nová Ves u Rýmařova, Borovec u Štěpánova, Ludvíkov u Vrbna Diagnostické znaky: barva, agregace

53 AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; H = 3,77; barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší než na agregátech, štěpnost (100) dokonalá. Azuritový povlak, Piesky (zdroj Herčko, 1984)

54 AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Složení a struktura: Ionty Cu jsou v koordinaci se dvěma kyslíky a dvěma hydroxylovými skupinami. Tyto "tetragonální" skupiny jsou propojeny do řetězců podél osy b, které jsou provázány skupinami CO 3. Každá OH skupina je sdílena třemi ionty Cu a každý kyslík z CO 3 skupiny je vázán na jeden atom Cu. Vznik a výskyt: Běžný produkt oxidace Cu sulfidických rud, doprovázející malachit. Naleziště: Špania Dolina, Tsumeb (Namíbie) Diagnostické znaky: barva, štěpnost

55 Třída sulfátů Základem struktury sulfátů je malý kationt síry v tetraedrické koordinaci s kyslíky - aniontová skupina (SO4)-2.

56 BARYT BaSO 4 Symetrie: rombická Forma výskytu: Krystaly jsou převážně tabulkovité podle báze nebo sloupcovité (rakve) podle osy a, často hojnoploché. Agregáty bývají zrnité. Fyzikální vlastnosti: T = 3-3,5; H = 4,5; barva šedá, žlutá, nazelenalá, modrá, červená, lesk na krystalových plochách skelný, jinak matný, dokonale štěpný podle báze, zřetelně štěpný podle (210). Baryt, Banská Štiavnica (zdroj Herčko, 1984) Různé typy krystalů barytu (zdroj Bernard, 1992)

57 BARYT BaSO 4 Složení a struktura: Běžně bývá izomorfně přimíšeno Sr nebo Pb, mechanickou nečistotou bývá Fe 2 O 3. Vznik a výskyt: Je to běžný středně až nízce teplotní minerál postmagmatického a sedimentárního původu. Běžný je na některých hydrotermálních žilách (asociace fluorit-barytová), je součástí hydrotermálně sedimentárních ložisek, vzniká i krystalizací z termálních vod, a na řadě typů sedimentárních ložisek (reziduální zvětraliny, evaporitová ložiska nebo ve vápencích). Naleziště: Příbram, Jihlava, Stříbro, Harrachov, Moldava (hydrotermální žíly), Štěpánovice a Květnice u Tišnova (čočky ve vápencích), Kladno (na trhlinách pelosideritů), Kozákov, Studenec (dutiny bazaltů) Použití: při těžbě ropy na výplach vrtů, ve stavebniství na RTG absorbující omítky, výroba barev, plnidlo v papírenství a gumárenství Diagnostické znaky: hustota

58 SÁDROVEC CaSO 4. 2H 2 O Symetrie: monoklinická Forma výskytu: Je známo asi 70 jednoduchých tvarů krystalů sádrovce, z nichž nejčastější jsou krystaly tabulkovité podle (010), sloupcovité nebo čočkovité. Zcela běžné jsou také srůsty podle (100) tzv. "vlaštovčí ocas" nebo podle (001) tzv. "pařížská dvojčata". Agregáty bývají zrnité, celistvé, vláknité (selenit) nebo lupenité. Fyzikální vlastnosti: T = 2; H = 2,32; zpravidla bezbarvý bílý, šedý nebo nažloutlý, lesk skelný na štěpných plochách perleťový. Štěpný velmi dokonale podle (010). Krystaly sádrovce (a) a dvojče (b) podle (100); n (111), f (110), b (010), e (001) (zdroj Klein a Hurlbut, 1993)

59 SÁDROVEC CaSO 4. 2H 2 O Složení a struktura: Se zvyšující se teplotou postupně ztrácí vodu (přes bassanit až k anhydritu), zpravidla obsahuje řadu mechanických příměsí. Vznik a výskyt: Typický minerál sedimentárních a zvětrávacích procesů (evapority, jílové sedimenty, zvětrávací kůry ložisek), méně často vzniká na fumarolách. Naleziště: Hromnice, Chvaletice (zvětrávání kyzových ložisek), Kateřinky a Kobeřice u Opavy (v sedimentech), v hnědouhelných pánvích Použití: výroba sádry Diagnostické znaky: štěpnost, krystalové tvary a srůsty Postupná dehydratace sádrovce se zvyšující se teplotou zdroj Klein a Hurlbut, 1993)

60 SÁDROVEC CaSO 4. 2H 2 O Složení a struktura: Se zvyšující se teplotou postupně ztrácí vodu (přes bassanit až k anhydritu), zpravidla obsahuje řadu mechanických příměsí. Vznik a výskyt: Typický minerál sedimentárních a zvětrávacích procesů (evapority, jílové sedimenty, zvětrávací kůry ložisek), méně často vzniká na fumarolách. Naleziště: Hromnice, Chvaletice (zvětrávání kyzových ložisek), Kateřinky a Kobeřice u Opavy (v sedimentech), v hnědouhelných pánvích Použití: výroba sádry Diagnostické znaky: štěpnost, krystalové tvary a srůsty Postupná dehydratace sádrovce se zvyšující se teplotou zdroj Klein a Hurlbut, 1993)

61 Třída fosfátů Základní jednotkou struktury fosfátů je aniontová skupina (PO 4 ) -3.

62 APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Symetrie: hexagonální Forma výskytu: Krystaly jsou velmi rozmanitých forem - krátce i dlouze sloupcovité, jehlicovité nebo tabulkovité podle báze. Většinou převažuje prizma, báze nebo dipyramida. Agregáty nejčastěji zrnité nebo celistvé, ale i oolitické, vláknité či zemité. Krystaly apatitu (0,5 cm) Gunheath Pit, Cornwall (zdroj Lapis) Fyzikální vlastnosti: T = 5; H = 3,15-3,2; barva šedá, žlutá, zelená, modrá, hnědá někdy i čirý, lesk skelný, nezřetelně štěpný podle báze.

63 APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Složení a struktura: Ve struktuře se běžně zastupují F, Cl, (OH) a CO 3. Skupina PO 4 může být nahrazována SO 4 nebo i SiO 4. Za vápník nejčastěji substituují Sr a Mn. Vznik a výskyt: Běžný akcesorický minerál hornin nejrůznějšího genetického typu. Zcela běžný je v magmatických a metamorfovaných horninách, krystalovaný bývá v pegmatitech a greisenech. Vzácněji se objevuje na hydrotermálních žilách a alpských žilách. Naleziště: alkalické horniny na poloostrově Kola, Rožná, Dobrá Voda (pegmatity), Horní Slavkov, Krupka (greiseny) Použití: zdroj fosforu, surovina pro přípravu syntetických hnojiv. Diagnostické znaky: barva, krystalové tvary

64 Děkuji za pozornost.

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Přednáška č. 6 Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým

Více

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Přednáška č. 7 Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla

Více

Přírodopis 9. Přehled minerálů SIRNÍKY

Přírodopis 9. Přehled minerálů SIRNÍKY Přírodopis 9 11. hodina Přehled minerálů SIRNÍKY Mgr. Jan Souček Základní škola Meziměstí II. Sirníky sulfidy Soli kyseliny sirovodíkové (H 2 S). Slučují se jeden nebo dva atomy kovu s jedním nebo několika

Více

Systematická mineralogie I

Systematická mineralogie I Systematická mineralogie I Princip mineralogického systému. Systematický přehled nejdůležitějších minerálů ze skupiny prvků, sulfidů, halogenidů, oxidů, karbonátů, sulfátů a fosfátů. Základní vlastnosti

Více

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 3. Systematická mineralogie Prvky až fosfáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Klasifikace minerálů 1735 C. Linné - první

Více

PRVKY. Kovy skupiny mědi Cu, Ag, Au

PRVKY. Kovy skupiny mědi Cu, Ag, Au PRVKY Z známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou. ROZDĚLENÍ: -

Více

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější

Více

Základy geologie pro geografy František Vacek

Základy geologie pro geografy František Vacek Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

PRVKY. Kovy skupiny mědi Cu, Ag, Au

PRVKY. Kovy skupiny mědi Cu, Ag, Au PRVKY Ze známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou, případně Cl

Více

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

Horniny a minerály II. část. Přehled nejdůležitějších minerálů Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje

Více

Mikroskopie minerálů a hornin

Mikroskopie minerálů a hornin Mikroskopie minerálů a hornin Přednáška 4 Serpentinová skupina, glaukonit, wollastonit, sádrovec, rutil, baryt, fluorit Skupina serpentinu Význam a výskyt Tvar a omezení Barva, pleochroismus v bazických,

Více

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou Přednáška č.5 MINERÁL: (homogenní, anizotropní, diskontinuum.) Anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení, uspořádaných do krystalové mřížky (tvoří

Více

Úvod do praktické geologie I

Úvod do praktické geologie I Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají

Více

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité. SULFÁTY (SÍRANY) Sulfáty můžeme odvodit od kyseliny sírové H 2 SO 4. Tyto minerály jsou nekovového vzhledu a většinou měkké, někdy rozpustné ve vodě. Dělíme je na bezvodé a vodnaté. a) bezvodé sulfáty

Více

MINERALOGICKÁ SOUSTAVA I

MINERALOGICKÁ SOUSTAVA I MINERALOGICKÁ SOUSTAVA I PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_264 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 MINERALOGICKÁ

Více

SULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více).

SULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více). SULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více). Do skupiny sulfidů řadíme i takové minerály, kde síra je zčásti nebo úplně zastoupena As (arzenidy), Se (selenidy), Te (teluridy), zřídka

Více

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk. 7.7. Karbonáty (uhličitany) Karbonáty patří mezi běţné minerály zemské kůry. Jejich vzorce odvodíme od kyseliny uhličité H 2 CO 3. Můţeme je rozdělit podle strukturních typů, nebo na bezvodé a vodnaté.

Více

Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop.

Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Přednáška č. 5 Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Systematická mineralogie. Princip mineralogického systému (Strunz). Popis minerálů v jednotlivých třídách

Více

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

Horniny a minerály II. část. Přehled nejdůležitějších minerálů Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje

Více

HÁDANKY S MINERÁLY. Obr. č. 1

HÁDANKY S MINERÁLY. Obr. č. 1 HÁDANKY S MINERÁLY 1. Jsem zářivě žlutý minerál. Mou velkou výhodou i nevýhodou je, že jsem velice měkký. Snadno se se mnou pracuje, jsem dokonale kujný. Získáš mě těžbou z hlubinných dolů nebo rýžováním

Více

PETROLOGIE =PETROGRAFIE

PETROLOGIE =PETROGRAFIE MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)

Více

Mineralogie 4. Přehled minerálů -oxidy

Mineralogie 4. Přehled minerálů -oxidy Mineralogie 4 Přehled minerálů -oxidy 4. Oxidy - sloučeniny různých prvků s kyslíkem - vodu buď neobsahují - bezvodé oxidy - nebo ji obsahují vázanou ve své struktuře - vodnaté oxidy (zpravidla jsou amorfní)

Více

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda.

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda. Oxidy Sloučeniny kovů s kyslíkem Křišťál bezbarvá odrůda Ametyst fialová odrůda Křemen Složení: oxid křemičitý SiO2 Vzhled: krystalový šestiboké hranoly Barva: čirý, bělavý, šedavý barevné odrůdy h= 2,6

Více

Číslo klíčové aktivity: V/2

Číslo klíčové aktivity: V/2 Název projektu: Pořadové číslo projektu: Název klíčové aktivity: Číslo klíčové aktivity: V/2 Název DUM: Číslo DUM: Vzdělávací předmět: Tematická oblast: Jméno autora: Anotace: Klíčová slova: Metodické

Více

- Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány

- Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány 3. MINERALOGICKÁ TŘÍDA HALOGENIDY - Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány první 4 prvky VII.A skupiny periodické tabulky prvků. Řadíme mezi ně FLUOR,

Více

1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C)

1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C) Nerosty - systém 1. PRVKY - nerosty tvořené jediným prvkem (Au, C, ) - dělíme je na: kovové: - ušlechtilé kovy, - velká hustota (kolem 20 g/cm 3 ) - zlato, stříbro, platina, někdy i měď nekovové: - síra

Více

Vnitřní geologické děje

Vnitřní geologické děje Vznik a vývoj Země 1. Jak se nazývá naše galaxie a kdy pravděpodobně vznikla? 2. Jak a kdy vznikla naše Země? 3. Jak se následně vyvíjela Země? 4. Vyjmenuj planety v pořadí od slunce. 5. Popiš základní

Více

Oceánské sedimenty jako zdroj surovin

Oceánské sedimenty jako zdroj surovin Oceánské sedimenty jako zdroj surovin 2005 Geografie Světového oceánu 2 Rozšíření sedimentů 2005 Geografie Světového oceánu 3 2005 Geografie Světového oceánu 4 MOŘSKÉ NEROSTNÉ SUROVINY 2005 Geografie Světového

Více

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci OXIDY A HYDROXIDY Oxidy jsou sloučeniny O 2- s prvky kovovými i nekovovými. Ke skupině minerálů - oxidů jsou řazeny také přírodní hydroxidy a oxi-hydroxidy (např. Fe O /OH/). Systém oxidů - starší učebnice

Více

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s použitím internetu. nerost (minerál) krystal krystalová

Více

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem).

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). 4. MINERALOGICKÁ TŘÍDA OXIDY - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). Výskyt: Oxidy se vyskytují ve svrchních částech zemské kůry (v místech, kde je litosféra

Více

2. MINERALOGICKÁ TŘÍDA- SULFIDY:

2. MINERALOGICKÁ TŘÍDA- SULFIDY: 2. MINERALOGICKÁ TŘÍDA- SULFIDY: Jedná se o chemické sloučeniny síry a kovu. Vznikají v zemské kůře při chladnutí magmatu krystalizací z jeho horkých vodných roztoků. Vznikají tak rudné žíly = ložiska

Více

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina Přírodopis 9 8. hodina Fyzikální vlastnosti nerostů Mgr. Jan Souček Základní škola Meziměstí Hustota (g/cm 3.) udává, kolikrát je objem nerostu těžší než stejný objem destilované vody. Velkou hustotu má

Více

Mineralogie systematická /soustavná/

Mineralogie systematická /soustavná/ Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci silikátů 2. Nesosilikáty 3. Shrnutí 1. Co je minerál? Anorganická

Více

MINERÁLY I Minerály I

MINERÁLY I Minerály I MINERÁLY I Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů

Více

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají

Více

VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu

VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu Číslo projektu Škola Šablona klíčové aktivity V/2 CZ.1.07/1.4.00/21.1825 Sada Přírodopis 6-9 Základní škola s rozšířenou výukou výtvarné výchovy, Teplice, Koperníkova

Více

NEROSTY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím.

NEROSTY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím. NEROSTY Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím. Nerosty a horniny jsou to neživé přírodniny skládá se z nich zemská kůra

Více

Testové otázky ke zkoušce z předmětu Mineralogie

Testové otázky ke zkoušce z předmětu Mineralogie Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků

Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků Téma: Kovy Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků kovy nekovy polokovy 4/5 všech prvků jsou pevné látky kapalná rtuť kovový lesk kujné a tažné vodí elektrický proud a

Více

5. MINERALOGICKÁ TŘÍDA UHLIČITANY

5. MINERALOGICKÁ TŘÍDA UHLIČITANY 5. MINERALOGICKÁ TŘÍDA UHLIČITANY Minerály 5. mineralogické třídy jsou soli kyseliny uhličité. Jsou anorganického i organického původu (vznikaly usazováním a postupným zkameněním vápenitých koster a schránek

Více

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a

Více

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí SOLI A JEJICH VYUŽITÍ Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí POUŽITÍ SOLÍ Zemědělství dusičnany, draselné soli, fosforečnany. Stavebnictví, sochařství vápenaté soli.

Více

Mineralogický systém skupina I - prvky

Mineralogický systém skupina I - prvky Mineralogický systém skupina I - prvky Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 11. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými nerosty, které

Více

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy. PERIODICKÁ TABULKA Je známo více než 100 prvků 90 je přirozených (jsou v přírodě) 11 plynů 2 kapaliny (brom, rtuť) Ostatní byly připraveny uměle. Dmitrij Ivanovič Mendělejev uspořádal 63 tehdy známých

Více

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Mineralogie II Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Shrnutí 1. Cyklosilikáty Poměrně malá ale důležitá skupina silikátů,

Více

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL

Více

Opakování hydroxidy, halogenidy, oxidy; sulfidy Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:

Opakování hydroxidy, halogenidy, oxidy; sulfidy Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_02_09

Více

Geologie-Minerály I.

Geologie-Minerály I. Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva

Více

SULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 3. 2013. Ročník: osmý

SULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 3. 2013. Ročník: osmý Autor: Mgr. Stanislava Bubíková SULFIDY Datum (období) tvorby: 14. 3. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Anorganické sloučeniny 1 Anotace: Žáci se seznámí s dvouprvkovými

Více

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování

Více

Kovy V rámci kovů rozlišujeme krystalochemicky příbuzné skupiny kovů.

Kovy V rámci kovů rozlišujeme krystalochemicky příbuzné skupiny kovů. 7.2. PRVKY Ze známých prvků (viz. periodická tabulka, obr.72_1) se jich jenom málo vyskytuje v elementárním stavu jako nerosty. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou.

Více

1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení

1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení Přírodopis 9. třída pracovní list Téma: Mineralogie Jméno:. 1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení 2. Definice minerálu = nerost =

Více

Laboratorní práce č. 4

Laboratorní práce č. 4 1/8 3.2.04.6 Uhličitany kalcit (CaCO3) nejrozšířenější, mnoho tvarů, nejznámější je klenec, součást vápenců a mramorů - organogenní vápenec nejvíce kalcitu usazováním schránek různých živočichů (korálů,

Více

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7. Mineralogie I Milan Novák Ústav geologických věd, PřF MU v Brně MINERALOGICKÝ SYSTÉM 2 SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře

Více

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů Poznávání minerálů a hornin Cvičení 2 Fyzikální vlastnosti minerálů Jak poznáváme minerály? Pouze oči a zkušenosti (bez přístrojů): Může snadno dojít k omylu, určení je pouze orientační posouzení základních

Více

Chemické složení Země

Chemické složení Země Chemické složení Země Geochemie: do hloubky 16 km (zemská kůra) Clark: % obsah prvků v zemské kůře O, Si, Al = 82,5 % + Fe, Ca, Na, K, Mg, H = 98.7 % (Si0 2 = 69 %, Al 2 0 3 =14%) Rozložení prvků nerovnoměrné

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,

Více

SYSTEMATICKÁ MINERALOGIE

SYSTEMATICKÁ MINERALOGIE 1 SYSTEMATICKÁ MINERALOGIE doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (listopad 2005) OBSAH Úvod 1. Prvky a

Více

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ ZÁKLADY GEOLOGIE Úvod přednáška 1 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz Požadavky ke zkoušce 1) Účast na cvičeních, poznávačka základních minerálů a hornin = zápočet 2)

Více

Mineralogie I Prof. RNDr. Milan Novák, CSc.

Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Sorosilikáty 2. Cyklosilikáty 3. Inosilikáty 4. Shrnutí 1. Sorosilikáty skupina epidotu Málo významná skupina,

Více

Kovy a metody jejich výroby

Kovy a metody jejich výroby Kovy a metody jejich výroby Kovy v periodické tabulce Základní vlastnosti kovů 80 % prvků v přírodě jsou kovy, v PSP stoupá kovový charakter směrem DOLEVA Vlastnosti: Fyzikální kovový lesk kujnost a tažnost

Více

Mineralogický systém skupina V - uhličitany

Mineralogický systém skupina V - uhličitany Mineralogický systém skupina V - uhličitany Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 12. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými minerály,

Více

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1 Fyzikální a chemické vlastnosti minerálů Cvičení 1GEPE + 1GEO1 1 Pro popis a charakteristiku minerálních druhů je třeba zná jejich základní fyzikální a chemické vlastnosti. Tyto vlastnosti slouží k přesné

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát Malý atlas minerálů. achát Acháty vznikají v dutinách vyvřelých hornin. Jsou tvořené soustřednými vrstvičkami různě zbarvených odrůd křemene a chalcedonu, které vyplňují dutinu achátová pecka. Nauč se

Více

VY_32_INOVACE_05_PYRIT_27

VY_32_INOVACE_05_PYRIT_27 VY_32_INOVACE_05_PYRIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400

Více

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Katedra geotechniky K135 (5. patro budova B) - Geologie - Mechanika zemin - Zakládání staveb - Podzemní

Více

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková VLASTNOSTI KOVŮ Datum (období) tvorby: 12. 10. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Přechodné prvky, jejich vlastnosti a sloučeniny

Přechodné prvky, jejich vlastnosti a sloučeniny Přechodné prvky, jejich vlastnosti a sloučeniny - jsou to d-prvky, nazývají se také přechodné prvky - v PSP jsou umístěny mezi s a p prvky - nacházejí se ve 4. 7. periodě - atomy přechodných prvků mají

Více

5. Třída - karbonáty

5. Třída - karbonáty 5. Třída - karbonáty Karbonáty vytváří cca 210 minerálů, tj. 6 % ze známých minerálů. Chemicky lze karbonáty odvodit od slabé kyseliny uhličité nahrazením jejich dvou vodíků kovem. Jako kationty vystupují

Více

VY_32_INOVACE_06_GALENIT_27

VY_32_INOVACE_06_GALENIT_27 VY_32_INOVACE_06_GALENIT_27 Autor:Vladimír Bělín Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400

Více

Mineralogický systém skupina VIII - křemičitany

Mineralogický systém skupina VIII - křemičitany Mineralogický systém skupina VIII - křemičitany Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 16. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými zástupci

Více

Stavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro

Stavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro Stavba Země pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro Stavba Země: astenosféra litosféra (zemská kůra a svrchní tuhý plášť) plášť 2 900 km

Více

K O V Y. 4/5 všech prvků

K O V Y. 4/5 všech prvků K O V Y 4/5 všech prvků Vlastnosti kovů 4/5 všech prvků jsou kovy kovový lesk dobrá elektrická a tepelná vodivost tažnost a kujnost nízká elektronegativita = snadno vytvářejí kationty pevné látky (kromě

Více

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_52_INOVACE_CH8.7 Autor Datum vytvoření vzdělávacího materiálu Datum ověření

Více

EKOLOGICKÝ PŘÍRODOPIS. Tématický celek: NEŽIVÁ PŘÍRODA. Téma: ROZDĚLENÍ NEROSTŮ - PRVKY. Ročník: 9. Autor: Mgr. Martina Kopecká

EKOLOGICKÝ PŘÍRODOPIS. Tématický celek: NEŽIVÁ PŘÍRODA. Téma: ROZDĚLENÍ NEROSTŮ - PRVKY. Ročník: 9. Autor: Mgr. Martina Kopecká Základní škola Jindřicha Matiegky Mělník, příspěvková organizace, Pražská 2817, 276 01 Mělník www.zsjm-me.cz tel.: 315 623 015 EKOLOGICKÝ PŘÍRODOPIS Tématický celek: NEŽIVÁ PŘÍRODA Téma: ROZDĚLENÍ NEROSTŮ

Více

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti 5. Nekovy sı ra 1) Obecná charakteristika nekovů 2) Síra a její vlastnosti 1) Obecná charakteristika nekovů Jedna ze tří chemických skupin prvků. Nekovy mají vysokou elektronegativitu. Jsou to prvky uspořádané

Více

Zařazení polokovů v periodické tabulce [1]

Zařazení polokovů v periodické tabulce [1] Polokovy Zařazení polokovů v periodické tabulce [1] Obecné vlastnosti polokovů tvoří přechod mezi kovy a nekovy vlastnosti kovů: pevnost a lesk ( B, Si, Ge, Se, As) jsou křehké a nejsou kujné malá elektrická

Více

Moravský PísekP. Číslo projektu: : CZ.1.07/1.4.00/21.0624 Název. ové aktivity: Název DUM: : Nerosty prvky, halogenidy, sulfidy (prezentace)

Moravský PísekP. Číslo projektu: : CZ.1.07/1.4.00/21.0624 Název. ové aktivity: Název DUM: : Nerosty prvky, halogenidy, sulfidy (prezentace) Základní škola a Mateřsk ská škola, Moravský PísekP Číslo projektu: : CZ.1.07/1.4.00/21.0624 Název šablony klíčov ové aktivity: Využit ití ICT III/2 Inovace a zkvalitnění výuky Název DUM: : Nerosty prvky,

Více

Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad

Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad železo vyrábí Surové železo se zpracovává na litinu a ocel

Více

Otázky a jejich autorské řešení

Otázky a jejich autorské řešení Otázky a jejich autorské řešení Otázky: 1a Co jsou to amfoterní látky? a. látky krystalizující v krychlové soustavě b. látky beztvaré c. látky, které se chovají jako kyselina nebo jako zásada podle podmínek

Více

Drahé kovy. Fyzikálně-chemické vlastnosti drahých kovů. Výskyt a těžba drahých kovů

Drahé kovy. Fyzikálně-chemické vlastnosti drahých kovů. Výskyt a těžba drahých kovů Drahé kovy Drahé kovy je označení pro kovové prvky, které se v přírodě vyskytují vzácně, a proto mají vysokou cenu. Mezi drahé kovy se řadí zejména zlato, stříbro a platina. Fyzikálně-chemické vlastnosti

Více

NEROSTY A HORNINY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin.

NEROSTY A HORNINY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin. NEROSTY A HORNINY Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin. Nerosty a horniny neživé přírodniny, tvoří zemskou kůru

Více

Použití: méně významná ruda mědi, šperkařství.

Použití: méně významná ruda mědi, šperkařství. Cu3(CO3)2(OH) Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; ρ = 3,77 g.cm -3 Barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší

Více

Určování hlavních horninotvorných minerálů

Určování hlavních horninotvorných minerálů Určování hlavních horninotvorných minerálů Pro správné určení horniny je třeba v prvé řadě poznat texturu a strukturu horninového vzorku a poté rozeznat základní minerály, které horninu tvoří. Každá hornina

Více

VY_32_INOVACE_30_HBEN14

VY_32_INOVACE_30_HBEN14 Tetrely Temacká oblast : Chemie anorganická chemie Datum vytvoření: 26. 8. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný obsah: Prvky skupiny IV.A (tetrely) charakteriska

Více

Optické vlastnosti horninotvorných minerálů IV

Optické vlastnosti horninotvorných minerálů IV Optické vlastnosti horninotvorných minerálů IV Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra 1 Obsah prezentace titanit 3 karbonáty 11 epidot 18 klinozoisit

Více

Mineralogie a petrografie

Mineralogie a petrografie Mineralogie a petrografie Pro 1. ročník, VŠB-TUO HGF Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Cíle předmětu mineralogie a petrografie Předmět seznamuje studenty se základy dvou vědních

Více

Střední škola obchodu, řemesel a služeb Žamberk

Střední škola obchodu, řemesel a služeb Žamberk Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 12.3.2013

Více

Environmentální geomorfologie

Environmentální geomorfologie Nováková Jana Environmentální geomorfologie Chemické zvětrávání Zemská kůra vrstva žulová (= granitová = Sial) vrstva bazaltová (čedičová = Sima, cca 70 km) Názvy granitová a čedičová vrstva neznamenají

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 252 Jméno autora Jana Malečová Datum, ve kterém byl DUM vytvořen 25.1.2012 Ročník, pro který je DUM určen 9. Vzdělávací oblast (klíčová slova) Člověk a příroda

Více

Platinové kovy. Obecné vlastnosti. Ruthenium a osmium. Jméno: Jana Homolková UČO:

Platinové kovy. Obecné vlastnosti. Ruthenium a osmium. Jméno: Jana Homolková UČO: Platinové kovy Obecné vlastnosti Patří zde prvky druhé a třetí triády 8. skupiny periodického systému. Prvky druhé triády (Ru, Rh, Pd) se nazývají lehké platinové kovy. Prvky třetí triády se nazývají (Os,

Více