POČÍTAČOVÁ GRAFIKA - PGR PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214

Rozměr: px
Začít zobrazení ze stránky:

Download "POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214"

Transkript

1 PROGRAM PŘEDNÁŠEK Po 9:00-10:30, KN:A-214 1P Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P Spojitost geometrická a parametrická. Napojení Bézierových křivek podmínky C 0, C 1 a C 2 spojitého napojení. Coonsova kubika definice, vlastnosti, Coonsovy polynomy, spojitost napojení. 3P Coonsův kubický B-spline definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Ukotvená křivka definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Vztahy mezi křivkami Přednáška se nekoná, přesouvá se na P Plocha definice, vlastnosti, parametrické křivky, tečné vektory parametrických křivek, zkrut, plát, rohy, okraje. Přímková přechodová plocha definice, vlastnosti. Plocha hyperbolického paraboloidu definice, vlastnosti. 5P Coonsova bilineární plocha definice, vlastnosti. Bézierova plocha definice, vlastnosti, de Castejau algoritmus. 6P Vztah Coonsovy bilineární a Bézierovy bikubické plochy Plátování podmínky C 0, C 1 a C 2 spojitého napojení Bézierových ploch Ukotvená plocha definice, vlastnosti. Vztahy mezi plochami Přednáška se nekoná, Velikonoce 7P Vybrané algoritmy PGR, aplikace Út 9:00-10:30, KN:A-214 1P Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P Spojitost geometrická a parametrická. Napojení Bézierových křivek podmínky C 0, C 1 a C 2 spojitého napojení. Coonsova kubika definice, vlastnosti, Coonsovy polynomy, spojitost napojení. 3P Coonsův kubický B-spline definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Ukotvená křivka definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Vztahy mezi křivkami 4P Plocha definice, vlastnosti, parametrické křivky, tečné vektory parametrických křivek, zkrut, plát, rohy, okraje. Přímková přechodová plocha definice, vlastnosti. Plocha hyperbolického paraboloidu definice, vlastnosti. 5P Coonsova bilineární plocha definice, vlastnosti. Bézierova plocha definice, vlastnosti, de Castejau algoritmus. 6P Vztah Coonsovy bilineární a Bézierovy bikubické plochy Plátování podmínky C 0, C 1 a C 2 spojitého napojení Bézierových ploch Ukotvená plocha definice, vlastnosti. Vztahy mezi plochami 7P Vybrané algoritmy PGR, aplikace

2 Čt 9:00-10:30, KN:A-214 1P Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P Napojení Bézierových křivek podmínky C 0, C 1 a C 2 spojitého napojení. Coonsova kubika definice, vlastnosti, Coonsovy polynomy, spojitost napojení. 3P Coonsův kubický B-spline definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Ukotvená křivka definice, vlastnosti, konstrukce krajních bodů segmentů (uzlů) a tečných vektorů v nich. Vztahy mezi křivkami Přednáška se nekoná, přesouvá se na P Plocha definice, vlastnosti, parametrické křivky, tečné vektory parametrických křivek, zkrut, plát, rohy, okraje. Přímková přechodová plocha definice, vlastnosti. Plocha hyperbolického paraboloidu definice, vlastnosti. 5P Coonsova bilineární plocha definice, vlastnosti. Bézierova plocha definice, vlastnosti, de Castejau algoritmus. 6P Vztah Coonsovy bilineární a Bézierovy bikubické plochy Plátování podmínky C 0, C 1 a C 2 spojitého napojení Bézierových ploch Ukotvená plocha definice, vlastnosti. Vztahy mezi plochami 7P Vybrané algoritmy PGR, aplikace

3 PROGRAM CVIČENÍ PONDĚLÍ SUDÉ, PARALELKY 5, 10, 18 1C C C Samostatná práce Modelování křivek. Odevzdat v Moodle do C C Samostatná práce Modelování ploch. Odevzdat v Moodle do C C Udělení zápočtů PONDĚLÍ LICHÉ, PARALELKY 6, 9, 17 1C C C Samostatná práce Modelování křivek. Odevzdat v Moodle do Cvičení odpadá (Velikonoce) 4C C Samostatná práce Modelování ploch. Odevzdat v Moodle do C

4 ÚTERÝ SUDÉ, PARALELKY 12, 14, 16 1C C C Samostatná práce Modelování křivek. Odevzdat v Moodle do C C Samostatná práce Modelování ploch. Odevzdat v Moodle do C C Udělení zápočtů 1C C C C C C ÚTERÝ LICHÉ, PARALELKY 11, 13, 15 Samostatná práce Modelování křivek. Odevzdat v Moodle do Samostatná práce Modelování ploch. Odevzdat v Moodle do

5 ČTVRTEK SUDÝ, PARALELKY 4, 8, 20 1C C C Samostatná práce Modelování křivek. Odevzdat v Moodle do C Cvičení odpadá (STČ) 5C Samostatná práce Modelování ploch. Odevzdat v Moodle do C C Udělení zápočtů 1C C C C C C ČTVRTEK LICHÝ, PARALELKY 3, 7, 19 Samostatná práce Modelování křivek. Odevzdat v Moodle do Samostatná práce Modelování ploch. Odevzdat v Moodle do

6 PÁTEK SUDÝ, PARALELKY 2, 22 1C C C Samostatná práce Modelování křivek. Odevzdat v Moodle do C C Samostatná práce Modelování ploch. Odevzdat v Moodle do Cvičení odpadá (státní svátek) 6C C Udělení zápočtů (úterý, náhrada za 1. 5.) 1C C C C C C PÁTEK LICHÝ, PARALELKY 1, 21 Samostatná práce Modelování křivek. Odevzdat v Moodle do Samostatná práce Modelování ploch. Odevzdat v Moodle do 1. 5.

Plochy zadané okrajovými křivkami

Plochy zadané okrajovými křivkami Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci

Více

KMA/GPM Barycentrické souřadnice a

KMA/GPM Barycentrické souřadnice a KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od

KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické

Více

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace

Více

Rhino - základní příkazy

Rhino - základní příkazy Rhino - základní příkazy Příkazy - volíme z hlavní nabídky levým tlačítkem myši - ikonou z nástrojové lišty levým (LTM)/pravým(PTM) tlačítkem myši Příkaz ukončíme pravým tlačítkem myši (Enter) nebo klávesou

Více

modelovani_ploch.pdf - návod k vypracování 2.sam. práce a vzor vyplnění formuláře ( přineste na 5.cvičení)

modelovani_ploch.pdf - návod k vypracování 2.sam. práce a vzor vyplnění formuláře ( přineste na 5.cvičení) oznámky k zaslaným souborům na 5.cvičení modelovani_ploch.pdf - návod k vypracování.sam. práce a vzor vyplnění formuláře ( přineste na 5.cvičení) sp_plochy.pdf - kompletní zadání S Soubory programu Rhina

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Zobrazování 2D Nadpis křivek 2 Nadpis 3

Zobrazování 2D Nadpis křivek 2 Nadpis 3 IZG Nadpis Lab 04 1 Zobrazování 2D Nadpis křivek 2 Nadpis 3 Pavel Jméno Svoboda Příjmení Vysoké Vysoké učení technické učení technické v Brně, v Fakulta Brně, Fakulta informačních informačních technologií

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie

Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie Vývoj výpočetní geometrie Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Motivace Úvod Rozvoj počítačové grafiky Výpočetní geometrie Křivky a plochy počítačové

Více

PARAMETRICKÉ MODELOVÁNÍ V ARCHITEKTUŘE

PARAMETRICKÉ MODELOVÁNÍ V ARCHITEKTUŘE Žilinská univerzita v Žiline Stavebná fakulta Študentská vedecká odborná činnosť Akademický rok 2006-2007 PARAMETRICKÉ MODELOVÁNÍ V ARCHITEKTUŘE Meno a priezvisko študenta : Martin Matúšů Ročník a odbor

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

Příklady otázek PB009/jaro 2015

Příklady otázek PB009/jaro 2015 Příklady otázek PB009/jaro 2015 Upozornění: Otázky mohou být formulovány jinými slovy, požadovat vysvětlení problému obrázkem, nebo naopak komentování daného obrázku. Nelze spoléhat na prosté opsání odpovědí

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Letňany - Háje PONDĚLÍ AŽ ČTVRTEK (1234)

Letňany - Háje PONDĚLÍ AŽ ČTVRTEK (1234) PONDĚLÍ AŽ ČTVRTEK (1234) Tarifní pásmo P Letňany - Háje 4:34 4:44 4:54 5:04 5:11 5:14 5:21 5:24 5:29 5:34 5:39 5:44 5:49 5:54 5:59 6:04 4:37 4:47 4:57 5:07 5:14 5:17 5:24 5:27 5:32 5:37 5:42 5:47 5:52

Více

Text úlohy. Kolik je automaticky generovaných barev ve standardní paletě 3-3-2?

Text úlohy. Kolik je automaticky generovaných barev ve standardní paletě 3-3-2? Úloha 1 Kolik je automaticky generovaných barev ve standardní paletě 3-3-2? a. 256 b. 128 c. 216 d. cca 16,7 milionu Úloha 2 Jaká je výhoda adaptivní palety oproti standardní? a. Menší velikost adaptivní

Více

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data Grafická data jsou u 2D vektorové grafiky uložena ve voxelech Grafická data jsou u rastrové grafiky uložena v pixelech Grafická data jsou u vektorové grafiky uložena v pixelech Na rozdíl od rastrové grafiky

Více

Podbaba - Starý Hloubětín

Podbaba - Starý Hloubětín PRACOVNÍ DEN (X) Tarifní pásmo P Podbaba - Starý Hloubětín 4:47 5:07 5:20 5:32 5:47 6:02 6:15 6:24 6:31 6:39 6:4 6:56 7:04 7:12 7:20 7:2 7:36 7:44 7:52 :00 :0 :16 :24 :32 :40 :4 :57 9:07 4:4 5:0 5:21 5:33

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Obsah A ROVINNÁ GRAFIKA 17

Obsah A ROVINNÁ GRAFIKA 17 Obsah A ROVINNÁ GRAFIKA 17 1. Světlo a barvy v počítačové grafice JS & JŽ 19 1.1 Vlastnosti lidského systému vidění......................... 19 1.1.1 Elektromagnetické spektrum........................

Více

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004 r- I Jirí Žára, Bedrich Beneš, Jirí Sochor, Petr Felkel Moderní počítačová grafika Computer Press Brno 2004 . Obsah A ROVINNÁ GRAFIKA 1. Svetlo a barvy v počítačové grafice JS & JŽ 1.1 Vlastnosti lidskéhosystému

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky Metodické listy pro kombinované studium předmětu B_PPG Principy počítačové grafiky Metodický list č. l Název tématického celku: BARVY V POČÍTAČOVÉ GRAFICE Cíl: Základním cílem tohoto tematického celku

Více

TEORIE TVAROVÝCH PLOCH

TEORIE TVAROVÝCH PLOCH TEORIE TVAROVÝCH PLOCH Ing. Ivana LINKEOVÁ, Ph.D. KN:B 216 Ústav technické matematiky VUT v Praze Fakulta strojní www.linkeova linkeova.cz e-mail: Ivana.Linkeova Linkeova@fs.cvut.czcz MODELY TVAROVÝCH

Více

Text úlohy. Vyberte jednu z nabízených možností:

Text úlohy. Vyberte jednu z nabízených možností: 2. pokus 76% Úloha 1 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu A má (po vynechání vodorovných hran a rozpojení zbývajících hran) celkově 4 průsečíky

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma sady didaktických materiálů Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Téma didaktického materiálu Autor Vyučovací předmět Cílová skupina Klíčová slova Anotace

Více

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta SEMINÁRNÍ PRÁCE PRO SOUTĚŽ SVOČ Eliška Chudáčková Modelování křivek na počítači Katedra didaktiky matematiky Vedoucí seminární práce: Studijní program:

Více

Najíždění na konturu a odjíždění od ní (NORM, KONT, KONTC, KONTT)

Najíždění na konturu a odjíždění od ní (NORM, KONT, KONTC, KONTT) Funkce Předpoklady Syntaxe Prostřednictvím příkazů NORM, KONT, KONTC nebo KONTT je možné při aktivované korekci rádiusu nástroje (G41/G42) přizpůsobit dráhu pro najíždění a odjíždění nástroje na požadovanou

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze Transformace obrazu Pavel Strachota FJFI ČVUT v Praze 16. listopadu 2012 Obsah 1 Interpolace 2 Geometrické transformace obrazu 3 Alpha-blending, warping, morphing Obsah 1 Interpolace 2 Geometrické transformace

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Matematika pro real-time grafiku

Matematika pro real-time grafiku Matematika pro real-time grafiku 2005-2010 Josef Pelikán, MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz NPGR019, hwmath.pdf 2010 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 Obsah

Více

Multimediální systémy. 03 Počítačová 2d grafika

Multimediální systémy. 03 Počítačová 2d grafika Multimediální systémy 03 Počítačová 2d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Rastrová počítačová grafika Metody komprese obrazu Rastrové formáty Vektorová grafika Křivky

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Ukázka možností interpolace dat v softwaru Matlab

Ukázka možností interpolace dat v softwaru Matlab Ukázka možností interpolace dat v softwaru Matla Ing. Stanislav Olivík Anotace: V následujícím tetu ude čtenář seznámen s několika základními funkcemi softwaru Matla, pomocí nichž může interpolovat data

Více

Geometrie pro počítačovou grafiku - PGR020

Geometrie pro počítačovou grafiku - PGR020 Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní Zkouška ústní (Anti)aliasing Aliasing je jev, ke kterému může docházet v situacích, kdy se spojitá (analogová) informace převádí na nespojitou (digitální signály). Postup, jak docílit lepší ostrosti obrazu

Více

VY_32_INOVACE_INF.10. Grafika v IT

VY_32_INOVACE_INF.10. Grafika v IT VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky

Více

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick

Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Adobe Photoshop 9. Vytváření cest nástrojem Pero

Adobe Photoshop 9. Vytváření cest nástrojem Pero olygr.cz XMF, montážní program 1. Seznámení s programem Adobe Photoshop 9. Vytváření cest nástrojem Pero Vytvořil: Tomáš Fab dní škola polygrafická, 110 27 00 Brno ody zdokonalující edukaci na ISŠP 34.05381

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

Počítačová grafika RHINOCEROS

Počítačová grafika RHINOCEROS Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá

Více

1. Reprezentace barev, míchání barev. 2. Redukce barevného prostoru. 3. Rasterizace objektů ve 2D. www.seitler.cz

1. Reprezentace barev, míchání barev. 2. Redukce barevného prostoru. 3. Rasterizace objektů ve 2D. www.seitler.cz www.seitler.cz 1. Reprezentace barev, míchání barev Vlastnosti světla - jas intenzita světla - sytost čistota barvy světla - světlost velikost achromatické složky hlavní barvy - odstín dominantní vlnová

Více

Dejvická - Nebušice - Přední Kopanina / K Tuchoměřicům. Dopravní podnik hl. m. Prahy, akciová společnost, Sokolovská 217/42, Praha 9

Dejvická - Nebušice - Přední Kopanina / K Tuchoměřicům. Dopravní podnik hl. m. Prahy, akciová společnost, Sokolovská 217/42, Praha 9 PRACOVNÍ DEN (X) SOBOTA (6) NEDĚLE (+) 161 Tarifní pásmo P H H H H H H H H H H H H H H 5:45 6:07 6:22 6:30 6:37 6:52 7:00 7:10 7:30 7:35 7:50 8:05 8:20 9:00 9:20 10:00 10:20 11:00 11:20 12:00 12:15 12:45

Více

Použití splinů pro popis tvarové křivky kmene

Použití splinů pro popis tvarové křivky kmene NAZV QI102A079: Výzkum biomasy listnatých dřevin Česká zemědělská univerzita v Praze Fakulta lesnická a dřevařská 9. února 2011 Cíl práce Cíl projektu: Vytvořit a ověřit metodiku pro sestavení lokálního

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Diplomová práce Prostředí pro programování pohybu manipulátorů

Diplomová práce Prostředí pro programování pohybu manipulátorů Diplomová práce Prostředí pro programování pohybu manipulátorů Štěpán Ulman 1 Úvod Motivace: Potřeba plánovače prostorové trajektorie pro výukové účely - TeachRobot Vstup: Zadávání geometrických a kinematických

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Počítačová grafika 2 (POGR2)

Počítačová grafika 2 (POGR2) Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

Výpočet křivosti křivek ve stavební praxi

Výpočet křivosti křivek ve stavební praxi Přechodnice podle Nördlinga (kubická parabola) Vypočtěte křivost Nördlingovy přechodnice v bodě x=0 a x=l x y( x) 6LR x- vzdálenost bodu přechodnice od začátku přechodnice v tečně y- kolmá vzdálenost bodu

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Začlenění historických mapových děl do systému DIKAT-P P pro upřesnění podrobné lokalizace nemovitých kulturních památek

Začlenění historických mapových děl do systému DIKAT-P P pro upřesnění podrobné lokalizace nemovitých kulturních památek Začlenění historických mapových děl do systému DIKAT-P P pro upřesnění podrobné lokalizace nemovitých kulturních památek Ing. Jana Zaoralová Únor 2004 0bsah O projektu Historická mapová díla Transformace

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Obr.1 Zařazení CAD do oblasti CA technologií

Obr.1 Zařazení CAD do oblasti CA technologií Systémy CAD CAD systémy (Computer Aided Design) jsou programové nástroje určené pro použití v úvodních etapách výrobního procesu, ve vývoji, konstrukci a technologické přípravě výroby. Oblast CAD je jen

Více

FORMÁTY UKLÁDÁNÍ OBRAZOVÝCH INFORMACÍ VÝMĚNA DAT MEZI CAD SYSTÉMY

FORMÁTY UKLÁDÁNÍ OBRAZOVÝCH INFORMACÍ VÝMĚNA DAT MEZI CAD SYSTÉMY FORMÁTY UKLÁDÁNÍ OBRAZOVÝCH INFORMACÍ VÝMĚNA DAT MEZI CAD SYSTÉMY FORMÁTY UKLÁDÁNÍ OBRAZOVÝCH INFORMACÍ VEKTOROVÁ GRAFIKA Obraz reprezentován pomocí geometrických objektů (body, přímky, křivky, polygony).

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

Matematika B 2. Úvodní informace

Matematika B 2. Úvodní informace Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

5 Algoritmy vyplňování 2D oblastí

5 Algoritmy vyplňování 2D oblastí 5 Algoritmy vyplňování 2D oblastí Studijní cíl Tento blok je věnován základním algoritmům pro vyplňování plošných objektů. V textu bude vysvětlen rozdíl mezi vyplňováním oblastí, které jsou definovány

Více

4. Digitální model terénu.

4. Digitální model terénu. 4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový

Více

Historická Olomouc KVS/BOLHI

Historická Olomouc KVS/BOLHI Historická Olomouc KVS/BOLHI 27. dubna, 28. dubna, 3. května, 21. května Pro splnění podmínek zápočtu je nutné absolvovat v některém z vypsaných termínů společnou exkurzi po olomouckých památkách. Účastníci

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:

Více

Vektorová grafika. Způsob ukládání obrazových informací. Vnímání. Výhody a nevýhody. obraz reprezentován pomocí geometrických objektů

Vektorová grafika. Způsob ukládání obrazových informací. Vnímání. Výhody a nevýhody. obraz reprezentován pomocí geometrických objektů VEKTOROVÉ FORMÁTY Vektorová grafika Způsob ukládání obrazových informací obraz reprezentován pomocí geometrických objektů body, přímky, křivky, polygony, text Vnímání lidské oko pracuje na principu bitmapové

Více

Přednáška 1 Úvod do předmětu

Přednáška 1 Úvod do předmětu Přednáška 1 Úvod do předmětu Miroslav Lávička 1 Email: lavicka@kma.zcu.cz 1 Katedra matematiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Geometrické vidění světa KMA/GVS ak. rok 2013/2014

Více

1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO

1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO FBI VŠB-TUO 15. října 2013 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 Předpokládané znalosti

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

Geometrické transformace obrazu

Geometrické transformace obrazu Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

CINEMA 4D : ZKUŠENOSTI S 3D MODELOVÁNíM

CINEMA 4D : ZKUŠENOSTI S 3D MODELOVÁNíM 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Tomáš Staudek CINEMA 4D : ZKUŠENOSTI S 3D MODELOVÁNíM VE VÝUCE POČíTAČOVÉ GRAFIKY Abstrakt Článek shrnuje zkušenosti s výukou prostorového modelování a animace

Více