UNB 1. mykologie. www. mykoweb. prf.jcu.cz (UNB myko)

Rozměr: px
Začít zobrazení ze stránky:

Download "UNB 1. mykologie. www. mykoweb. prf.jcu.cz (UNB myko)"

Transkript

1 UNB 1 mykologie Mkavkova@prf.jcu.cz www. mykoweb. prf.jcu.cz (UNB myko)

2 Proč studujeme houby? Nedílná součást ekosystému energetické cykly, přeměna organické a anorganické hmoty 1.rozklad dřevní hmoty 2. zpřístupňování živin pro jiné organismy 3. rozklad kostní hmoty a rohoviny 4. akumulace a transformace těžkých kovů 5. Úprava ph substrátů, výměna plynů etc. 6. Produkce metabolitů

3 Široká geografická valence od severního pólu po tropy, adaptace na vysokou nadmořskou výšku, tlak, vysoké teploty, zasolení, sucho, kyselé ph, aerobní podmínky příklady Hymenoscyphus ericae ph 2-3, symbiont vřesovištních rostlin Serpula lachrymans Dřevomorka domácí- Adaptace na suché dřevo a jsou schopné eliminovat vysoké dávky Zn a Cu (fungicidy) Debaryomyces hansenii mořská kvasinky regulace turgoru (K + > Na + ) Dactylaria gallopava termální prameny, 60 C Talaromyces flavus- 80 C

4 Nutriční adaptace symbionti, parazité rostlin, parazité obojživelníků, ryb, ptáků a savců, saprofyté Symbionti rostlin endofyté travin, mykorhizní druhy hub Parazité rostlin obligátní nebo fakultativní, biotrófní, nekrotrofní a přechodné formy Parazité živočichů mykózy příklady Scleroderma citrinum - ektomykorhiza Saprofyté rozklad organické hmoty Microsphaera penicillata Parazité hub Spinellus fusiger Helvella crispa

5 Houby a člověk Vztahy pozitivní a prospěšné Biotransformace - Fermentace kvasinky (alkohol, chleba, steroidy) Využití metabolitů antibiotika, rostlinné hormony, cytostatika, alkaloidy Využití enzymatických aktivit hub zrající sýry, tempeh, sojová omáčka, organické kyseliny Využití biomasy jako potravin zdroj proteinů Biologická ochrana zemědělství využití entomofágních a nematofágních a mykoparazitických hub k eliminaci škůdců a parazitických hub Lesnictví a zemědělství - využití mykorhizních hub k produkci rostlin

6 Negativní vliv hub Choroby rostlin ohrožení produkce zemědělských plodin Phaeoannellomyces werneckii Mykózy zvířata a lidé Mykotoxiny sekundární metabolity Ustilago maydis Alergie Hniloby a kazivost potraviny, organické produkty

7 Úloha hub v historii lidstva-etnomykologie Systematické studie byly započaty před 250 lety Starověký Egypt-fermentace je dar boha Osira Starověké Řecko Bakchálie Římská říše Jupiter jako dárce hub a lanýžů Národy Jižní Ameriky- Guatemala a Mexiko-využívání halucinogenních hub Amanita muscarina, Psilocybe cubensis Severoamerické národy Fomitopsis officinalis, Piptoporus betulinus hubky při rozdělávání ohně, zastavení krvácení

8 Asie Sibiřské národy A.muscarina halucinogenní účinky Čína tradiční medicína Ganoderma, Shitake, Flamullina, Tremella fuciformis Středověká Evropa ergotismus Claviceps purpurea námel, Paličkovice nachová postižení nervové soustavy -Tanec svatého Víta (střední a severní Evropa) Vředovitá gangrenózní forma svatý oheň (západní Evropa)

9 Claviceps purpurea Námel, Paličkovice nachová sklerocium

10 19.Století vystěhování Irů a Skotů do Severní Ameriky Plíseň bramborová (Phytopthora infestans)- zničila úrodu brambor a způsobila hladomor, negativně ovlivnila populaci v Irsku od roku (hladomor, úmrtnost, vystěhování)

11 Říše: FUNGI (houbové organismy) Říše: EUMYCOTA (Fungi, pravé houby) Phylum: Basidiomycota Phylum: Ascomycota Phylum: Zygomycota Phyllum: Glomeromycota Phylum: Chytridiomycota Říše: Straminipila Phylum: Oomycota Ph: Hypochytriomycota Ph: Labyrithulomycota Říše: Protista* Phylum: Plasmodiophoromycota Ph: Dyctiostelida Ph: Acrasiomycota Ph: Myxomycota HOUBY JAKO SAMOSTATNÁ POLYFYLETICKÁ ŘÍŠE

12 * GLOMEROMYCOTA new!!! In:Webster J. and Weber W.S. (2007) Introduction to fungi pp 841 Cambridge University Press. HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

13 * Acrasiomycota Plasmodiophoromycota Fungi Myxomycota HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

14 Fylogenetická a kladistická klasifikace Konkrétní druh je produktem evoluce, takže klasifikace je založena na evoluční divergenci fylogenetické stromy, dendrogramy HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

15 Znaky, které se používají při klasifikaci hub v systému Morfologie Výživa a fyziologie hub Chemické složení nízkomolekulárních látek chemotaxonomie (lišejníky sekundární metabolity, rod Cortinarius aj) Antigenní vlastnosti tvorba protilátek u savců imunoelektroforéza Sacharidy a komponenty buněčné stěny Proteiny enzymatická aktivita Nukleové kyseliny (PCR, sekvenace) HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

16 Průběh evoluce u hub znaky Morfologické a ultrastrukturní změny: bičík (flagellum) pravděpodobně znak, který během evoluce mohl opakovaně vymizet a opět se objevit - přechod z vody na souš, změna života saprofyt- parazit na rostlinách aj. Dolipór (pór v přepážce u stopkovýtrusých hub) pravděpodobně v období vzniku striktně oddělil tuto taxonomickou skupinu od ostatních a tak je to dodnes. Nutriční a metabolické změny: enzymatické aktivity Paleontologické nálezy HOUBY JAKO POLYFYLETICKÁ ŘÍŠE Období Třetihor: Miocén perithecium (Francie)

17 Lutzoni F. et al. (2004) Assembling the fungal tree of life: progress classification, and evolution of subcellular traits. American Journal of Botany 91(10): HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

18 Průběh evoluce u hub trendy Přirozené prostředí a ekologické souvislosti Buňka a kolonie (hyfa a mycelium) Životní cyklus a sexualita u hub HOUBY JAKO POLYFYLETICKÁ ŘÍŠE

19 Co jsou tedy houby zač? Rostliny Autotrofní (fototrófní) organismy Živočichové Heterotrofní digestivní organismy Houby 1. Eukaryota 2. Heterotrofní 3. Absorptivní 4. Tělo: améba, stélka vláknitá nebo kokální 5. Zásobní látka - ergosterol BIOLOGIE HOUBOVÝCH ORGANISMŮ

20 BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

21 Jádro houbové buňky Cca (1-2 µm) Malé chromosomy Množství DNA podobné prokaryotickým org. Struktura chromatinu odpovídá eukaryotickým org. Mitochondrie Oxidativní fosforylace Liší se velikostí, tvarem, (talířovité vs. kristátní) dle druhu HO, a podmínek prostředí mtdna (mitochondriální genom) Endosymbiotický původ BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

22 Hydrogenosom Anaerobní druhy Fermentativní metabolismus Většinou ve flagelátníčásti buňky Endosymbiotický původ pravděpodobně byl derivován z mitochondrií? Membranózní 2 membrány Invaginovaná vnitřní membrána Postrádá DNA Malát a malát dehydrogenáza (substrát pro fermentaci) Mikrotělíska (Microbodies) Organely obklopené vlastní membránou Hrají významnou roli při využití N a C zdrojů ze substrátu Peroxisómy 1.Peroxidázy - oxidace substrátů 2. Hlavní fce při β-oxidaci mastných kyselin acetyl- CoA Glyoxysómy glyoxalátový cyklus Mikrotělíska ve spórách hub jsou obklopeny lipidovými kapénkami rychlý zdroj energie při klíčení spóry BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

23 Plasmidy Krátké řetězce (acyklické, cyklické) které jsou schopny se nezávisle replikovat jsou zodpovědné za specifické reakce Př. Saccharomyces cerevisiae Kluyveromyces lactis Buňky s ds DNA lineární plasmid - killer yeast které produkují toxiny zabíjející ostatní kvasinky bez plasmidu (zastavuje buněčný cyklus v G1fázi) Př. Podospora anserina sendnas plasmid šíří se askospórami a myceliem Viry Mykoviry nemají extracellulární fázi, šířit se mohou pouze intracelulárně tj. myceliem a spórami. Většina ds RNA viry U hub mohou ovlivňovat plodnost a patogenitu vůči rostlinným hostitelům (Cryphonectria parasitica, Magnoporte grisea). Přítomnost viru v HO nemá výrazný fenotypický projev výjimkou jsou deformace plodnic u žampionu (Agaricus bisporus) Zabijácké kvasinky (K1,K2,K28 toxiny podle proteinů jenž kódují) BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

24 Zásobní látky Lipidy a lipidová tělíska Glykogen (polysacharid) (až 10% sušiny HO) Trehalóza neredukující cukry (transportní cukr P), chrání spóry proti nepříznivým podmínkám prostředí Trehalóza trehalasa glukóza Cukerné alkoholy polyoly 1. Glycerol (3C) 2. Erythritol (4C) 3. Arabitol a ribitol (5C) 4. Manitol (6C) (trehalóza a polyoly mohou tvořit až 15% sušiny) Polyfosfáty BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

25 vakuoly Ovlivňují růst a dělení houbových buněk Depozice vody a živin Depozice odpadních metabolitů Nejsou ve růstovém vrcholu hyfy Jsou typické pro sub-apikální články hyfy Pro rostoucí HO hrají vakuoly tyto role: 1. Zásobárna metabolitů a kationtů 2. Regulace ph a iontové homeostáze v cytoplasmě 3. (ekv. živ. lysosymů) zdroj lytických enzymů Vakuolární membrána (tonoplast)- přenos protonů (ATPáza), vnitřek vakuoly je zachováván v kyselém ph Př. Zásadité AA se do vakuoly dostávají proti koncentračnímu gradientu proton/aa antiport systém s využitím elektrochemického potenciálu. Polyfosfáty slouží nejen jako zdroj P pro metabolické dráhy ale i jako zásobárna iontů pro +AA a kationty nebo jako ph regulátor. Vakuolární hydrolytické enzymy recyklace cytoplasmatického materiálu během růstu buněk, autolýza senescentních buněk BIOLOGIE HOUBOVÝCH ORGANISMŮ- BUŇKA

26 Ad 2 Houby jako heterotrófní organismy Různé substráty: Saprotrófové Sapro-parazité Parazité Mutualisté Organický materiál rostlinného i živočišného původů s různým obsahem anorganických částic. Koprofilní druhy Spáleništní druhy Vřesovištní druhy (nízké ph) Entomofágní, nematofágní Fytopatogenní Mykoparazitické..etc.

27 Ad 3. Houby jako absorptivní organismy Houby produkují do prostředí ENZYMY, kterými natráví substrát (naštípají na jednodušší komponenty) a ty pak transportními membránovými mechanismy přes buněčnou stěnu translokují do cytoplasmy) Příklady: Dřevokazné druhy hub: celulázy, hemicelulázy a lignolytické enzymy Houby způsobující hniloby ovoce: pektinázy Houby rozkládající peří a kosti: keratinolytické enzymy Entomopatogenní houby: chitinázy, kutinázy. etc.

28 Hyfa Stélka kokální Septátní Aseptátní, coenocytická Stélka vláknitá BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

29 Stélka kokální - jednobuněčná, n nebo 2n (kvasinky (Ascomycota: Saccharomycetales nebo Basidiomycota: Ustilaginales) sensu stricto nebo pouze kvasinkovité stádium jako reakce na podmínky prostředí (obecný jev u hub) - DIMORFISMUS Stélka vláknitá hyfa, tubulární útvar, mnohobuněčný s přepážkami a jednojadernými nebo dvoujadernými úseky. Tubulární útvar bez přepážek hyfa coenocytická a mnohojaderná. Hyfa je charakteristická apikálním růstem, větví se a vytváří 3D síť - MYCELIUM. BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

30 Třívrstevná Buněčná stěna hyfy: Formuje se postupně v souladu s růstem hyfy od vnitřní vrstvy Vnější vrstva: vrstva laminarinu, β-1,3 a β- 1,6 glukany Střední vrstva: rozpustný protein Vnitřní vrstva: strukturní pevný protein vrstva mikrofibril + mannoproteiny, polymery chitin Pozor!!! Je odlišná struktura BS v apikálním segmentu hyfy nebo v apexu a u dospělé hyfy! BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

31 Plasmatická membrána Ergosterol Buněčná stěna hub je dynamická vyvíjející se struktura, jejíž složení ovlivňuje: 1. Prostředí (osmotický tlak etc.) 2. Vývojová fáze HO Hlavní komponenty: 1. Chitin, glukan a manoproteiny (Basidio-, Asco-, a mitosporické houby) 2. Chitosan, chitin a polygalacturonová kyselina Zygomycota 3. Celulóza a jiné glukany Oomycota Glykoproteiny v BS: 1. Glykosylphosphatidylinosidol (GPI) ( v ER) 2. β-1-3 a β-1-6 glukany tzv. Pir proteiny (opakující se AA sekvence) 3. Hydrofobiny- vysoký obsah Cys 4. Tmavé pigmenty: melanin, katechol, naftaleny deriváty fenolických metabolitů BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

32 Architektura buněčné stěny HO Mannoproteiny* mannoproteiny β-1-6 glukany Pir proteiny β-1-6 glukany Pir proteiny* 3 D síť tvořená β-1-3 glukany chitin chitin chitin chitin Plasmatická membrána BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA *Pir CWP Pir proteiny buněčné stěny (mají 10 bázový opakující se motiv) *GPI CWP glykosyl phosphatidylinositolová kotva

33 Architektura BS zabezpečuje hyfě plasticitu a permeabilitu Výstuha vnitřní vrstva chitinových vláken je spojená s vrstvou strukturních glukanů (β-1,3 a β-1,6) a strukturním (a nestrukturním proteinem (oligosacharidy a polypeptidy, mannoproteiny). Za syntézu BS zodpovídají primárně chitosómy (vesikuly s inaktivním chitinem) obklopené lipidivou membránou transport po aktinových vláknech do vrcholu (apexu hyfy) V apexu vesikuly fúzují s plasmalemou a obsah vesikulu přichází do kontaktu s plasmalemou

34 Chitinová vlákna β-1-3 glukany Formace sekundární buněčné stěny v apikálních segmentech hyfy z hlediska její fyziologické zralosti BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

35 ascomycota septum Pravé septum se nachází u oddělení Ascomycota a Basidiomycota Voroninova tělíska basidiomycota Dolipor + parentozóm Slouží k oddělení jednotlivých článků hyfy (jednojaderné nebo dvou jaderné) Septa je porézní nebo má otvor.- komunikace mezi články hyfy, výměna iontů, živin, sub-organel vesikuly, proudění cytoplazmy Otvory jsou uzavíratelné oddělují pak stárnoucí část hyfy BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

36 Apikální segmenty Prodlužovací růst Členění hyfy Formace sekundární BS Dospívání BS Formace sept Komunikační segmenty Syntéza jader a Zóna periferálního růstu mitochondrií Syntéza vakuol Póry (septa) jsou průchodné Izolované segmenty Diferenciace pletiv Sekundární metabolismus Uzavření septálních pórů Zóna bez růstových aktivit BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

37 Apikální segment APEX- růstový orgán hyfy mikrofibrily diktyozómy BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

38 Apikální růstová zóna - cylindrický tvar - polární růst -specifická část hyfy je cílem vesikulů nesoucích hydrolytické enzymy či syntetázy, vesikuly jsou obaleny lipidovou membránou, fúzují s plazmalemou a uvolňují obsah - Vesikuly derivovány z diktyozómů nebo Golgiho aparátu -depozice prekurzorů chitinu, glukanů a jejich polymerizace -xylo a galakto mannoproteiny -mikrofibrily -Prodlužování růstového vrcholu je doprovázeno uvolňováním hydrofobinů (proteiny s aktivním povrchem)

39 Co udržuje polární růst a povrchové napětí apexu? 1. Propojenost s absorpční zónou 2. Vytlačování H+, K+ - protonová pumpa v hyfě je negativní napětí a v prostředí kolem H+ 3. Negativní napětí uvnitř hyfy umožňuje absorpci protonů zpět do hyfy zejména H+ 4. Apex je permeabilní pro ionty a tak některé kationty difundují z vnějšího prostředí do apexu a dochází k cirkulaci protonům, které se navazují na permeázy (pozor, protony se do apexu dostávají z absorpční zóny (K+) viz obrázek a z vnějšího prostředí, ale neuvolňují se tam, pouze tam cirkulují ) 5. Cirkulace protonů způsobuje určité elektrické napětí elektrochemický potenciál 6. Vesikuly kryté myosinem se pohybují po aktinových vláknech Kryté kinesinem se pohybují po mikrotubulech

40 Hyfa z hlediska fyziologické funkce absorpce a transformace živin Cirkulace protonů proti gradientu hydrofobiny integrin Spektrinová a aktinová výstuha Zóna stárnutí Zásobní zóna Absorpční zóna Apikální růstová zóna BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

41 Sekrece enzymů a membránový transport živin a iontů Sekreční proteiny Produkce exogenních enzymů k degradaci substrátu- exogenní trávenní Jejich sekrece začíná syntézou oligopeptidů v ER a pokračuje transportem přes vesikuly syntetizované v GA GA sekrece chitosomů (mikrovesikuly) V sub-apikální části hyfy dochází k tzv. ENDOCYTÓZE a EXOCYTÓZE, které mají regulovat množství materiálu potřebného k růstu vrcholu hyfy. Hlavním místem pro tento membránový materiál je vakuola. V období nedostatku živin dochází k autofagocytóze. Membránové proteiny* Endocystované proteiny Autofagocytované proteiny BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA Vakuolární proteiny

42 Tok živin (iontů se uskutečňuje skrze plasmatickou membránu přes proteinové póry, propustné pouze pro některé živiny a ve kterých dochází k difúzi podle koncentračního gradientu nebo jsou to speciální nosiče, jenž přenáší ionty živin přes membránu proti gradientu (ATP, ATPázy (H+)- okyselování prostředí hyfy). Nosiče jsou známy pro NH4+ ionty, NO3-, AA, hexózy a orthofosfáty aj. ATPázy energeticky dotují aktivní transport živin (H +pumpa) fungují v subapikální oblasti nebo v oblasti dospělé hyfy, kdežto v v apikální části pouze k jejich cirkulaci, na čemž se podílejí speciální nosiče. Tím, že ATPázy uvolňují H+ ionty do prostředí, okyselují prostředí hyfy a upravují si tak membránový gradient a elektrochemická potenciál. BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

43 Absorpční zóna absorpce živin z vnějšího prostředí skrze BS a plazmalemu živiny jsou transportovány přes membránu prostřednictvím protonové pumpy ATP ADP (uvolnění H+ do prostředí, akumulace K+ v hyfě) Uvolnění H+ do prostředí acidifikace, rozdíl mezi médiem a vnitřkem hyfy elektrochemický potenciálový gradient (difúzní gradient) podél plazmalemy, který řídí pohyb látek přes plazmalemu Pohyb a difúze protonů a rozpustných látek jsou řízené permeázami Tento způsob transportu živin aktivní protonový symport V absorpční zóně se také derivují vesikuly nesoucí extracelulární hydrolytické enzymy ke štěpení substrátu (vakuoly) Tyto enzymy jsou uvolňovány apexem Naštěpené molekuly jsou absorbovány v absorpční zóně pomocí aktivních molekul aminokyseliny, proteiny BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

44 Aktivní spolupráce mezi apexem a absorpční zónou, jejíž výsledkem je prodlužování a růst hyfy se nazývá trofofáze nebo fáze trofického růstu. Ukládání pigmentů (melaniny) Uzavření pórů Zóna stárnutí Sekundární metabolismus Autolytická proces řízený DNA úseky - VLP (cyklická DNA) BIOLOGIE HOUBOVÝCH ORGANISMŮ- HYFA

45 Mycelium Mycelium vzniká větvením, anastomózami (hyfální můstky) a růstem hyfy Charakter mycelia určuje substrát, podmínky prostředí a autonomní mechanismy daného HO Pravidelné radiální kolonie mycelia vznikají in vitro na Petriho miskách s vrstvou živné půdy, kde živiny jsou rovnoměrně rozloženy Mycelium je trojrozměrné limitujícími faktory jsou: poměr vody, O 2, CO 2 a živin BIOLOGIE HOUBOVÝCH ORGANISMŮ- mycelium

46 Agregace a fúze hyf - morfogeneze K agregacím hyf dochází srůstáním stěn nebo prostřednictvím anastomóz jako reakce na změny prostředí Výsledkem jsou plektenchymatická a pseudoplektenchymatická pletiva jenž jsou základem např. pro plodnice, různé vegetativní a generativní struktury Vegetativně modifikované hyfy rhizomorfy dlouhé lineární struktury, které slouží HO k prostorovému překlenutí nevhodné niky Jsou to silné sklerotizované vodivé hyfy s centrálním kanálem Typické pro dřevokazné a dřevorozkladné houby BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

47 Armillaria mellea václavka obecná rhizomorfy BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

48 Sklerocia hyfální agregáty, které představují vegetativní vytrvalou a odpočívající fázi HO obecně vznikají proliferací a stlačením hyfálních větví z pomalu rostoucího mycelia. Výjimkou je rod Claviceps (námel) kde sklerocia vznikají z extensivního rychle rostoucího mycelia. Povrch tvoří kortex melanizovaná pletiva jádra, které je tvořené zásobními buňkami (lipidy, glycerol, polyoly a glukany). Sklerocium může zpočátku produkovat exudáty. BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

49 Ascomycota a Basidiomycota Myceliární provazce Vznikají z dobře vyvinutého mycelia Pravděpodobně mají transportní funkci (voda, živiny) Okolo hlavního provazce je spousta úponkovitých hyf spojených anastomózami Rhizomorfy dlouhé lineární struktury, které slouží HO k prostorovému překlenutí nevhodné niky Jsou to silné sklerotizované vodivé hyfy s centrálním kanálem Typické pro dřevokazné a dřevorozkladné houby Na myceliu se mohou nacházet hypertrofované melanizované buňky - mikrosklerocia BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

50 Tvorba primordií základy plodnic in vitro Podmínky: živiny, O 2, CO 2, voda, teplota BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

51 Rhizoidy Zygomycota Ukotvují houbovou stélku v substrátu Příjem živin ze substrátu Stélky lišejníků BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

52 Hyfa uzpůsobená k parazitismu Haustorium modifikace hyfy u parazitických hub, penetruje hostitelskou buňku a invaginuje se do hostitelského protoplastu, ze kterého odčerpává živiny a vodu. Různý tvar a velikost Př. řády Erysiphales, Urediniales etc. BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

53 Plodnice Askomycota askomata - různé formy (apothecium, kleistothecium a perithecium) Nepohlavní: synnema, pycnidium a sporodochium Basidiomycota basidiomata pilothecium, krustothecium a holothecium BIOLOGIE HOUBOVÝCH ORGANISMŮ- morfogeneze

54 Spóry, dormance a disperze Sporulace proces při které dochází k produkci spór Spóry se tvoří na speciálních myceliárních nosičích sporofóry Sporulace je výsledkem pohlavního procesu a nebo nepohlavního (mitosporické houby) Různé druhy hub se obvykle během životního cyklu rozmnožují oběma uvedenými způsoby v závislosti na charakteru substrátu a podmínkách prostředí*viz.př Druhy hub, u nichž není známá pohlavní fáze života se označují jako mitosporické druhy (dříve umělá třída Deuteromycetes) spóra představuje základní rozmnožovací jednotku b/ jaderná jednotka delimitovaná parentální stélkou, bez cytoplazmatického toku a vakuol (vyjímky), s nízkou metabolickou aktivitou, zvýšená úroveň energeticky bohatých zásobních látek (glykogen, lipidy, trehalóza) c/ jsou specializované na : disperzi, reprodukci a (nebo) přežití BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

55 BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

56 Příklady Jak podmínky prostředí ovlivňují sporulaci hub? Světlo versus tma diurnální cykly Vyčerpání exogenního zdroje N Vyčerpání exogenního zdroje C Reakce na různá světelná spektra Tma fotoreceptory v plasmatické membráně hub (Zygomycota: Phycomyces ps., Pilobolus sp. etc) flavoproteinové membránové receptory na UV a modré spektrum, mykochrom (Alternaria, Botrytis aj.), cyklohexenonové mycosporiny (Zygomycotina, Asko, Deutero aj.) Teplota Poměr CO 2 a O 2 Sclerotinia fructigena Schizophyllum commune Klanolístka obecná obsah N a modré spektrum světla limituje tvorbu plodnice a obsah C růst plodnice BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

57 Šíření spór Pasivně uvolňované spóry Tekutinou produkovanou HO - stopková kapénka (tekutina může být atraktant pro hmyz, háďátka etc. Deštěm, mlhou, prouděním vzduchu Aktivně uvolňované spóry Zrající spóra vyvíjí tlak na stěnu sporangia (askospóry v asku) Změna tvaru Odstřelení balistospóry Zoospóry aktivní pohyb BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

58 Dormance Exogenní dormance je dána podmínkami prostředí, které jsou kausální pro klíčení spóry Endogenní dormance (konstitutivní) závisí na strukturních a metabolických vlastnostech spóry 1. Vlastní inhibice klíčení některé spóry (rzi, sněti, Peronospora sp. etc.) pokud se vyskytují v mase zamezují vzájemně klíčení produkcí různých inhibitorů. (der. kys. skořicové, β -ioniny etc.) 2. Mycostáze (fungistasis) v nesterilních půdách kvůli aktivitě jiných organismů vyčerpání živin, produkce metabolitů. 3. Zásobní látky v spórách v membránových vakuolách, v cytoplasmě nebo jako granuloidy v BS polyoly, trehalóza, lipidy 4. Buněčná stěna dormantních spór obsahuje melanimy, fenolické deriváty, sporopolleniny BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

59 Aktivace klíčení - biochemické reakce, nárůst metabolických aktivit a morfologické změny = spóra se mění na růstovou vegetativní buňku Obecné faktory pro klíčení: dostatek volné vody v substrátu, poměr O 2 a CO 2 Specifické stimuly podle druhu HO BIOLOGIE HOUBOVÝCH ORGANISMŮ- sporulace

60 Monokaryotické mycelium Klíčení spór Imperfektní stádium Párování monokaryotických mycelií a vznik dikaryonu Tvorba a uvolňování spór sklerocium Formace primordií Vývoj plodnice BIOLOGIE HOUBOVÝCH ORGANISMŮ- rekapitulace-životní cyklus

61 Říše: FUNGI Phylum: Basidiomycota Phylum: Ascomycota Phylum: Zygomycota Phyllum: Glomeromycota Phylum: Chytridiomycota (houbové organismy) Říše: Stramenopila Phylum: Oomycota Ph: Hypochytriomycota Ph: Labyrithulomycota Říše: Protista Phylum: Plasmodiophoromycota Ph: Dyctiostelida Ph: Acrasiomycota Ph: Myxomycota

62 Nomenklatura Amanita muscaria Kingdom - Fungi Phylum - Basidiomycota Class - Agaricomycetes Order - Agaricales Family - Amanitaceae Genus - Amanita Species - A. muscaria

63 Fylogenyříše Fungi Chytridiomycota Postupná ztráta bičíkatých stádií X + Zygomycota chitin* glykogen* Mito- cristy* ergosterol Glomeromycota endomykorhiza Ascomycota X aska+ askospóry Septovaná hyfa Ektomykorhiza Orchideoidní a erikoidní basidie + basidiospory dolipor + přezky Basidiomycota

64 Obecné charakteristiky říše Fungi Základní vývojové skupiny Phyllum: Chytridiomycota: (800) Coenocytické mycelium Zoospory s jedním bičíkem vodní & terestrické druhy Netvoří plodnice Zygomycota: (1.000) Coenocytické mycelium Pohlavní rozmnožování: zygosporangia & zygospory Nepohlavní: sporangia a sporangiospory Netvoří plodnice Glomeromycota: (200) Vyčleněné ze Zygomycota coenocytické mycelium Neznámé pohlavní rozmnožování Vesikulo arbuskulární druhy endomykorhiza Netvoří plodnice

65 Basidiomycota: (cca ) Septátní mycelium přezky Septa + dolipor dikaryotické, haploidní mycelium Basidiospóry na basidiích (exospory) Basidiokarpy (makrokarpy, plodnice) Nepohlavní rozmnožování - konidie Ascomycota: (cca ) Septátní mycelium Septum + voroninova tělíska monokaryotické, haploidní mycelium Askospory v asku (endospory) Askokarpy (plodnice) Nepohlavní rozmnožování - konidie

66 Rozmnožování: 1.Fragmentace hyfy 2. Spóry pohlavní a nepohlavní Phyllum -mycota hyfa Nepohlavní rozmnožování Pohlavní rozmnožování Chytridio Kokální coenocytická Fragmentace stélky, spóry oospóry Zygo coenocytická sporangiospóry Zygospora zygosporangium Asco Vyvinutá septa Konidie Askospóry Basidio Jednojaderné úseky Vyvinutá septa Blastospóry chlamydospóry Konidie askokarp Tvorba plodnic dvoujaderné úseky Blastospóry chlamydospóry basidiokarp basidiospóry

67 Použité zdroje informací: Jennings D.H. & Lysek G. (2000) Fungal biology: Understanding the fungal life style, Springer, pp.165 Alexopoulos C.J., Mims C.W., Blackwell (1996) Introductory Mycology pp 868 Webster J. and Weber W.S. (2007) Introduction to fungi pp 841 Cambridge University Press

mykologie Mkavkova@prf.jcu.cz www. mykoweb. prf.jcu.cz(unb myko)

mykologie Mkavkova@prf.jcu.cz www. mykoweb. prf.jcu.cz(unb myko) mykologie Mkavkova@prf.jcu.cz www. mykoweb. prf.jcu.cz(unb myko) Proč studujeme houby? Nedílná součást ekosystému energetické cykly, přeměna organické a anorganické hmoty 1.rozklad dřevní hmoty 2. zpřístupňování

Více

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování Biologie houbových organismů Buňka, hyfa, pletiva, metabolismus, rozmnožování Rozdíly mezi buňkou rostlinnou, živočišnou a houbovou R jsou autotrófní organismy R sitosterol aj. fytosteroly Hlavní komponent

Více

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování Biologie houbových organismů Buňka, hyfa, pletiva, metabolismus, rozmnožování Rozdíly mezi buňkou rostlinnou, živočišnou a houbovou R jsou autotrófní organismy R sitosterol aj. fytosteroly Hlavní komponent

Více

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování

Biologie houbových organismů. Buňka, hyfa, pletiva, metabolismus, rozmnožování Biologie houbových organismů Buňka, hyfa, pletiva, metabolismus, rozmnožování Rozdíly mezi buňkou rostlinnou, živočišnou a houbovou R jsou autotrófní organismy R sitosterol aj. fytosteroly Hlavní komponent

Více

Mykologie. Mykologie:vědní obor zaměřený na studium hub a houbových organismů. http://botanika.prf.jcu.cz/mykologie/

Mykologie. Mykologie:vědní obor zaměřený na studium hub a houbových organismů. http://botanika.prf.jcu.cz/mykologie/ Mykologie Mykologie:vědní obor zaměřený na studium hub a houbových organismů http://botanika.prf.jcu.cz/mykologie/ Proč studujeme houby? Nedílná součást ekosystému energetické cykly, přeměna organické

Více

Mykologie. Mykologie: vědní obor zaměřený na studium hub a houbových organismů.

Mykologie. Mykologie: vědní obor zaměřený na studium hub a houbových organismů. Mykologie Mykologie: vědní obor zaměřený na studium hub a houbových organismů http://botanika.prf.jcu.cz/mykologie/ Proč studujeme houby? Nedílná součást ekosystému energetické cykly, přeměna organické

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

H O U B Y. (Fungi, Mycota) B. Voženílková

H O U B Y. (Fungi, Mycota) B. Voženílková H O U B Y (Fungi, Mycota) B. Voženílková Charakteristické rysy hub Houby mají ze všech původců rostlinných chorob největší význam. Ve středoevropských podmínkách je jimi vyvoláno asi 82-84 % všech ekonomicky

Více

Bc. Tereza Hyráková. Univerzita Palackého v Olomouci

Bc. Tereza Hyráková. Univerzita Palackého v Olomouci 2015 Bc. Tereza Hyráková Univerzita Palackého v Olomouci 1. Zvolte jednu ze správných odpovědí. 1. Tělo hub se nazývá: a) stélka b) korpus c) mycelium d) kapicilium 2. Z buněčných organel nejsou v cytoplazmě

Více

Obecná charakteristika hub

Obecná charakteristika hub Fyziologie hub Prvá část: Charakteristiku hub na základě výživy Ekologická charakteristika výživy hub Chemické zdroje výživy hub Druhá část Fyziologie růstu a rozmnožování Způsoby stanovení růstu, způsoby

Více

kvasinky x plísně (mikromycety)

kvasinky x plísně (mikromycety) Mikroskopické houby o eukaryotické organizmy o jedno-, dvou-, vícejaderné o jedno-, vícebuněčné o kromě zygot jsou haploidní o heterotrofní, symbiotické, saprofytické, parazitické o buněčná stěna bez peptidoglykanu,

Více

Cvičení: Kultury - kvasinky a mikroskopické houby

Cvičení: Kultury - kvasinky a mikroskopické houby Cvičení: Kultury - kvasinky a mikroskopické houby Bi1090c Fylogeneze a diverzita řas a hub cvičení Mgr. Lukáš Chrást Loschmidtovy laboratoře, ÚEB PřF MU a RECETOX Podzim 2015 ODDĚLENÍ: Zygomycota TŘÍDA:

Více

MYKOTOXINY. Jarmila Vytřasová. Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd

MYKOTOXINY. Jarmila Vytřasová. Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd MYKOTOXINY Jarmila Vytřasová Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti

Více

kvasinky x plísně (mikromycety)

kvasinky x plísně (mikromycety) Mikroskopické houby o eukaryotické organizmy o hlavně plísně a kvasinky o jedno-, dvou-, vícejaderné o jedno-, vícebuněčné o kromě zygot jsou haploidní o heterotrofní, symbiotické, saprofytické, parazitické

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Úvod do mikrobiologie

Úvod do mikrobiologie Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie

Více

Botanika - bezcévné rostliny 3. praktikum. Přehled pozorovaných objektů

Botanika - bezcévné rostliny 3. praktikum. Přehled pozorovaných objektů Botanika - bezcévné rostliny 3. praktikum ŘÍŠE: Chromista/SAR Přehled pozorovaných objektů ODDĚLENÍ: Peronosporomycota (Oomycota) TŘÍDA: Peronosporomycetes (Oomycetes ) ŘÁD: Peronosporales Pseudoperonospora

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Saprofité-rozklad org. zbytků Paraziticky- mykosy... Symbioticky- s cévnatými rostlinami(mykorhiza)- 95% rostlinných druhů, rostlina poskytuje

Saprofité-rozklad org. zbytků Paraziticky- mykosy... Symbioticky- s cévnatými rostlinami(mykorhiza)- 95% rostlinných druhů, rostlina poskytuje Otázka: Houby a nižší rostliny Předmět: Biologie Přidal(a): LenkaKrchova Houby fungia Samostatná říše- napůl živočich a rostlina Eukaryotické heterotrofní organismy, které se rozmnožují výtrusy. Tělo se

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

Biologie - Kvinta, 1. ročník

Biologie - Kvinta, 1. ročník - Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

Seminární práce Biologie Maturitní okruh č. 18 Mykologie

Seminární práce Biologie Maturitní okruh č. 18 Mykologie Seminární práce Biologie Maturitní okruh č. 18 Mykologie Hubert Šváb (3. ročník) Houby (Fungi) Mykologie: Věda zabývající se studiem hub (z řec. mýkés -houba) Nejstarší doklady o houbách pocházejí z prvohor,

Více

Botanika bezcévných rostlin 5. praktické cvičení Přehled pozorovaných objektů

Botanika bezcévných rostlin 5. praktické cvičení Přehled pozorovaných objektů Botanika bezcévných rostlin 5. praktické cvičení Přehled pozorovaných objektů ŘÍŠE: Opisthokonta (Fungi) ODDĚLENÍ: Chytridiomycota TŘÍDA: Chytridiomycetes ŘÁD: Chytridiales Synchytrium endobioticum (TP)

Více

Fytopatologická praktika

Fytopatologická praktika Fytopatologická praktika zygomycety 4 Ing. Dagmar Palovčíková Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Systém hub 4 (5) dobře odlišené

Více

- pro učitele - na procvičení a upevnění probírané látky - prezentace

- pro učitele - na procvičení a upevnění probírané látky - prezentace Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Schéma rostlinné buňky

Schéma rostlinné buňky Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř

Více

HOUBY A PLÍSNĚ. Mgr. Marie Vilánková. ECC s.r.o. Všechna práva vyhrazena

HOUBY A PLÍSNĚ. Mgr. Marie Vilánková. ECC s.r.o. Všechna práva vyhrazena HOUBY A PLÍSNĚ Mgr. Marie Vilánková 1 Houby a plísně Nejrozšířenější ţivotní forma zvláštní říše (1,5 mil druhů) nedílná součást ekosystému Úkol přeměna organické a anorganické hmoty, rozklad buněčné hmoty

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy

Více

plodnice většinou makroskopický útvar vyrůstají za příznivých podmínek z podhoubí a sloužící k rozšíření výtrusů (jen u vyšších hub)

plodnice většinou makroskopický útvar vyrůstají za příznivých podmínek z podhoubí a sloužící k rozšíření výtrusů (jen u vyšších hub) Otázka: Houby Předmět: Biologie Přidal(a): cathrinefirth CHARAKTERISTIKA početná a různorodá skupina znaky rostlin (nepohyblivost) i znaky živočichů (heterotrofní výživa org. látky, zásobní látka glykogen)

Více

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola 4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné

Více

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka

Více

Biochemie, Makroživiny. Chemie, 1.KŠPA

Biochemie, Makroživiny. Chemie, 1.KŠPA Biochemie, Makroživiny Chemie, 1.KŠPA Biochemie Obor zabývající se procesy uvnitř organismů a procesy související s organismy O co se biochemici snaží Pochopit, jak funguje život Pochopit, jak fungují

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

PRAPRVOCI A PRVOCI Vojtěch Maša, 2009

PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 Opakování Prokarytotické organismy Opakování Prokaryotické organismy Nemají jádro, ale jen 1 chromozóm neoddělený od cytoplazmy membránou Patří sem archea, bakterie

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky

Více

FUNGI. Houby v širším slova smyslu včetně lišejníků HEN

FUNGI. Houby v širším slova smyslu včetně lišejníků HEN FUNGI Houby v širším slova smyslu včetně lišejníků HEN Houby (Fungi) popis skupiny Eukaryota, většinou mnohobuněční kvasinky jsou ale jednobuněčné Živiny přijímají absorpcí. Všechny houby se živí heterotrofně.

Více

Maturitní témata - BIOLOGIE 2018

Maturitní témata - BIOLOGIE 2018 Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická

Více

M A T U R I T N Í T É M A T A

M A T U R I T N Í T É M A T A M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

živé organismy získávají energii ze základních živin přeměnou látek v živinách si syntetizují potřebné sloučeniny, dochází k uvolňování energie některé látky organismy nedovedou syntetizovat, proto musí

Více

prokaryotní Znaky prokaryoty

prokaryotní Znaky prokaryoty prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou

Více

Abiotický stres - sucho

Abiotický stres - sucho FYZIOLOGIE STRESU Typy stresů Abiotický (vliv vnějších podmínek) sucho, zamokření, zasolení půd, kontaminace prostředí toxickými látkami, chlad, mráz, vysoké teploty... Biotický (způsobený jiným druhem

Více

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc* Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

Maturitní témata Biologie MZ 2017

Maturitní témata Biologie MZ 2017 Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza

Více

Mgr. Šárka Bidmanová, Ph.D.

Mgr. Šárka Bidmanová, Ph.D. Mgr. Šárka Bidmanová, Ph.D. Loschmidtovy laboratoře, Ústav experimentální biologie Přírodovědecká fakulta, Masarykova univerzita 77580@mail.muni.cz 1. Úvod do studia mikrobiologie 2. Archea 3. Bakterie

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

Regulace růstu a vývoje

Regulace růstu a vývoje Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů

Více

3) Membránový transport

3) Membránový transport MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

Mycelium (podhoubí) = soubor hyf. Součástí mycelia jsou i útvary kde vznikají spory

Mycelium (podhoubí) = soubor hyf. Součástí mycelia jsou i útvary kde vznikají spory Říše: HOUBY (Fungi) Charakteristika: - známo přes 100 000 druhů (odhad až 1,5 miliónů) - organizmy s eukaryotickou buňkou BS s chitinem, v buňce lysozómy i cytoskelet - jedno i mnohobuněčné - heterotrofní

Více

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz Metabolismus, taxonomie a identifikace bakterií Karel Holada khola@lf1.cuni.cz Klíčová slova Obligátní aeroby Obligátní anaeroby Aerotolerantní b. Fakultativní anaeroby Mikroaerofilní b. Kapnofilní bakterie

Více

Cytologie. Přednáška 2010

Cytologie. Přednáška 2010 Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:

Více

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných

Více

STRUKTURA EUKARYONTNÍCH BUNĚK

STRUKTURA EUKARYONTNÍCH BUNĚK STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE ČESKÁ SBÍRKA MIKROORGANISMŮ

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE ČESKÁ SBÍRKA MIKROORGANISMŮ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE ČESKÁ SBÍRKA MIKROORGANISMŮ http://www.sci.muni.cz/ccm Mikroskopické houby Laichmanová Monika autor: MUDr. Petr Ondrovčík Mikroskopické

Více

1 (2) CYTOLOGIE stavba buňky

1 (2) CYTOLOGIE stavba buňky 1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.

Více

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,

Více

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER) BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger

Více

Vnitřní prostředí organismu. Procento vody v organismu

Vnitřní prostředí organismu. Procento vody v organismu Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - organismy V této kapitole se dozvíte: Co je to organismus. Z čeho se organismus skládá. Jak se dělí

Více