Přednáška č. 10. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška č. 10. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur."

Transkript

1 Přednáška č. 10 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.

2 Struktura tektosilikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje prostorově. [SiO 2 ] 3-D kostra tetraedrů: plně polymerizovaná Tektosilikáty křemen živce zeolity

3 Tektosilikáty - prostorově propojené tetraedry SiO 4 Tetraedry [SiO 4 ] 4 jsou ve strukturách tektosilikátů pospojovány do třírozměrné prostorové kostry tak, že každý tetraedr se váže na své sousedy všemi čtyřmi rohy, takže poměr Si : O je 1 : 2. Taková struktura je ovšem valenčně zcela nasycená a neumožňuje vstup dalších iontů do struktury. Proto mezi tektosilikáty v úzkém slova smyslu patří jen modifikace SiO 2, např. křemen (to je důvod, proč je křemen v některých učebnicích mineralogie řazen k silikátům, ačkoliv z chemického hlediska jde o oxid). Vznik dalších tektosilikátů je umožněn jen tehdy, když je část tetraedrů [SiO 4 ] 4 nahrazena tetraedry [AlO 4 ] 5 a jde tedy vlastně o tektoalumosilikáty. U tektosilikátů vždy platí, že poměr (Si+Al) : O = 1 : 2.

4 Tektosilikáty - prostorově propojené tetraedry SiO 4 Ve strukturách tektosilikátů vznikají mezi tetraedry [TO 4 ] dutiny poměrně značných rozměrů, proto jsou nejčastějšími kationty tektosilikátů velké kationty jako Na +, K +, Ca 2+, Ba 2+, (Sr 2+, Cs 2+ ), méně se uplatňují malé kationty jako Mn 2+, Fe 2+, Mg 2+, Zn 2+. Malé množství Si 4+ a Al 3+ v tetraedrech může být nahrazeno Fe 3+, P 5+, Be 2+ či Ti 4+. Některé tektosilikáty obsahují cizí anionty, např. (OH), Cl, (CO 3 ) 2, (SO 4 ) 2, S 2. Ve strukturách zeolitů vznikají v tetraedrové kostře tak velké dutiny, že se do nich mohou ukládat velké kationty v hydratované formě. Z řídké struktury tektosilikátů vyplývají i jejich relat. nízká hustota (většinou mezi 2,2 2,7 g.cm 3 ) a nízké indexy lomu.

5 Skupina SiO 2 (křemene) Oxid křemičitý tvoří v přírodě řadu polymorfních modifikací; podmínky vzniku a strukturních přechodů mezi jednotlivými modifikacemi nejsou dosud zcela vyjasněny. V povrchových podmínkách je stabilní modifikací trigonální křemen (tvoří cca 15 % zemské kůry). Ostatní modifikace jsou v povrchových podmínkách metastabilní vysokoteplotní minerály tridymit a cristobalit a vysokotlaké coesit a stišovit.

6 Skupina SiO 2 (křemene) Křemen, tridymit a cristobalit vytvářejí každý dva typy modifikací s mírně odlišnou strukturou: nižší (nízkoteplotní) a vyšší (vysokoteplotní). Nižší modifikace při zvýšení teploty nad určitou mez přecházejí na vyšší se symetričtější strukturou a nižší hustotou (vyšší křemen, vyšší cristobalit a vyšší tridymit). Podobně při poklesu teploty pod určitou hranici přecházejí vyšší modifikace na nižší vznikají paramorfózy nižších modifikací po vyšších.

7 Skupina SiO 2 (křemene) Vysokotlaké modifikace s hustou strukturou, coesit a stišovit, vznikají za velmi vysokých tlaků v meteoritických kráterech, coesit je znám i z vysokotlakých hornin, např. z některých ekogitů a kimberlitů. Předpokládá se jejich přítomnost v zemském plášti. Melanoflogit je vzácná modifikace s nejasným vztahem k ostatním, na jeho vznik má zřejmě vliv obsah určitých organických látek v krystalizačním prostředí. Tetragonální modifikace zvaná keatit dosud nebyla nalezena v přírodě.

8 Skupina SiO 2 Struktura sestavena pouze z tetraedrů SiO 4 a nejsou přítomny žádné další ionty. Existuje minimálně 9 způsobů, jak mohou být tetraedry v prostoru uspořádány - to odpovídá existenci jednotlivých polymorfů SiO 2 V běžných podmínkách se vyskytují tři základní polymorfy (podle vzrůstající symetrie): nízký tridymit, nízký křemen a nízký cristobalit. Všechny mohou přecházet transformací z jednoho na druhý. Zároveň může každý polymorf přecházet reversibilním procesem na vysokoteplotní formu vyšší křemen - nad 573 C vyšší tridimit nad 870 C vyšší cristobalit nad 1470 C Existují i vysokoteplotní a vysokotlaké polymorfní modifikace SiO 2 - stišovit (rutilová struktura) a coesit.

9 Přírodní modifikace SiO 2 : název modifikace symetrie teplota zvratu* křemen nižší trig. velmi hojný 573 C vyšší hex. tridymit nižší romb. méně hojný 870 C vyšší hex. cristobalit nižší tetrag. méně hojný 200 C vyšší kub. melanoflogit tetrag. velmi vzácný stišovit tetrag. velmi vzácný coesit mon. velmi vzácný opál amorfní SiO 2 nh 2 O velmi hojný lechaterierit amorfní, křemenné sklo *při povrchovém tlaku velmi vzácný

10 Přírodní modifikace SiO 2 : Struktura modifikací SiO 2 (s výjimkou stišovitu, kde je Si v oktaedrické koordinaci) je tvořena křemík-kyslíkovými koordinačními tetraedry [SiO 4 ] 2, vzájemně spojenými všemi čtyřmi rohy (kyslíky) do elektroneutrální prostorové sítě; proto jsou někdy řazeny k tektosilikátům. Ke skupině SiO 2 se dále řadí dvě amorfní fáze (tzv. mineraloidy přísně vzato nejde o minerály), běžný opál a vzácný lechatelierit (křemenné sklo vznikající prudkým ochlazením SiO 2 taveniny).

11 KŘEMEN SiO 2 Symetrie: hexagonální, nízký křemen oddělení trigonálně trapezoedrické a vyšší křemen oddělení hexagonálně trapezoedrické Forma výskytu: Krystalových tvarů byla popsána celá řada. Dvojčatné srůsty se řídí podle tří zákonů: dauphinéský zákon (alpský) je srůstání pravého křemene s pravým nebo levého s levým podle osy c. brazilský zákon je srůstání levého a pravého křemene podle roviny (11-20). japonský zákon je srůst podle roviny (11-22). Agregáty bývají kusové, zrnité, vláknité nebo stébelnaté s radiálně paprsčitou stavbou. Levý a pravý křemen Srůst křemene dauphinéský (vlevo) a brazilský (vpravo)

12 KŘEMEN SiO 2 Křemen, Banská Štiavnica (zdroj Herčko. 1982) Fyzikální vlastnosti: T = 7, H = 2,65; barva křemene bývá různá a vyčleňují se tyto barevné variety: Japonský srůst křemene (4 cm), Arkansas (zdroj Lapis)

13 KŘEMEN SiO 2 Křemen, Banská Štiavnica (zdroj Herčko. 1982) Fyzikální vlastnosti: T = 7, H = 2,65; barva křemene bývá různá a vyčleňují se tyto barevné variety: ametyst - fialový křemen citrín - žlutý křemen záhněda - hnědý nebo kouřový křemen morion - černý křemen mléčný křemen - bílý křemen zakalený vzduchovými bublinkami křišťál - čirý křemen růženín - růžový křemen železitý křemen - červený křemen zabarvený šupinkami hematitu

14 KŘEMEN SiO 2 Lesk je skelný, lom lasturnatý. Vzhledem k polaritě osy c jeví piezoelektrické vlastnosti. Křemen existuje také v mikrokrystalických varietách, z nichž nejznámější jsou chalcedon, achát a jaspis. Složení a struktura: Chemicky bývá čistý. Při teplotě 573 C přechází α křemen (nižší) na β křemen (vyšší) pouhým posunutím atomů ve struktuře bez porušení vazeb. Vznik a výskyt: Nejběžnější minerál magmatických hornin (granity, pegmatity, křemenné diority), metamorfovaných hornin (fylity, svory) i sedimentárních hornin (slepence, pískovce). Běžný je v greisenech, na hydrotermálních žilách, na alpských žilách nebo v rozsypech. Naleziště: Dolní Bory (záhnědy v pegmatitech), Andělské domky u Žulové (křišťály), Mirošov, Krásné u Šumperka (alpská parageneze), Banská Štiavnica (drůzovitý křemen na hydrotermálních žilách) a řada dalších lokalit. Použití: využíván v průmyslu pro své optické a piezoelektrické vlastnosti, ve šperkařství Diagnostické znaky: tvrdost, krystalové tvary, nedostatek štěpnosti.

15 OPÁL SiO 2. nh 2 O Symetrie: amorfní Forma výskytu: Hroznovité, kulovité nebo hlízovité agregáty, povlaky, žilky. Fyzikální vlastnosti: T = 5-6; H = 2-2,2; barva zpravidla šedá nebo bílá, existuje ale i řada nejrůzněji zbarvených odrůd (dřevitý opál, drahý opál a jiné). Složení a struktura: Zpravidla obsahuje 3-12% vody. Vznik a výskyt: Je to nízkoteplotní minerál, který vzniká i v povrchových podmínkách. Vzniká jako sekundární produkt v dutinách a trhlinách řady hornin, nachází se v reziduech hadců nebo je součástí schránek některých živočichů. Naleziště: Kozákov, Nová Paka (dutiny bazaltů), Křemže, Věžná (rezidua hadců)

16 Skupina živců Složení minerálů této skupiny lze vyjádřit pomocí trojúhelníkového diagramu ortoklas (KAlSi 3 O 8 ) - albit (NaAlSi 3 O 8 ) - anortit (CaAl 2 Si 2 O 8 ) Členy v řadě albit - ortoklas se označují jako alkalické živce, členy řady albit - anortit jako plagioklasy. Mimo tyto řady existuje ještě barnatý živec celsian (BaAl 2 Si 2 O 8 ). Živce jsou charakterizovány svým složením (podíl koncových členů Or, Ab a An), i svým strukturním stavem. Distribuce atomů Al v tetraedrických pozicích je totiž silně závislá na teplotě krystalizace a teplotní historii každého živce. Živce utuhlé velmi rychle mají vysoký stupeň neuspořádanosti Al - Si (označují se jako vysoké - high), živce krystalizující zvolna se vyznačují vysokým stupněm uspořádání (označení nízké - low).

17 Nomenklatura plagioklasů a vysokoteplotních alkalických živců

18 Skupina živců Struktura živců je založena na prostorové síti SiO 4 tetraedrů, která jsou v některých pozicích nahrazovány tetraedry AlO 4 Tím je umožněn vstup dalších prvků do struktury (Na, K, Ca, Ba). Neomezenou izomorfní mísitelnost najdeme pouze v řadě plagioklasové, řada albit - ortoklas je neomezeně mísitelná pouze za vyšších teplot. Při postupném vzniku živců z taveniny dochází k tzv. exsoluci (odmíšení) a vzniku pertitů (resp. antipertitů). Mísitelnost mezi ortoklasem a anortitem je velmi omezená. Naopak izomorfie v plagioklasové řadě je dokonalá a je podle složení vyčleněna řada odrůd. Obecný vzorec plagioklasů je pak uváděn jako: Na 1-x Ca x (Si 3-x Al 1+x O 8 ).

19 Skupina živců Vlastnosti živců V důsledku společné struktury mají jednotlivé živce natolik podobné vlastnosti, že je lze často jen obtížně rozlišit. Nejčastěji jsou bílé jen světle zbarvené (K-živce nejčastěji světle šedé, žluté, růžové, plagioklasy bílé či nazelenalé; vápníkem bohaté plagioklasy bývají někdy šedé až černé od mikroskopických inkluzí magnetitu i jiných minerálů). T = 6, hustota 2,57 2,9 g.cm 3. Všechny živce mají dokonalou štěpnost podle (001) a dobrou podle (010). Štěpné plohy jsou skelně, méně často poněkud perleťově lesklé. U monoklinických živců svírají tyto dva systémy štěpných ploch pravý úhel (odtud ortoklas = kolmo štěpný), u triklinických živců úhel blízký 90 (plagioklas = kose štěpný).

20 Skupina živců Vlastnosti živců Dvojčatění živců je velmi časté podle řady zákonů, z nichž nejčastější jsou: (1) karlovarský: zrcadlení podle (100), srůst podle (010), penetračně; (2) manebašský: podle (021), kontaktně; (3) bavenský: podle (001), kontaktně; (4) albitový (hl. u pagioklasů): podle (010), často polysynteticky; (5) periklinový (hl. u plagioklasů): dvojčatnou osou je osa b, rovina srůstu je na ni kolmá. Běžné jsou i složené srostlice (podle dvou i více zákonů současně). Živce tvoří často automorfně omezené krystaly tabulkovitého (podle (010)) nebo krátce sloucovitého (podle osy a) habitu,

21 Skupina živců Přeměny živců V připovrchových a povrchových podmínkách jsou živce značně nestabilní, proto snadno podléhají přeměnám na jiné minerály. Postiženy bývají celé krystaly živců nebo jen jednotlivé růstové zóny či systémy dvojčatných lamel. K nejčastějším přeměnán patří: - myrmekitizace: orientovaný srůst draselného živce a vápenatého plagioklasu, který vzniká zatlačováním draselného živce plagioklasem (odnosem K a přínosem Ca a Na). Plagioklas tvoří charakteristické útvary v draselném živci, často připodobňované k chodbičkám červotoče. - sericitizace: přeměna na agregát jemnozrnného muskovitu (tzv. sericitu), často s albitem. Vzniká působením hydrotermálních roztoků na alkalické živce, zejména draselné.

22 Skupina živců Přeměny živců V připovrchových a povrchových podmínkách jsou živce značně nestabilní, proto snadno podléhají přeměnám na jiné minerály. Postiženy bývají celé krystaly živců nebo jen jednotlivé růstové zóny či systémy dvojčatných lamel. K nejčastějším přeměnán patří: - kaolinitizace: přeměna alkalických živců na kaolinit. Probíhá (1) při zvětrávání ve slabě kyselém prostředí, (2) působením hydrotermálních roztoků. Kaolinitizace živců má zásadní význam pro vznik půd a ložisek kaolinu i jiných jílových surovin. - saussirizace [sósirizace]: přeměna vápníkem bohatých plagioklasů na jemnozrnný agregát různých minerálů, nejčastěji epidotu resp. klinozoisitu, albitu, křemene, kalcitu, sericitu, skapolitu, vesuvianu, amfibolu apod. Probíhá za nízkoteplotních metamorfních a metasomatických podmínek.

23 Skupina živců Výskyt živců Živce jsou nejrozšířenější minerály v zemské kůře, odhaduje se, že tvoří 59 obj.% zemské kůry, tj. asi 56 váhových %. Jsou součástí svrchního pláště, byly nalezeny i v měsíčních a marsovských horninách a v meteoritech. Spodní plášť ani jádro Země zřejmě živce neobsahují, takže na živce připadá asi 0,2 % hmotnosti planety. Vyskytují se jako podstatná složka ve velké většině magmatických a metamorfovaných hornin. V sedimentárních horninách jsou méně hojné kvůli značné nestabilitě v povrchových podmínkách (pískovce, arkózy).

24 Skupina živců Praktický význam Zásadní význam mají živce pro zemědělství a růst vegetace vůbec: při jejich zvětrávání se uvolňují živiny (odtud živce) nezbytné pro život rostlin, zejména K+, a půda je obohacována o jílové minerály, nejčastěji kaolinit. Zvětráváním živcem bohatých hornin (řul, rul, arkóz) v kyselém prostředí vznikají ložiska jílových surovin, zejména kaolinu (kaolinitizace).

25 Skupina živců Ložiska živců jsou v podstatě tří typů: (i) žulové pegmatity (v ČR např. okolí Poběžovic, Domažlic, Písku, Dolních Borů), (ii) živcem bohaté granitoidní a alkalické intruzivní horniny (Krásno u Horního Slavkova), (iii) živcové šterkopísky a štěrky (Halámky). Jako suroviny se uplatňují zejména K a Na živce ve sklářském průmyslu a při výrobě ušlechtilého, užitkového a elektroizolačního porcelánu, zdravotnické keramiky, glazur a ů. Při výrobě porcelánu dochází k rozkladu živce na jehličkovitý mullit, který zpevňuje střep, a oxidy alkálií, které v sobě rozpouštějí ostatní složky keramické hmoty (kaolinit, křemen) a po utuhnutí vytvářejí mléčně bílé sklo. Povrch porcelánu se navíc pokrývá sklovitou glazurou s vysokým obsahem živce. Přídavek živců do sklářského kmene zvyšuje obsah hliníku, čímž roste viskozita taveniny a snižuje se tendence skla ke krystalizaci a tím k zmatnění. Vzhledově atraktivních odrůd se používá jako ozdobných kamenů.

26 Skupina živců alkalické živce: sanidin (K,Na)(Si,Al) 4 O 8 mon. ortoklas KAlSi 3 O 8 mon. mikroklin KAlSi 3 O 8 trikl. albit NaAlSi 3 O 8 trikl. plagioklasy: albit NaAlSi 3 O 8, Ab 100 An 0 Ab 90 An 10 trikl. oligoklas Ab 90 An 10 Ab 70 An 30 trikl. andezin Ab 70 An 30 Ab 50 An 50 trikl. labradorit Ab 50 An 50 Ab 30 An 70 trikl. bytownit Ab 30 An 70 Ab 10 An 90 trikl. anortit CaAl 2 Si 2 O 8, Ab 10 An 90 Ab 0 An 100 trikl. barnaté živce: celsian BaAl 2 Si 2 O 8 mon. hyalofán (K,Ba)Al(Si,Al) 3 O 8 mon.

27 MIKROKLIN KAlSi 3 O 8 Forma výskytu: Běžně dvojčatí podle albitového (dvojčatná rovina (010)) a periklinového (dvojčatná osa [010]) zákona a vytváří se tak mikroklinové mřížkování. Zpravidla tvoří štěpné masy a nepravidelná zrna. Fyzikální vlastnosti: T = 6; H = 2,54-2,57; barva bílá nebo světlé odstíny žluté a zelené, také bezbarvý, lesk skelný. Štěpnost dokonalá podle (001) a dobrá (010), svírají úhel téměř 90. Složení a struktura: Běžná je nepatrná přítomnost Na. Se zvyšující se teplotou (high - vysoký mikroklin) vzrůstá neuspořádanost Al - Si a struktura se může transformovat až na sanidin. Vznik a výskyt: Běžný horninotvorný minerál žul, rul, zelených břidlic a pegmatitů. Naleziště: Vernéřov, Otov, Meclov (pegmatity), Měděnec (ortoruly) Použití: keramický průmysl Diagnostické znaky: mikroklinové mřížkování, štěpnost

28 ORTOKLAS KAlSi 3 O 8 Forma výskytu: Krystaly mají krátce sloupcovitý nebo tabulkovitý habitus, velmi často bývá zdvojčatělý. Podle karlovarského zákona jsou to penetrační prorostlice podle osy c, u bavenského zákona podle plochy (021) nebo podle manebašského zákona podle roviny (001). Zpravidla tvoří štěpné agregáty a zrna v horninách. Fyzikální vlastnosti: T = 6; H = 2,57; je bezbarvý nebo světle béžový, šedý, načervenalý, lesk skelný, štěpnost podle (001) a (010) dokonalá. Složení a struktura: Běžná je přítomnost Na. Je středněteplotním živcem s částečným uspořádáním Al - Si. Vznik a výskyt: Jeden z nejdůležitějších horninotvorných minerálů magmatických hornin (žuly, syenity, aplity, pegmatity) a metamorfitů (ruly). Méně častý je na hydrotermálních a alpských žilách.

29 ORTOKLAS KAlSi 3 O 8 Krystaly ortoklasu (zdroj Ježek, 1932) Naleziště: Dolní Bory, Meclov, Otov (pegmatity), třebíčský masív (syenity), Karlovy Vary, Loket (dvojčata v žulách) Použití: keramický průmysl Diagnostické znaky: barva, štěpnost Karlovarské dvojče ortoklasu levé a pravé (zdroj Ježek, 1932)

30 SANIDIN KAlSi 3 O 8 Forma výskytu: Krystaly mají tabulkovitý habitus s převládajícími plochami (010). Časté jsou srůsty podle karlovarského, manebašského a bavenského zákona. Fyzikální vlastnosti: T = 6; H = 2,56-2,62; bezbarvý, šedý, lesk skelný. Štěpnost podle (010) a (001) dokonalá. Složení a struktura: Vysokoteplotní živec, který je za teplot vzniku mísitelný s vysokým albitem. Vyznačuje se vysokým stupněm neuspořádanosti Al - Si. Vznik a výskyt: Typický minerál výlevných hornin (trachity, ryolity) a kontaktně metamorfovaných hornin. Naleziště: Heřmanov u Teplé (trachyt), Vyhně u Banské Štiavnice (ryolit) Diagnostické znaky: vyrostlice v efuzívech

31 Plagioklasová řada albit (NaAlSi 3 O 8 ) - anortit (CaAl 2 Si 2 O 8 ) složení jednotlivých členů podle přítomnost anortitové složky: albit - An 0-10, oligoklas - An 10-30, andezín - An 30-50, labradorit - An 50-70, bytownit - An a anortit - An Forma výskytu: Krystaly zdvojčatělé podle karlovarského, manebašského, bavenského, periklinového nebo albitového zákona, agregáty štěpné masy nebo zrna. Fyzikální vlastnosti: T = 6; H = 2,62-2,76; barva světle šedá, světle okrová nebo bývají bezbarvé, štěpnost podle (001) a (010) dokonalá. Většina fyzikálních vlastností souvisí s chemickým složením. Složení a struktura: V rámci izomorfní řady různé poměry Na:Ca, běžně bývá nepatrně K. Stupeň uspořádání Al : Si je vysoký. Vznik a výskyt: Běžné horninotvorné minerály vyvřelých (gabro, bazalt, diorit) a metamorfovaných (amfibolit, rula) hornin. Naleziště: téměř všude Použití: keramický průmysl Diagnostické znaky: štěpnost, zdvojčatění (jen mikroskopicky)

32 Foidy (feldspatoidy, zástupci živců) Foidy (feldspatoidy) jsou tektosilikáty Na a K, které při nedostatku SiO 2 krystalizují v magmatu místo živců (proto zástupci živců ). K foidům patří minerály z několika skupin mineralogického systému, termín foidy má tedy význam spíše genetický než striktně systematický. Foidy jsou charakteristické pro bezkřemenné alkalické magmatity, v nichž nahrazují živce částečně (např. fonolity, nefelinické syenity, tefrity, bazanity), nebo úplně (např. leucitity, nefelinity). V metamorfitech ani sedimentech se nevyskytují (s výjimkou analcimu, který je systematicky řazen k zeolitům).

33 Foidy (feldspatoidy, zástupci živců) bez cizích aniontů nefelín (Na,K)AlSiO 4 hex. leucit KAlSi 2 O 6 tetr. analcim NaAlSi 2 O 6 H 2 O ort. s cizími anionty sodalit Na 8 (AlSiO 4 ) 6 Cl 2 kub. nosean Na 8 (AlSiO 4 ) 6 (SO 4 ) kub. haüyn (Na,Ca) 4 8 (AlSiO 4 ) 6 (SO 4 ) 1 2 kub.

34 NEFELÍN (Na,K)AlSiO 4 Symetrie: hexagonální Forma výskytu: Krystaly prizmatické, častěji masívní a zrnité agregáty. Fyzikální vlastnosti: T = 5,5-6; H = 2,6-2,65; barva bílá, žlutá, šedá, zelenavá nebo bezbarvý, lesk skelný až mastný, štěpnost podle báze a prizmatu nedokonalá. Složení : Poměr K : Na je různý, neomezená mísitelnost existuje až nad teplotou 1000 C. Vznik a výskyt: Typický minerál alkalických hornin (nefelinity, syenity), může vznikat i metasomatickými pochody. Naleziště: Vinařická hora u Kladna, Podhorní vrch u Mariánských lázní Použití: keramický průmysl Diagnostické znaky: tvar krystalů, asociace minerálů

35 ANALCIM NaAlSi 2 O 6. H 2 O Forma výskytu: Krystaly kubické nebo zrnité agregáty. Fyzikální vlastnosti: T = 5-5,5; H = 2,27; bývá bezbarvý, bílý, narůžovělý, lesk skelný, neštěpný. Složení a struktura: Za Na může zastupovat malé množství K nebo Ca, část Si může být ještě nahrazena Al. Ve směru trojčetných os jsou velké dutiny obsazené molekulami vody. Analcim je někdy řazen k zeolitům, ale jeho chemismus a struktura odpovídají spíše skupině zástupců živců (leucit, nefelin). Vznik a výskyt: Je pozdním nerostem alkalických plutonitů (syenity, těšínity) a vulkanitů (fonolity, trachyty). Jako sekundární výplň trhlin a dutin se uplatňuje v řadě výlevných hornin. Vzácně vzniká v sedimentech, pěkné krystaly bývají na alpských žilách. Naleziště: Košťál u Třebenic, Hončova Hůrka u Příbora (primární výskyt v magmatitech), Kozákov, Morcinov u Lomnice nad Popelkou (dutiny v bazaltech), Markovice (alpská parageneze). Diagnostické znaky: tvar krystalů, parageneze minerálů

36 Skupina zeolitů Skupina tektoalumosilikátů s velkými (obvykle 0,3 0,8 nm) dutinami a kanály ve strukturách, v nichž jsou nepříliš pevně vázány molekuly H 2 O (tzv. zeolitová voda ) a kationty alkalických kovů (Na +, K +, Li +, Cs + ) a alkalických zemin (Ca 2+, Mg 2+, Ba 2+, Sr 2+ ). V současné době je známo asi 80 přírodních zeolitů. Kromě vody je tento typ struktury schopen absorbovat i další ionty různých velikostí. Této důležité vlastnosti zeolitových struktur se hojně využívá v průmyslu, kde se zeolity používají jako iontoměniče. Zeolity jsou zpravidla dobře krystalované minerály běžné v dutinách a na puklinách bazických vyvřelých hornin nebo v nízce metamorfovaných horninách. K nejběžnějším zeolitům se řadí natrolit, chabazit a heulandit.

37 Skupina zeolitů Vznik a výskyt zeolitů Zeolity v přírodě vznikají v magmatickém, metamorfním i sedimentárním prostředí. Některé zeolity mohou krystalizovat přímo z magmatu (analcim). Řada zeolitů se vyskytuje v dutinách vulkanických hornin, zejména bazických, kde vznikají rozkladem již vykrystalizovaných minerálů, hlavně živců, působením plynných a kapalných látek uvolňovaných z chladnoucího magmatu (tzv. autometamorfóza). Zeolity dále vznikají v některých slabě regionálně metamorfovaných horninách (zeolitová facie) i v některých kontaktních metamorfitech, na nízkoteplotních hydrotermálních žilách, v pegmatitech, dutinách žul apod.

38 Skupina zeolitů Vznik a výskyt zeolitů Ekonomicky nejvýznamnější jsou stratiformní ložiska zeolitů, vzniklá nejčastěji působením alkalických vodných roztoků na pyroklastický materiál nejčastěji ryolitového a dacitového složení (sopečná skla, tufy, tufity, pemzy) v jezerním prostředí, a to již při teplotách od 4 C. Poněkud méně významná jsou diagenetická a metamorfní ložiska zeolitů, ložiska vázaná na termální prameny a zvětrávací ložiska. Největší průmyslový význam mají klinoptilolit, mordenit, erionit, chabazit, phillipsit, ferrierit a analcim. Zeolity byly nalezeny i v hlubokomořských sedimentech. V ČR dosud nejsou ekonomicky využitelná ložiska zeolitů známa.

39 Skupina zeolitů Význam V naftovém průmyslu jsou využívány jako katalyzátory (krakování uhlovodíků) a molekulová síta (frakční dělení a čištění benzinů, zemního plynu atd.). Uplatňují se jako iontoměniče a absorbenty při změkčování pitné a průmyslové vody a při čištění odpadních vod (potravinářství, průmyslové a zemědělské odpady, jaderné odpady) a exhalací (např. CO 2, SO 2, H 2 S, NO x, NH 3, páry Hg, výfukové plyny). V potravinářství se zeolitů využívá k čištění tekutin (oleje, pivo, víno, ovocné šťávy, melasa atd.). V ochraně přirodního prostředí se dále používají k likvidaci ropných skvrn na vodách i v půdách.

40 Skupina zeolitů Význam V chemickém průmyslu slouží k dělení a čištění nejrůznějších chemikálií, zejména organických, a jako katalyzátory. Slouží jako nosiče hnojiv, pesticidů, fungicidů. Dehydratované zeolity patří k nejúčinějším vysoušedlům plynů a kapalin (vzácné plyny, alkoholy, uhlovodíky atd.). V zemědělství se používají ke zvýšení sorpční kapacity a neutralizaci půd, jako přísada do potravy hospodářských zvířat a do podestýlek. Slouží i k výrobě speciálních cementů a lehčených betonů, lehké keramiky, k plnění zubních past, papíru, plastů a pryskyřic, jako nosiče barev při barevném tisku, pohlcovače pachů atd. atd.

41 Skupina zeolitů Velký komerční zájem o zeolity vedl k vývoji řady metod syntézy zeolitů, nejčastěji založených na reakci NaOH s alumosilikátovými gely. Vyráběno je asi druhů syntetických zeolitů, a to jak analogů přírodních zeolitů, tak i nových, v přírodě dosud nenalezených druhů. Byly vypracovány vysoce sofistikované postupy umožňující syntézu zeolitů s předem žádanými vlastnostmi. Výroba, úprava a využití zeolitů tvoří dnes v podstatě samostatný, rychle se rozvíjející vědecký a průmyslový obor. Vzhledem k neustálému nárůstu aplikací lze do budoucna předpokládat další nárůst poptávky po zeolitech syntetických i přírodních.

42 Skupina zeolitů Přehled významných přírodních zeolitů analcim NaSi 2 O 6 6 H 2 O ort. natrolit Na 2 Al 2 Si 3 O 10 2H 2 O ort. mezolit Na 2 Ca 2 Al 6 Si 9 O 30 8H 2 O mon. skolecit CaAl 2 Si 3 O 10 3H 2 O mon. thomsonit NaCa 2 Al 5 Si 5 O 20 6 H 2 O ort. laumontit CaAl 2 Si 4 O 12 4H 2 O mon. gismondin Ca 2 Al 4 Si 4 O 16 9H 2 O mon. phillipsit (K,Na,Ca) 1-2 (Si,Al) 8 O 16 6H 2 O mon. chabasit CaAl 2 Si 4 O 12 6H 2 O trig. erionit (K 2,Ca,Mg,Na 2 ) 2 Al 4 Si 14 O 36 15H 2 O hex. ferrierit (Na,K) 2 Mg(Si,Al) 18 O 36 9H2O romb. mordenit (Ca,Na 2,K 2 )Al 2 Si 10 O 24 7H 2 O romb. heulandit (Ca,Na 2 )Al 2 Si 7 O 18 6H 2 O mon. klinoptilolit (Na,K,Ca) 2-3 Al 3 (Al,Si) 2 Si 13 O 36 12H 2 O mon. stilbit NaCa 4 Al 8 Si 28 O 72 nh 2 O mon.

43 NATROLIT Na 2 Al 2 Si 3 O 10. 2H 2 O Forma výskytu: Dlouze sloupcovité nebo jehličkovité krystaly, agregáty celistvé, snopkovité, radiálně paprsčité. Fyzikální vlastnosti: T = 5-5,5; H = 2,25; barva bílá, šedá, načervenalá nebo je bezbarvý, lesk skelný, dokonale štěpný podle (110). Složení a struktura: Nepatrné příměsi K nebo Ca. Patří do skupiny vláknitých zeolitů. Vznik a výskyt: Převážně se vyskytuje v dutinách bazických i alkalických efuzivních hornin, ale je znám i z některých pegmatitů, alpské parageneze nebo hadců. Naleziště: Mariánská hora v Ústí nad Labem, Zálezly, Soutěsky u Děčína (bazická efuzíva), Markovice (alpská parageneze), Věžná (desilikovaný pegmatit) Diagnostické znaky: vláknité krystaly

44 Děkuji za pozornost.

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí Přednáška č. 7 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Fylosilikáty:

Více

Optické vlastnosti horninotvorných minerálů I

Optické vlastnosti horninotvorných minerálů I Optické vlastnosti horninotvorných minerálů I Pro studenty předmětů Mineralogie I a Mikroskopie minerálů a hornin Sestavil Václav Vávra Obsah prezentace křemen obraz 3 ortoklas obraz 16 mikroklin obraz

Více

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky:

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky: Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Fylosilikáty 2. Tektosilikáty 3. Shrnutí 4. Shrnutí silikáty 1. Fylosilikáty Velmi významná skupina silikátů,

Více

Systematická mineralogie

Systematická mineralogie Systematická mineralogie Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich

Více

Geologie-Minerály I.

Geologie-Minerály I. Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva

Více

Mikroskopie minerálů a hornin

Mikroskopie minerálů a hornin Mikroskopie minerálů a hornin Přednáška 4 Serpentinová skupina, glaukonit, wollastonit, sádrovec, rutil, baryt, fluorit Skupina serpentinu Význam a výskyt Tvar a omezení Barva, pleochroismus v bazických,

Více

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Mineralogie II Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Shrnutí 1. Cyklosilikáty Poměrně malá ale důležitá skupina silikátů,

Více

Poznávání minerálů a hornin. Vulkanické horniny

Poznávání minerálů a hornin. Vulkanické horniny Poznávání minerálů a hornin Vulkanické horniny Klasifikace vulkanických hornin Pro klasifikaci vulkanitů hraje chemické složení významnou roli. Klasifikace těchto hornin je totiž v porovnání s plutonity

Více

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Katedra geotechniky K135 (5. patro budova B) - Geologie - Mechanika zemin - Zakládání staveb - Podzemní

Více

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7. Mineralogie I Milan Novák Ústav geologických věd, PřF MU v Brně MINERALOGICKÝ SYSTÉM 2 SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře

Více

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda.

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda. Oxidy Sloučeniny kovů s kyslíkem Křišťál bezbarvá odrůda Ametyst fialová odrůda Křemen Složení: oxid křemičitý SiO2 Vzhled: krystalový šestiboké hranoly Barva: čirý, bělavý, šedavý barevné odrůdy h= 2,6

Více

Mineralogie I Prof. RNDr. Milan Novák, CSc.

Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Sorosilikáty 2. Cyklosilikáty 3. Inosilikáty 4. Shrnutí 1. Sorosilikáty skupina epidotu Málo významná skupina,

Více

Určování hlavních horninotvorných minerálů

Určování hlavních horninotvorných minerálů Určování hlavních horninotvorných minerálů Pro správné určení horniny je třeba v prvé řadě poznat texturu a strukturu horninového vzorku a poté rozeznat základní minerály, které horninu tvoří. Každá hornina

Více

Základy geologie pro geografy František Vacek

Základy geologie pro geografy František Vacek Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou

Více

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci silikátů 2. Nesosilikáty 3. Shrnutí 1. Co je minerál? Anorganická

Více

PETROLOGIE =PETROGRAFIE

PETROLOGIE =PETROGRAFIE MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)

Více

Mineralogie 4. Přehled minerálů -oxidy

Mineralogie 4. Přehled minerálů -oxidy Mineralogie 4 Přehled minerálů -oxidy 4. Oxidy - sloučeniny různých prvků s kyslíkem - vodu buď neobsahují - bezvodé oxidy - nebo ji obsahují vázanou ve své struktuře - vodnaté oxidy (zpravidla jsou amorfní)

Více

Environmentální geomorfologie

Environmentální geomorfologie Nováková Jana Environmentální geomorfologie Chemické zvětrávání Zemská kůra vrstva žulová (= granitová = Sial) vrstva bazaltová (čedičová = Sima, cca 70 km) Názvy granitová a čedičová vrstva neznamenají

Více

Úvod do praktické geologie I

Úvod do praktické geologie I Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají

Více

Základní horninotvorné minerály

Základní horninotvorné minerály Základní horninotvorné minerály Optická mikroskopie v geologii Vyučují: V. Vávra N. Doláková Křemen (SiO 2 ) Morfologie: Tvoří xenomorfní zrna, pouze ve výlevných horninách může být automotfně omezený

Více

Geologie Horniny vyvřelé

Geologie Horniny vyvřelé Geologie Horniny vyvřelé Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 strana 2 strana 3 HORNINY - jsou to

Více

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) Metodický list Biologie Významné horniny Pracovní list 1 1. Vyvřelé horniny: a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) přítomen +, nepřítomen hornina amfibol augit

Více

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 )

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 ) Magmatické horniny Druhy magmatu Alkalické ( Na, K, Ca, Al, SiO 2 ) Alkaklicko vápenaté Podle obsahu SiO 2: kyselé ( > 65 %) neutrální (52-65 %) bazické (44-52 %) ultrabazické (< 44 %) Láva AA Klesá hustota

Více

Testové otázky ke zkoušce z předmětu Mineralogie

Testové otázky ke zkoušce z předmětu Mineralogie Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní

Více

Akcesorické minerály

Akcesorické minerály Akcesorické minerály Prof. RNDr. Milan Novák, CSc. Al 2 SiO 5 modifikace a další Al-bohaté minerály Osnova přednášky: 1. Úvod 2. Skupina Al 2 SiO 5 3. Alterace Al 2 SiO 5 4. Příbuzné minerály 5. Další

Více

Optické vlastnosti horninotvorných minerálů II

Optické vlastnosti horninotvorných minerálů II Optické vlastnosti horninotvorných minerálů II Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra Obsah prezentace slídy biotit 3 slídy muskovit 18 skupina olivínu

Více

Mineralogický systém skupina VIII - křemičitany

Mineralogický systém skupina VIII - křemičitany Mineralogický systém skupina VIII - křemičitany Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 16. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými zástupci

Více

Použití: méně významná ruda mědi, šperkařství.

Použití: méně významná ruda mědi, šperkařství. Cu3(CO3)2(OH) Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; ρ = 3,77 g.cm -3 Barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší

Více

Kolekce 20 hornin Kat. číslo 104.0085

Kolekce 20 hornin Kat. číslo 104.0085 Kolekce 20 hornin Kat. číslo 104.0085 Strana 1 z 14 SBÍRKA 20 SYSTEMATICKY SEŘAZENÝCH HORNIN PRO VYUČOVACÍ ÚČELY Celou pevnou zemskou kůru a části zemského pláště tvoří horniny, přičemž jen 20 až 30 km

Více

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci OXIDY A HYDROXIDY Oxidy jsou sloučeniny O 2- s prvky kovovými i nekovovými. Ke skupině minerálů - oxidů jsou řazeny také přírodní hydroxidy a oxi-hydroxidy (např. Fe O /OH/). Systém oxidů - starší učebnice

Více

Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Přednáška č. 9 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných

Více

Optické vlastnosti horninotvorných minerálů IV

Optické vlastnosti horninotvorných minerálů IV Optické vlastnosti horninotvorných minerálů IV Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra 1 Obsah prezentace titanit 3 karbonáty 11 epidot 18 klinozoisit

Více

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 4. Systematická mineralogie Silikáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Silikáty (křemičitany) cca 1050 minerálů, tj. 26

Více

Metamorfované horniny

Metamorfované horniny Metamorfované horniny metamorfóza-- soubor procesů (fyzikálních, chemických, strukturních), při při nichžse horniny přizpůsobují nově nastalým vnějším podmínkám (především teplota a tlak) a) rekrystalizace

Více

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,

Více

VZNIK SOPKY, ZÁKLADNÍ POJMY

VZNIK SOPKY, ZÁKLADNÍ POJMY MAGMATISMUS VZNIK SOPKY, ZÁKLADNÍ POJMY obecně je za sopku považována vyvýšenina na zemském povrchu tvořená sopečným materiálem, v rámci které dochází k výstupu magmatu na zemský povrch mezi základní prvky

Více

Mineralogie systematická /soustavná/

Mineralogie systematická /soustavná/ Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál

Více

Geologie Horniny vyvřelé a přeměněné

Geologie Horniny vyvřelé a přeměněné Geologie Horniny vyvřelé a přeměněné Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 c) BAZICKÉ: Melafyr -

Více

Přehled hornin vyvřelých

Přehled hornin vyvřelých Přehled hornin vyvřelých KYSELÉ více jak 65% křemičitanové složky, až 50 nezvětraného křemene, 40-50% živců (Kživce, nebo kyselé plagioklasy) barevné součástky vždycky ve vedlejších složkách (biotit, amfibol,

Více

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a

Více

Přírodopis 9. Přehled minerálů KŘEMIČITANY

Přírodopis 9. Přehled minerálů KŘEMIČITANY Přírodopis 9 14. hodina Přehled minerálů KŘEMIČITANY Mgr. Jan Souček Základní škola Meziměstí V. Křemičitany Křemičitany (silikáty) jsou sloučeniny oxidu křemičitého (SiO 2 ). Tyto minerály tvoří největší

Více

Mikroskopie minerálů a hornin

Mikroskopie minerálů a hornin Mikroskopie minerálů a hornin Cesta ke správnému určení a pojmenování hornin Přednáší V. Vávra Cíle předmětu 1. bezpečně určovat hlavní horninotvorné minerály 2. orientovat se ve vedlejších a akcesorických

Více

MAGMATICKÉ HORNINY - VYVŘELINY

MAGMATICKÉ HORNINY - VYVŘELINY Systém magmatických hornin Cvičení III MAGMATICKÉ HORNINY - VYVŘELINY Vznik: chladnutím, tuhnutím a krystalizací silikátové taveniny (magmatu nabývá interakcí se zemskou kůrou různého složení) Diferenciace

Více

Metamorfóza, metamorfované horniny

Metamorfóza, metamorfované horniny Metamorfóza, metamorfované horniny Přednáška 6 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz 1 Metamorfóza (metamorfismus) - přeměna hornin účinkem teploty, tlaku a chemicky aktivních

Více

Vyvřelé horniny. pracovní list. Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU.

Vyvřelé horniny. pracovní list. Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU. Vyvřelé horniny pracovní list Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU vodova@ped.muni.cz Pracovní list je tvořen souborem učebních úloh zaměřený na procvičení a upevnění učiva o vyvřelých horninách

Více

Chemické složení Země

Chemické složení Země Chemické složení Země Geochemie: do hloubky 16 km (zemská kůra) Clark: % obsah prvků v zemské kůře O, Si, Al = 82,5 % + Fe, Ca, Na, K, Mg, H = 98.7 % (Si0 2 = 69 %, Al 2 0 3 =14%) Rozložení prvků nerovnoměrné

Více

Jan Valenta. Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut.

Jan Valenta. Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut. Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě: Jan.valenta@fsv.cvut.cz Doporučená literatura skripta: Chamra,S.- Schröfel,J.- Tylš,V.(2004):

Více

Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1

Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 Horniny Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2.www.unium.cz/materialy/cvut/fsv/pr ednasky- svoboda-m6153-p1.html

Více

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2 Syntéza leucitové suroviny pro dentální kompozity 1 Ústav skla a keramiky VŠCHT Praha VYSOKÁ ŠKOLA CHEMICKO- TECHNOLOGICKÁ V PRAZE Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír

Více

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají

Více

Přednáška č. 9. Petrografie úvod, základní pojmy. Petrografie vyvřelé (magmatické) horniny

Přednáška č. 9. Petrografie úvod, základní pojmy. Petrografie vyvřelé (magmatické) horniny Přednáška č. 9 Petrografie úvod, základní pojmy Petrografie vyvřelé (magmatické) horniny Petrografie úvod, základní pojmy Petrografie jako samostatná věda existuje od začátku 2. poloviny 19. století. Zabývá

Více

Monazit. (Ce,La,Th)PO 4

Monazit. (Ce,La,Th)PO 4 Monazit (Ce,La,Th)PO 4 Monazit-(Ce) Monazit-(La) Monazit-(Nd) Izostrukturní minerály Brabantit CaTh(PO 4 ) 2 Huttonit ThSiO 4 Gasparit-(Ce) (Ce,La,Nd)AsO 4 Směsný člen - cheralit (Ce,Th,Ca,)(P,Si)O 4 (Th

Více

Geologie 135GEO Stavba Země Desková tektonika

Geologie 135GEO Stavba Země Desková tektonika Geologie 135GEO Stavba Země Desková tektonika Stavba Země Moc toho nevíme Stavba Země Použití seismických vln Stavba Země Stavba Země Stavba Země Stavba Země Stavba Země Stavba Země kůra a plášť Rychlost

Více

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.

Více

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 3. Systematická mineralogie Prvky až fosfáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Klasifikace minerálů 1735 C. Linné - první

Více

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/)

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/) Ústav geoniky AVČR, v. v. i. Oddělení laboratorního výzkumu geomateriálů Studentská 1768 70800 Ostrava-Poruba Smlouva o dílo č. 753/11/10 Zadavatel: Výzkumný ústav anorganické chemie, a.s. Ústí nad Labem

Více

Tělesa vyvřelých hornin. Magma a vyvřelé horniny

Tělesa vyvřelých hornin. Magma a vyvřelé horniny Magma a vyvřelé horniny Magma je: žhavá tavenina nerostů silikáty, oxidy prvků Mg, Ca, Fe, Mn obsahuje vodu a plyny CO2, SO2,H2S, O2 a další Magma: vzniká v hlubinách v hloubce 40 100 km teplota magmatu

Více

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1 Struktura a textura hornin Cvičení 1GEPE + 1GEO1 1 Nejdůležitějším vizuálním znakem všech typů hornin je jejich stavba. Stavba představuje součet vzájemných vztahů všech stavebních prvků (agregátů krystalů,

Více

HORNINY. Lucie Coufalová

HORNINY. Lucie Coufalová HORNINY Lucie Coufalová Hornina Soubor minerálů v tuhém stavu Horniny se navzájem liší svým minerálním složením, fyzikálními vlastnostmi a stářím Většina hornin se skládá ze dvou či více minerálů Monominerální

Více

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování

Více

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny 1/9 3.2.04.11 Vyvřelé magmatické horniny cíl objasnit jejich vlastnosti, výskyt a vznik - vyjmenovat základní druhy - popsat jejich složení - znát základní zástupce magma utuhne pod povrchem hlubinné vyvřeliny

Více

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější

Více

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Přednáška č. 8 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných

Více

horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy

horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy Horniny horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy od od minerálůse liší liší látkovou a strukturní nesourodostí

Více

ZÁKLADNÍ ŠKOLA SADSKÁ. Jana Dobrá VY_32_Inovace_ Minerály (nerosty) a horniny Člověk a jeho svět 4. ročník

ZÁKLADNÍ ŠKOLA SADSKÁ. Jana Dobrá VY_32_Inovace_ Minerály (nerosty) a horniny Člověk a jeho svět 4. ročník Název školy: Autor: Název DUM: Název sady: Číslo projektu: ZÁKLADNÍ ŠKOLA SADSKÁ Jana Dobrá VY_32_Inovace_1.3.10 Minerály (nerosty) a horniny Člověk a jeho svět 4. ročník CZ.1.07/1.4.00/21.3577 Anotace:

Více

HORNINY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními horninami a jejich využitím.

HORNINY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními horninami a jejich využitím. HORNINY Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními horninami a jejich využitím. Horniny skládají se z nerostů vznikaly různým způsobem podle vzniku je

Více

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor VY 32_INOVACE_02_02_VL Téma Horniny a nerosty Anotace Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor Mgr. Kateřina Svobodová Jazyk

Více

P2 prvky - IV.A skupina - otázka z chemie

P2 prvky - IV.A skupina - otázka z chemie Otázka: P 2 prvky - IV.A skupina Předmět: Chemie Přidal(a): Johana IV.A skupina = p 2 prvky Prvky s valenčními elektrony v orbitalech s a p Elektronová konfigurace ns 2 np 2 4 valenční elektrony A skupina,

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Prvky IV. A skupiny Uhlík (chemická značka C, latinsky Carboneum) je chemický prvek, který je základem všech

Více

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované Horninotvorné minerály Magmatické horniny Hlavní témata dnešní přednášky Co jsou to minerály a horniny Minerály jejich fyzikální a chemické vlastnosti Systém minerálů Vznik minerálů Přehled hlavních horninotvorných

Více

GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu

GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu Pro Jirka Zikeš 5. 9. 2016 Co je (granitický) pegmatit? Základní pojmy Systém studovaná část prostoru; systém může být otevřený nebo uzavřený, případně izolovaný

Více

Sloučeniny uhlíku a křemíku

Sloučeniny uhlíku a křemíku Sloučeniny uhlíku a křemíku Temacká oblast : Chemie anorganická chemie Datum vytvoření: 27. 8. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný obsah: Nejdůležitější sloučeniny

Více

Krystaly v přírodě (vzhled reálných krystalů)

Krystaly v přírodě (vzhled reálných krystalů) Krystaly v přírodě (vzhled reálných krystalů) Doposud jsme se většinou zabývali dokonalými krystaly, to jest krystaly se zcela dokonalou strukturou i vnějším omezením. Reálné krystaly se od tohoto ideálu

Více

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ ZÁKLADY GEOLOGIE Úvod přednáška 1 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz Požadavky ke zkoušce 1) Účast na cvičeních, poznávačka základních minerálů a hornin = zápočet 2)

Více

Vulkanickáčinnost, produkty vulkanismu

Vulkanickáčinnost, produkty vulkanismu Vulkanickáčinnost, produkty vulkanismu Přednáška 3 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz 1 Vulkanická činnost - magmatická aktivita projevující se na zemském povrchu - kromě

Více

Elektrochemie. Koroze anorganických nekovových materiálů. Anorganické nekovové materiály. Mechanismy. Základní mechanismy koroze

Elektrochemie. Koroze anorganických nekovových materiálů. Anorganické nekovové materiály. Mechanismy. Základní mechanismy koroze Koroze anorganických nekovových materiálů Anorganické nekovové materiály Keramika Sklo Stavební hmoty Anorganická pojiva vápno, sádra, cement Přírodní horniny Sklo, keramika, stavební hmoty 1 2 Mechanismy

Více

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)

Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002) Přednáška č. 6 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Silikáty

Více

PETROGRAFIE MAGMATITŮ

PETROGRAFIE MAGMATITŮ 1 PETROGRAFIE MAGMATITŮ doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (říjen 2005) OBSAH Úvod 1. Vznik magmatických

Více

Syntéza zeolitů v geopolymerech využitelných v ekologii. Koloušek D.; Doušová B. Slavík R.; Urbanová-Čubová, M.

Syntéza zeolitů v geopolymerech využitelných v ekologii. Koloušek D.; Doušová B. Slavík R.; Urbanová-Čubová, M. Syntéza zeolitů v geopolymerech využitelných v ekologii Koloušek D.; Doušová B. Slavík R.; Urbanová-Čubová, M. Co jsou geopolymery? Geopolymery jsou amorfní až semikrystalické 3D aluminosilikátové materiály.

Více

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s použitím internetu. nerost (minerál) krystal krystalová

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 9. tř. ZŠ základní Přírodopis

Více

Křemík a jeho sloučeniny

Křemík a jeho sloučeniny Křemík a jeho sloučeniny Mgr. Jana Pertlová Copyright istudium, 2008, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení

Více

VY_32_INOVACE_ / Horniny Co jsou horniny

VY_32_INOVACE_ / Horniny Co jsou horniny 1/5 3.2.04.7 Co jsou horniny - směsi minerálů (žula, čedič.), výjimkou je vápenec a křemen (pouze jeden minerál) - mohou obsahovat zbytky organismů rostlin a živočichů - různé složení, vzhled - druhy vyvřelé

Více

METAMORFOVANÉ HORNINY

METAMORFOVANÉ HORNINY Cvičení V METAMORFOVANÉ HORNINY - žádné bezprostřední poznatky o jejich genezi - poznání pouze výsledků metamorfních procesů - intenzita metamorfózy obecně lepší mechanicko-fyzikální vlastnosti (ocenění

Více

Vnitřní geologické děje

Vnitřní geologické děje Vznik a vývoj Země 1. Jak se nazývá naše galaxie a kdy pravděpodobně vznikla? 2. Jak a kdy vznikla naše Země? 3. Jak se následně vyvíjela Země? 4. Vyjmenuj planety v pořadí od slunce. 5. Popiš základní

Více

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY MINERÁLY - HORNINOTVORNÉ - - MINERÁLY - Environmentáln lní geologie sylabus 2 Ladislav Strnad MINERÁL JE anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení,

Více

Půdotvorné faktory, pedogeneze v přirozených lesích. Pavel Šamonil

Půdotvorné faktory, pedogeneze v přirozených lesích. Pavel Šamonil Půdotvorné faktory, pedogeneze v přirozených lesích 1 Pavel Šamonil Autorství fotografií a obrázků: Fotografie v hnědém rámu: Šamonil Ostatní fotografie a obrázky: dle příslušné citace 2 Co je půda? Apollo

Více

NEROSTY A HORNINY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin.

NEROSTY A HORNINY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin. NEROSTY A HORNINY Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin. Nerosty a horniny neživé přírodniny, tvoří zemskou kůru

Více

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky se složením a vlastnostmi hornin. Materiál je plně funkční pouze s

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky se složením a vlastnostmi hornin. Materiál je plně funkční pouze s Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky se složením a vlastnostmi hornin. Materiál je plně funkční pouze s použitím internetu. hornina vyvřelá výlevná, hlubinná,

Více

TYPY HORNIN A JEJICH CHEMISMUS

TYPY HORNIN A JEJICH CHEMISMUS TYPY HORNIN A JEJICH CHEMISMUS Vliv na utváření primární struktury krajiny Tento studijní materiál vznikl v rámci projektu OP VK Inovace výuky geografických studijních oborů (CZ.1.07/2.2.00/15.0222) Projekt

Více

HORNINY horninový cyklus. Bez poznání základních znaků hornin, které tvoří horninová tělesa, nelze pochopit geologické procesy

HORNINY horninový cyklus. Bez poznání základních znaků hornin, které tvoří horninová tělesa, nelze pochopit geologické procesy HORNINY horninový cyklus Bez poznání základních znaků hornin, které tvoří horninová tělesa, nelze pochopit geologické procesy VYVŘELÉ (magmatické): VÝLEVNÉ + PYROKLASTICKÉ ŽILNÉ HLUBINNÉ OZNAČENÍ TĚLES

Více

Petrografické charakteristiky vybraných magmatických hornin

Petrografické charakteristiky vybraných magmatických hornin Petrografické charakteristiky vybraných magmatických hornin Následující popis hornin je zaměřen na všechny znaky hornin, které jsou použitelné pro makroskopické určování hornin a určování na základě studia

Více

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý.

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý. 1 PŘÍLOHY ODDÍL V TEXTU 2.2.1 2.2.2 2.2.3 2.2.4 NÁZEV NEFRIT JADEIT Barva zelená, šedozelená zelenavě bílá, šedá, zelená, žlutavá Vryp Bílý bílý Lesk Matný skelný, mastný Transparence Průsvitný průsvitný

Více

Nabídka vzorků hornin a minerálů pro účely školní výuky

Nabídka vzorků hornin a minerálů pro účely školní výuky Nabídka vzorků hornin a minerálů pro účely školní výuky Aby se člověk naučil poznávat kameny, musí si je osahat. Žádný sebelepší atlas mu v tom příliš nepomůže. Proto jsme pro vás připravili přehledné

Více

Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin.

Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin. PETROLOGIE Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin. HORNINA = anorganická heterogenní (nestejnorodá) přírodnina, tvořena nerosty, složení nelze vyjádřit chemickým

Více

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu Úvod do petrografie, základní textury a struktury hornin Petrografie obor geologie zabývající se popisem a systematickou klasifikací hornin, zejména pomocí mikroskopického studia Stavba hornin Pod pojem

Více

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem).

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). 4. MINERALOGICKÁ TŘÍDA OXIDY - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem). Výskyt: Oxidy se vyskytují ve svrchních částech zemské kůry (v místech, kde je litosféra

Více