NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ. Michal Friesl

Rozměr: px
Začít zobrazení ze stránky:

Download "NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ. Michal Friesl"

Transkript

1 NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Princip Příklady V K.-G. modelu

2 Bayesovský přístup Data pozorování X s hodnotami v (X, A) X s rozdělením Q Parametricky např. Q = Q µ,σ 2 = N(µ, σ 2 ) µ, σ 2 parametry náhodné veličiny apriorní rozdělení na R 2 Neparametricky Q libovolné rozdělení na (X, A) parametry (Q(A), A A) náhodný proces apriorní rozdělení na prostoru pravděpodobnostních měr

3 Dirichletův proces Q D(α) α = n 0 Q 0 konečná míra na (X, A) (Q(A 1 ),..., Q(A k )) D(α(A 1 ),..., α(a k )) Interpretace α E Q(A) = Q 0 (A) var Q(A) = Q 0 (A)(1 Q 0 (A))/(n 0 + 1) Vlastnosti pokrývá širokou třídu rozdělení Q s pravděpodobností 1 diskrétní např. Q(A) = p n δ Yn (A), kde Y n Q 0, p n = θ n j<n (1 θ j), θ j B(1, n 0 )

4 Uplatnění Dirichletova procesu Pozorování X 1,..., X n náhodný výběr z Q Q D(α) Aposteriorní rozdělení (Q X 1,..., X n ) D(α + δ Xi ) Reálné veličiny F (x) = E(Q(, x X 1,..., X n ) = n 0F 0 (x) + nf n (x) n 0 + n Ê Q = n 0 E Q 0 + n X n 0 + n při n 0 0 je F F n, Ê Q X

5 Zprava neutrální procesy Kromě Q distribuční funkce F (t) = Q(, t F (t 1 ), F (t 2) F (t 1 ),..., F (t k) F (t k 1 ) nezávislé 1 F (t 1 ) 1 F (t k 1 ) Anebo kumulativní intenzita Λ(t) = ln(1 F (t)) S(t) = P(X > t) = e Λ(t), P(X > t X > s) = e Λ(s,t Λ proces s nezávislými přírůstky Vlastnosti skoro jistě diskrétní rozdělení aposteriorní opět zprava neutrální v časech pozorování vždy skoky

6 Gama proces Λ G(n 0, Λ 0 ) n 0 > 0, Λ 0 libovolná kumulativní intenzita nezávislé přírůstky (zprava neutrální) Λ(s, t = Λ(t) Λ(s) G(n 0, n 0 Λ 0 (s, t ) Parametry E Λ(s, t = Λ 0 (s, t var Λ(s, t = Λ 0 (s, t /n 0 Aposteriorně mezi pozorováními gama v časech pozorování skoky rozdělení nových skoků nezávisí na čase

7 Gama proces a odhady Pozorování X 1,..., X n náhodný výběr z Q Q G(n 0, Λ 0 ) Pro jednoduchost Λ 0 spojitá, pozorování různá 1 F ( n0 + N ) n0λ t 0(t) (t) = n 0 + N t + 1 i,x i t E Xi kde N t = #{i, X i > t} a ( n0 + N x + 1 ) n0λ0(x) ln((n 0 + N x + 2)/(n 0 + N x + 1)) E x = n 0 + N x ln((n 0 + N x + 1)/(n 0 + N x ))

8 Cenzorování Náhodné cenzorování některá pozorování předčasně ukončena kromě X i ještě časový cenzor Y i X i a Y i nezávislé Pozorujeme Z i = min(x i, Y i ) δ i = I Xi Y i Při Z i = t pro zkoumané X i skutečné pozorování X i = t (δ = 1) částečná informace X i > t (δ = 0)

9 Vliv cenzorování na odhady Dirichletův proces aposteriorní není Dirichletův Ŝ(t) = n 0S 0 (t) + N t n 0 S 0 (y ) + N y u y n 0 + n n 0 S 0 (y ) + N y y t,y=y i=z i při n 0 0 Kaplanův-Meierův odhad (1 u x ) N x x t,x=x i=z i Zprava neutrální proces aposteriorní znovu zprava neutrální u G(n 0, Λ 0 ) v odhadu součin jen přes necenzorovaná i cenzorování X i Y i

10 Koziolův-Greenův model Model náhodného cenzorování X F Λ, Y G Λ G nezávislé pozorujeme Z = min(x, Y ), δ = I X Y navíc 1 G = (1 F ) γ pro nějaké γ > 0 tj. Λ G = γλ Ve spojitém případě Z a δ nezávislé P(δ = 1) = 1/(1 + γ) Oproti předchozímu doba X a cenzor Y mají společný parametr i v Y = t nebo Y t obsažena informace o Λ

11 Předpoklady Apriorní rozdělení Λ G(n 0, Λ 0 ) γ nezávislé s Λ, s hustotou π(γ) Pozorování data = (Z 1, δ 1 ),..., (Z n, δ n ) značíme N t = #{i, Z i > t} Pro jednoduchost zápisu Λ 0 spojitá pozorování Z i navzájem různá

12 Po jednom pozorování Např. Z = t, δ = 0, tj. Y = t, X > t věroh. A Λ(A) aprior. Y = t X > t apost. (., s) (s, t) λ G(n 0, a) e γλ e λ G(n γ, a) {t} µ G(n 0, 0) 1 e γµ e µ G 0 (n 0 + 1, n γ) (t, u) ν G(n 0, b) 1 1 G(n 0, b) (u,.) G(n 0, a) s hustotou na 0 Γ(a) λa 1 e n0λ, λ > 0 G 0 (n, m), 0 < n < m, s hustotou e nµ e mµ µ ln(n/m), µ > 0

13 Aposteriorní rozdělení Λ při daném γ a datech nezávislé přírůstky mezi časy pozorování Λ(s, t) G(n 0 + N s (1 + γ), n 0 Λ 0 (s, t)) v čase s jedním { pozorováním Z i = t (Λ 0 {t} = 0) G 0 (N Zi (1 + γ), N Zi (1 + γ) + 1), δ i = 1, Λ{t} = G 0 (N Zi (1 + γ) + 1, N Zi (1 + γ) γ), δ i = 0, A hustota γ...

14 ... a hustota γ ( n π(γ data) Aposteriorní rozdělení (pokrač.) j=1 ) C j (γ) D j (γ) π(γ), γ > 0. kde ( n ) n0λ 0 0(Z j 1,Z j) C j (γ) = n 0 + N Zj 1 (1 + γ) n 0 + N Zj (1 + γ) ln n D j (γ) = 0 + N Zj (1 + γ) + 1, δ j = 1 n 0 + N Zj (1 + γ) + 1 ln δ j = 0. n 0 + N Zj (1 + γ) γ

15 Pro t (Z (i 1), Z (i) ) Ŝ(t) = E(e Λ(,t data) = kde ( K 1 (γ) = Odhad 0 0 ) C j (γ)d j (γ) C i1 (γ) j < i ( K 2 (γ) = C i2 (γ)d i (γ) K + 1 (γ) = ( j > i K + 1 (γ)k 2(γ)π(γ) dγ K 1 (γ)k 2 (γ)π(γ) dγ ) C j (γ)d j (γ) C + j (γ)d+ j (γ) )C + i1 (γ) j < i j < i i1 i2 j > i Z (i 1) t Z (i)

16 Uvolnění předpokladů Skoky v apriorní intenzitě Λ 0 při pozorováních v bodech skoků G 0 g 1 g 2, D(γ) rozdíly C(γ) Shody mezi časy pozorování složitější zápis, kombinace cenz. a necenz. místo G 0 např. e µ (1 e µγ) (1 e µ ) [1 cenz., 1 necenz.] místo D i (γ) např. ln (n0+1)(n0+2+γ) (n 0+1+γ)(n 0+2) Jiné apriorní rozdělení 1 exp( Λ) D(α) v normovacích konstantách (Λ γ) rozdíly digama funkcí

17 NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni friesl/archiv/rob04.html

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH

BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Verze 24-2-22 Michal Friesl Ref: in Analýza dat 24/II (K. Kupka, ed., Trilobyte Statistical Software, Pardubice, 25, pp. 2 33. BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH MICHAL FRIESL Katedra matematiky, Fakulta

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

Neparametrické odhady podmíněné rizikové funkce

Neparametrické odhady podmíněné rizikové funkce Ústav matematiky a statistiky Přírodovědecká fakulta Masarykova univerzita Finanční matematika v praxi III a Matematické modely a aplikace 3.-6. září 2013 Obsah 1 Analýza přežití Funkce přežití a riziková

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

Aktualizace modelu vlastnosti materiálu. Stanovení vlastností materiálů

Aktualizace modelu vlastnosti materiálu. Stanovení vlastností materiálů podpora zaměstnanosti Aktualizace modelu vlastnosti materiálu Pro. Ing. Milan Holický, DrSc. a Ing. Miroslav Sýkora, Ph.D. ČVUT v Praze, Kloknerův ústav Stanovení vlastností materiálů při hodnocení existujících

Více

4 Parametrické odhady

4 Parametrické odhady 4 Parametrické odhady Předpokládané výstupy z výuky: 1. Student zná základní rozdělení pravděpodobnosti dat přežití 2. Student rozumí principu odhadu funkce přežití a rizikové funkce s využitím metody

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Miroslav Sýkora Kloknerův ústav, ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

NMAI059 Pravděpodobnost a statistika

NMAI059 Pravděpodobnost a statistika NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více

Pojistná matematika. Úmrtnostní tabulky, komutační čísla a jejich použití. Silvie Kafková

Pojistná matematika. Úmrtnostní tabulky, komutační čísla a jejich použití. Silvie Kafková Úmrtnostní tabulky, komutační čísla a jejich použití 2015 Osnova 1 Délka života 2 Intenzita úmrtnosti 3 Úmrtnostní Tabulky 4 Komutační čísla Obsah 1 Délka života 2 Intenzita úmrtnosti 3 Úmrtnostní Tabulky

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení

Více

NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu

NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu NÁHODNÁ VELIČINA NÁHODNÁ VELIČINA Provedeme náhodný pokus (vybereme nějaké lidi, výrobky) A jejich výsledkem je nějaké reálné číslo (počet VŠ, počet vadných výrobků) Kdyţ je moţné přiřadit číslo můţeme

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Intervalové Odhady Parametrů

Intervalové Odhady Parametrů Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Aplikace 2: Hledání informativních příznaků pro rozpoznávání

Aplikace 2: Hledání informativních příznaků pro rozpoznávání Aplikace : Hledání informativních příznaků pro rozpoznávání Sonogram štítné žlázy v podélném řezu zdravá lymfocitická thyroitida Zajímá nás, kolik se lze z dat dozvědět o třídě c a kde ta informace je.

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristik často potřebujeme všetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

pravděpodobnosti, popisné statistiky

pravděpodobnosti, popisné statistiky 8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Odhad spolehlivosti kolejových obvodů z nekompletních cenzorovaných dat

Odhad spolehlivosti kolejových obvodů z nekompletních cenzorovaných dat Odhad spolehlivosti kolejových obvodů z nekompletních cenzorovaných dat Petr Novák, Rudolf Blažek, Martin Daňhel Katedra aplikované matematiky, Fakulta informačních technologií ČVUT 23. ledna 2018 1 /

Více

Intervalová data a výpočet některých statistik

Intervalová data a výpočet některých statistik Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Lineární algebra : Lineární (ne)závislost

Lineární algebra : Lineární (ne)závislost Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1 PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

VaR analýza citlivosti, korekce

VaR analýza citlivosti, korekce VŠB-TU Ostrava, Ekonomická fakulta, katedra financí.-. září 008 VaR analýza citlivosti, korekce František Vávra, Pavel Nový Abstrakt Práce se zabývá rozbory citlivosti některých postupů, zahrnutých pod

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;

Více

Příloha D Navrhování pomocí zkoušek

Příloha D Navrhování pomocí zkoušek D.1 Rozsah platnosti a použití Příloha D Navrhování pomocí zkoušek Příloha D uvádí pokyny pro navrhování na základě zkoušek a pro určení charakteristické nebo návrhové hodnoty jedné materiálové vlastnosti

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha Opakování populace a výběr z populace

Více