22. Pravděpodobnost a statistika

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "22. Pravděpodobnost a statistika"

Transkript

1 22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění. Charakteristiky statistického souboru. 1. Mezi 20 výrobky jsou čtyři vadné. Jaká je pravděpodobnost, že při náhodné kontrole tří výrobků bude aspoň jeden vadný? 2. V krabici je pět železných a tři mosazné nýty. Náhodně vybereme dva z nich. Jaká je pravděpodobnost, že budou ze stejného materiálu? 3. V bedně je 30 žárovek, z nichž tři jsou vadné. Jaká je pravděpodobnost, že mezi pěti náhodně vybranými žárovkami bude nejvýše jedna vadná? 4. Ke zkoušce se z 10 příkladů vylosují tři. Jaká je pravděpodobnost, že mezi vylosovanými bude první a sedmý příklad? 5. V osudí je 200 losů, z nichž 10 vyhrává. Jaká je pravděpodobnost, že získáte alespoň jednu výhru, koupíš-li si: a) 10 losů b) 20 losů? a ) 0,409, b) 0, V urně je 10 bílých a 10 černých koulí. S jakou pravděpodobností budou mezi čtyřmi náhodně vybranými koulemi dvě bílé a dvě černé? 7. V urně je 8 bílých, 7 červených a 5 modrých koulí. Jaká je pravděpodobnost, že mezi třemi náhodně vybranými koulemi budou: a) všechny stejné barvy b) každá jiné barvy? a ) 0,08866; b) 0, Ve třídě je 25 žáků, z nichž 10 není připraveno. V hodině budou tři žáci zkoušeni. Jaká je pravděpodobnost, že aspoň dva z nich budou připraveni? 9. Jaká je pravděpodobnost, že rodina se čtyřmi dětmi seřazené podle věku má:

2 a) aspoň tři chlapce b) aspoň jednoho chlapce 10. V osudí jsou čtyři bílé a tři modré lístky. Náhodně vybereme dva lístky. Jaká je pravděpodobnost, že budou: a) oba bílé, b) oba modré, c) jeden bílý a jeden modrý? 11. Ve frontě před lanovkou s dvoumístnými sedačkami je náhodně promícháno 15 mužů a 12 žen. Jaká je pravděpodobnost, že vybraná sedačka bude obsazena: a) dvěma muži b) dvěma ženami c) mužem a ženou? 12. Ve třídě je 12 chlapců a 20 dívek. Pět z těchto žáků nevypracovalo domácí úkol z matematiky. Vypočítejte pravděpodobnost, že jsou to: a) jen chlapci b) jen dívky c) většina dívek 13. Určete pravděpodobnost, že náhodně zvolené 6ticiferné číslo má všechny cifry různé? 14. Při hodu 3 kostkami stanovte pravděpodobnost, že: a) padne součet 7 b) padne součet 15 c) padne součet větší než 14 d) padne součet menší než V urně je 5 bílých, 4 černé a 3 červené koule. Vyjmeme náhodně 3 koule. Jaká je pravděpodobnost, že aspoň 2 z nich budou mít stejnou barvu? 16. Ze hry 32 karet vybereme náhodně 3 karty. Jaká je pravděpodobnost, že mezi nimi budou a) nejvýše 2 karty stejné barvy b) právě 2 karty stejné barvy c) aspoň 2 karty stejné barvy? 17. Házíme 6x kostkou. Určete pravděpodobnost, že šestka padne:

3 a) pouze při prvním hodu b) právě při jednom hodu c) aspoň jednou d) nejvýše jednou 18. Na talíři je 10 větrníků a 6 špiček. Každý z pěti přátel si z talíře vezme jeden zákusek. Jaká je pravděpodobnost, že snědli a) pět větrníků b) tři větrníky a dvě špičky 19. Hodíme čtyřmi kostkami. Jaká je pravděpodobnost, že a) padnou čísla větší než 2 b) padnou aspoň 3 šestky c) padne součet 25 d) aspoň na jedné šestka 20. Vypočtěte aritmetický, harmonický a geometrický průměr následující pětice čísel: 3,1; 3,7; 3,8; 3,9; 3,8; 21. Statistický soubor třída má 25 statistických jednotek studentů. Jejich známky z matematiky na vysvědčení jsou 4, 2, 1, 2, 4, 5, 3, 2, 2, 3, 3, 4, 3, 1, 3, 4, 3, 3, 2, 1, 2, 4, 3, 3, 3. Určete četnosti n i, relativní četnosti p i (na celá procenta) jednotlivých známek. Určete také modus, medián a aritmetický průměr známek i směrodatnou odchylku s na dvě platné číslice. x i n i p i [ Mod(x) = 3; Med(x) = 3; rozptyl s 2 = 1,04; směrodatná odchylka s = 1,0 ; aritmetický průměr x = 2,8] 22. Při vážení deseti balení kávy byly získány tyto hodnoty (v gramech): 251, 252, 255, 252, 251, 254, 249, 257, 255, 252. Vypočtěte průměrnou hmotnost jednoho balení, hodnotu rozptylu s 2 a směrodatné odchylky s přesností na tři platné číslice. [ rozptyl s 2 = 5,16; směrodatná odchylka s = 2,27 ; aritmetický průměr x = 252,8 ] 23. Ve třídě 1. A je 15 chlapců. Údaje o výšce chlapců i jejich počtu udává následující tabulka: Výška (cm)

4 Četnosti žáků Středy intervalů (cm) Vypočítejte průměrnou výšku žáků, určete modus, medián, rozptyl a směrodatnou odchylku. [ rozptyl s2 = 31,55 ; směrodatná odchylka s = 5,62; aritmetický průměr x = 170,67; med(x) = 172 ] 24. Souborem je 20 členů družstva, znakem x jejich roční příjem (v tisících Kč), s rozdělením četností v tabulce. Roční příjem četnost Určete průměrný roční příjem, modus, medián, rozptyl s 2 a směrodatnou odchylku s. [ Mod (x) = ; Med (x) = ; rozptyl s 2 = ; směrodatná odchylka s = ,8; aritmetický průměr x = ] 25. Při kontrole hmotnosti sušenek bylo zkontrolováno 10 krabic se sušenkami a zjistili se následující hodnoty: 250g, 247g, 251g, 249g, 252g, 248g, 251g, 250g, 251g, 248g. Vypočítejte průměrnou hmotnost krabice sušenek, hodnotu rozptylu s 2 a směrodatné odchylky s přesností na tři platné číslice. [ rozptyl s 2 = 2,40; směrodatná odchylka s = 1,55 ; aritmetický průměr x = 249,7 g ] Vzorce: 26. Růst průměrných cen benzínu během jednotlivých čtvrtletí roku udává tato tabulka. Čtvrtletí I II III IV Cena v Kč 23,20 24,20 24,80 25,50 Vypočítejte průměrný koeficient růstu cen benzínu během celého roku 27. Určete průměrnou potřebu času (počet minut) na jeden výrobek, znáte-li následující údaje: počet dělníků čas na jeden výrobek (min) Počet obyvatel České republiky v období let 1995 až 2001 udává následující tabulka.

5 rok počet obyvatel Vypočítejte průměrný koeficient poklesu počtu obyvatel po roce 1995.