I. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.021

Rozměr: px
Začít zobrazení ze stránky:

Download "I. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.021"

Transkript

1 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/ Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník (1. 6. úloha) I. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.021

2 Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

3 1. 3. úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 1. Do lapače hmyzu se chytilo 17 brouků. Z toho byli 3 chrousti, 2 střevlíci, 5 tesaříků a 1 mandelinka bramborová. Polovinu ostatních brouků tvořila slunéčka sedmitečná. Kolik se do lapače chytilo slunéček sedmitečných? 2. Katka dluží Adéle 80 Kč. Domluvila se s ní, že jí každý týden vrátí polovinu toho, co jí ještě dluží. První týden jí tedy vrátila 40 Kč. Kolik jí bude dlužit po uplynutí čtyř týdnů? 3. Který z následujících bodů není znázorněn v uvedené soustavě souřadnic? A) A[2; 3] B) B[4; 3] C) C[4; 5] D) D[3; 4]

4 1. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Do lapače hmyzu se chytilo 17 brouků. Z toho byli 3 chrousti, 2 střevlíci, 5 tesaříků a 1 mandelinka bramborová. Polovinu ostatních brouků tvořila slunéčka sedmitečná. Kolik se do lapače chytilo slunéček sedmitečných? Nabízená řešení jsou A) 2; B) 3; C) 4; D) = = 6 Ostatních brouků bylo tedy 6 a polovinu z nich vypočteme takto: 6 : 2 = 3 Do lapače hmyzu se chytila 3 slunéčka sedmitečná a tady správnou odpovědí je varianta B).

5 2. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Katka dluží Adéle 80 Kč. Domluvila se s ní, že jí každý týden vrátí polovinu toho, co jí ještě dluží. První týden jí tedy vrátila 40 Kč. Kolik jí bude dlužit po uplynutí čtyř týdnů? Nabízená řešení jsou A) 2 Kč; B) 5 Kč; C) 10 Kč; D) 20 Kč. 1. týden: polovinu z 80 vypočteme tak, že 80 vydělíme 2; 80 : 2 = 40 Kč, vrátila 40 Kč a dluží ještě = 40 Kč 2. týden: polovinu ze 40 vypočteme tak, že 40 vydělíme 2; 40 : 2 = 20 Kč, vrátila 20 Kč a dluží ještě = 20 Kč 3. týden: polovinu z 20 vypočteme tak, že 20 vydělíme 2; 20 : 2 = 10 Kč, vrátila 10 Kč a stále ještě dluží = 10 Kč 4. týden: polovinu z 10 vypočteme tak, že 10 vydělíme 2; 10 : 2 = 5 Kč, vrátila 5 Kč a ještě dluží 5 Kč. Správnou odpovědí je varianta B).

6 3. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Který z následujících bodů není znázorněn v uvedené soustavě souřadnic? Nabízená řešení jsou A) A[2; 3]; B) B[4; 3]; C) C[4; 5]; D) D[3; 4]. - bod vlevo dole má souřadnice [2; 3], což jsou souřadnice bodu A - bod vpravo dole má souřadnice [4; 3], což jsou souřadnice bodu B - bod vlevo nahoře má souřadnice [2; 5] a tento bod není v nabízených řešeních uveden - bod vpravo nahoře má souřadnice [4; 5], což jsou souřadnice bodu C Není znázorněný bod D[3; 4] a tedy správnou odpovědí je varianta D).

7 4. 6. úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 4. Včera bylo pět žáků ze třídy 6. B nemocných. Dvakrát více jich bylo na soutěži v jiném městě a zbylých 12 žáků opakovalo učivo s pracovními listy. Kolik je v 6. B žáků? , 216, 222, 329, 316, 315, 300, 309, 209 Jestliže zaokrouhlíme uvedená čísla na desítky, kolik z nich bude větších než 220 a zároveň menších než 320? 6. Pan uklízeč denně vytírá 10 tříd o rozměrech metrů. Jak velkou plochu ještě musí vytřít, jestliže má již polovinu hotovou?

8 4. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Včera bylo pět žáků ze třídy 6. B nemocných. Dvakrát více jich bylo na soutěži v jiném městě a zbylých 12 žáků opakovalo učivo s pracovními listy. Kolik je v 6. B žáků? Nabízená řešení jsou A) 17; B) 19; C) 22; D) nemocných žáků 2 krát více žáků na soutěži, tj. 2 x 5 = 10 žáků zbylých 12 žáků opakovalo Celkem je = 27 žáků. Správnou odpovědí je varianta D).

9 5. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) 319, 216, 222, 329, 316, 315, 300, 309, 209 Jestliže zaokrouhlíme uvedená čísla na desítky, kolik z nich bude větších než 220 a zároveň menších než 320? Nabízená řešení jsou A) 6; B) 5; C) 4; D) 2. Uvedený interval čísel větších než 220 a zároveň menších než 320 obsahuje tato na desítky zaokrouhlená čísla: 230; 240; 250; 260; 270; 280; 290; 300; zaokrouhleno na desítky je 320 a do daného intervalu nepatří. 216 zaokrouhleno na desítky je 220 a do daného intervalu nepatří. 222 zaokrouhleno na desítky je 220 a do daného intervalu nepatří. 329 zaokrouhleno na desítky je 330 a do daného intervalu nepatří. 316 zaokrouhleno na desítky je 320 a do daného intervalu nepatří. 315 zaokrouhleno na desítky je 320 a do daného intervalu nepatří. 300 zaokrouhleno na desítky je 300 a do daného intervalu patří. 309 zaokrouhleno na desítky je 310 a do daného intervalu patří. 209 zaokrouhleno na desítky je 210 a do daného intervalu nepatří. Podmínku splňují 2 čísla, a to číslo 300 a číslo 309. Správnou odpovědí je varianta D)

10 6. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Pan uklízeč denně vytírá 10 tříd o rozměrech metrů. Jak velkou plochu ještě musí vytřít, jestliže má již polovinu hotovou? Uklizené třídy Nabízená řešení jsou: A) 300 m2; B) m2; C) m2; D) D) m2. 1 třída má plochu 15 x 20 = 300 m2 10 tříd má plochu 10 x 300 = m2 polovina je hotová, tj : 2 = m2 a polovina zbývá, tj m2. Správnou odpovědí je varianta C). Neuklizené třídy

11 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/ Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník ( úloha) II. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.022

12 Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

13 7. 9. úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 7. Raketoplán se všemi součástmi váží před startem 2051 tun. Během letu spálí celkem 1750 tun paliva a v jeho závěru odhodí palivovou nádrž i s obsahem, která váží 159 tun. Jakou hmotnost bude mít raketoplán před přistáním? 8. Na staré budově je uveden letopočet jejího dokončení MDCCXLIV. Ve kterém roce byla postavena? 9. Který z následujících šestiúhelníků bude následovat jako čtvrtý v řadě za výše uvedenými šestiúhelníky?

14 7. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Raketoplán se všemi součástmi váží před startem 2051 tun. Během letu spálí celkem 1750 tun paliva a v jeho závěru odhodí palivovou nádrž i s obsahem, která váží 159 tun. Jakou hmotnost bude mít raketoplán před přistáním? Nabízená řešení jsou: A) 142 t; B) 151 t; C) 160 t; D) 301 t. Když raketoplán spálí 1750 t paliva, pak váží = 301 t. Když odhodí i palivovou nádrž, pak váží = 142 t. Raketoplán bude mít při přistání hmotnost 142 t. Správnou odpovědí je varianta A). Raketoplán: Raketoplán (start):

15 8. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Na staré budově je uveden letopočet jejího dokončení MDCCXLIV. Ve kterém roce byla postavena? Nabízená řešení jsou: A) 1254; B) 1744; C) 1794; D) 1944 K písmenům označujícím římská čísla patří M,D,C,L,X,V,I. Hodnota M je 1 000, D je 500, C je 100, L je 50, X je 10, V je 5 a I je 1. Vždy, když je menší před větší, pak se odečítá, např. IM = , VM = , XM = , LM = , CM = , M = 1000 DCC = = 700 XL = = 40 (když menší jednotka je před větší, pak se odečítá) IV = 5 1 = 4 (také když menší jednotka je před větší, pak se odečítá) Celkový součet pak je = Správnou odpovědí je varianta B).

16 9. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Který z následujících šestiúhelníků bude následovat jako čtvrtý v řadě za výše uvedenými šestiúhelníky? Nabízená řešení jsou: V zadání jsou tři šestiúhelníky, přičemž druhý v řadě vznikl otočením prvního šestiúhelníku po směru pohybu hodinových ručiček (o jednu výseč). Třetí v řadě vznikl otočením druhého šestiúhelníku také po směru pohybu hodinových ručiček (o jednu výseč). A tedy čtvrtý v řadě vznikne otočením třetího šestiúhelníku po směru pohybu hodinových ručiček (o jednu výseč) Správnou odpovědí je varianta A.

17 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 10. Martin má 7 kuliček, Irena má 3 kuličky a Petr má 8 kuliček. Poté, co Martin a Petr dali některé ze svých kuliček Ireně, mají všechny tři děti stejně kuliček. Kolik kuliček dal Ireně Petr? 11. Martin jede ze Strakonic k babičce do Prachatic vlakem podle uvedených jízdních řádů. Cestou jednou přestupuje. Jak dlouhou dobu stráví ve vlaku, pokud oba vlaky vyjedou včas, ale druhý vlak přijede do Prachatic se zpožděním 11 minut? 12. Papír má tvar obdélníku širokého 12 cm a dlouhého 20 cm. Vystřihneme-li z tohoto papíru největší možný čtverec, jaký bude obsah tohoto čtverce?

18 10. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Martin má 7 kuliček, Irena má 3 kuličky a Petr má 8 kuliček. Poté, co Martin a Petr dali některé ze svých kuliček Ireně, mají všechny tři děti stejně kuliček. Kolik kuliček dal Ireně Petr? Nabízená řešení jsou: A) 1; B) 2; C) 3; D) 4. Když dá Martin Ireně 1 kuličku, bude jich mít 7 1 = 6. Když dá Petr Ireně 2 kuličky, bude jich mít 8 2 = 6, což je stejně jako Martin. A Irena, když dostane od Martina 1 kuličku a od Petra 2 kuličky bude mít = 6. A tím má stejně kuliček jako Martin i Petr. 7 Martinových kuliček 7 1=6 Martinových kuliček 3 Ireniny kuličky 3+1+2=6 Ireniných kuliček Tedy Petr dal Ireně 2 kuličky. Správnou odpovědí je varianta B). 8 Petrových kuliček 8 2=6 Petrových kuliček

19 11. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Martin jede ze Strakonic k babičce do Prachatic vlakem podle uvedených jízdních řádů. Cestou jednou přestupuje. Jak dlouhou dobu stráví ve vlaku, pokud oba vlaky vyjedou včas, ale druhý vlak přijede do Prachatic se zpožděním 11 minut? Nabízená řešení jsou: A) 52 minut; B) 72 minut; C) 1 hodinu a 9 minut; D) 1 hodinu a 20 minut. Odjezd ze Strakonic 13:07. Příjezd do Číčenic 13:32. Cesta trvá 32 7 = 25 minut. Odjezd z Číčenic 13:41. Příjezd do Prachatic 14:25. Cesta trvá 25 + (60 41) = = 44 minut. Tedy cesta trvá = 69 minut, tj. 1 hodina a 9 minut. Ale bylo 11 minut zpoždění, tedy = 20 minut. Martin strávil ve vlaku 1 hodinu a 20 minut. Správnou odpovědí je varianta D).

20 12. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Papír má tvar obdélníku širokého 12 cm a dlouhého 20 cm. Vystřihneme-li z tohoto papíru největší možný čtverec, jaký bude obsah tohoto čtverce? Nabízená řešení jsou: A) 64 cm2; B) 144 cm2; C) 240 cm2; D) 288 cm2. 20 cm 12 cm Kratší strana měří 12 cm, a proto můžeme vystřihnout největší čtverec o straně 12 cm. Jeho obsah je 12 x 12 = 144 cm2. Správnou odpovědí je varianta B). 12 cm 12 cm

21 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/ Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník ( úloha) III. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.023

22 Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

23 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 13. Jaké číslo dostaneme, když sečteme největší a nejmenší trojciferné číslo a největší a nejmenší dvojciferné číslo? 14. Prázdný kamion váží 4 t. Veze 20 palet, z nichž každá váží 250 kg. Kolik těchto palet musí vyložit, aby mohl projet po mostě s nosností 7 t? 15. Číslo je menší než 50, větší než 30, dělitelné třemi a je násobkem pěti. O které číslo se jedná?

24 13. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Jaké číslo dostaneme, když sečteme největší a nejmenší trojciferné číslo a největší a nejmenší dvojciferné číslo? Nabízená řešení jsou: A) 1108; B) 1109; C) 1208; D) 1209 Největší trojciferné číslo je 999, nejmenší trojciferné číslo je 100. Když je sečteme dostaneme = Největší dvojciferné číslo je 99, nejmenší dvojciferné číslo je 10. Když je sečteme dostaneme = 109. Jejich součet je = Správnou odpovědí je varianta C).

25 14. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Prázdný kamion váží 4 t. Veze 20 palet, z nichž každá váží 250 kg. Kolik těchto palet musí vyložit, aby mohl projet po mostě s nosností 7 t? Nabízená řešení jsou: A) 4; B) 5; C) 6; D) 8 Samotné palety váží 20 x 250 = kg = 5 t. Prázdný kamion a palety váží = 9 t. Kamion s nákladem je těžší o 9 7 = 2 t. Kolik palet váží 2 t? 2 t = kg : 250 = 8 Je třeba vyložit 8 palet. Správnou odpovědí je varianta D).

26 15. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Číslo je menší než 50, větší než 30, dělitelné třemi a je násobkem pěti. O které číslo se jedná? Nabízené odpovědi jsou: A) 30; B) 42; C) 45; D) takové číslo neexistuje. Číslo menší než 50 a větší než 30 je 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49. Z těchto devatenácti čísel jsou čísla dělitelná 3 tato: 33, 36, 39, 42, 45, 48. Z těchto šesti čísel je dělitelné 5 pouze číslo 45. Hledaným číslem je číslo 45. Správnou odpovědí je varianta C).

27 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 16. Která z následujících úseček je osou souměrnosti uvedeného obrazce? 17. Lucka má v peněžence tři pětikoruny, dvě desetikoruny a jednu dvoukorunu. Kterou z uvedených částek nemůže z těchto mincí poskládat? 18. Uvedený obrazec je možné rozdělit na šest shodných rovnostranných trojúhelníků, každý s obvodem 12 cm. Jaký je jeho obvod?

28 16. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Která z následujících úseček je osou souměrnosti uvedeného obrazce? Nabízené odpovědi jsou: A) úsečka BF; B) úsečka CG; C) úsečka DH; D) úsečka BH. Úsečka BF není osou souměrnosti. Úsečka CG je osou souměrnosti. Úsečka DH není osou souměrnosti. Úsečka BH není osou souměrnosti. Správnou odpovědí je varianta B).

29 17. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Lucka má v peněžence tři pětikoruny, dvě desetikoruny a jednu dvoukorunu. Kterou z uvedených částek nemůže z těchto mincí poskládat? Nabízené odpovědi jsou: A) 25 Kč; B) 27 Kč; C) 28 Kč; D) 37 Kč. Zdroj: Pětikoruna: Desetikoruna: Dvoukoruna: 25 Kč = 2 x x 5 27 Kč = 2 x x x 2 28 Kč = 2 x x x 2 a 1 Kč mi chybí, nelze poskládat. 37 Kč = 2 x x x 2 Z určených mincí nelze poskládat částku 28 Kč. Správnou odpovědí je varianta C).

30 18. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Uvedený obrazec je možné rozdělit na šest shodných rovnostranných trojúhelníků, každý s obvodem 12 cm. Jaký je jeho obvod? 1 Nabízené odpovědi jsou: A) 24 cm; B) 32 cm; C) 48 cm; D) 64 cm Rovnostranný trojúhelník má všechny strany stejně dlouhé a má obvod 12 cm. Každá ze tří jeho stran tedy měří 12 : 3 = 4 cm. Obvod obrazce je složen z 8 takových stran, tj. 8 x 4 = 32 cm. Správnou odpovědí je varianta B)

31 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/ Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník ( úloha) IV. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.024

32 Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

33 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 19. Jak velká je plocha obdélníku, který vznikne spojením dvou čtverců o obvodu 12 cm, jak je znázorněno na uvedeném obrázku? 20. Model geometrického tělesa na uvedeném obrázku je sestaven z kousků špejlí dlouhých 10 cm, spojených plastelínovými kuličkami. Jaká je celková délka všech špejlí použitých na stavbu tohoto modelu? 21. Které z následujících tvrzení je na základě uvedeného grafu spotřeby vody pravdivé? A) Druhá nejmenší spotřeba vody byla ve čtvrtek. B) Za víkend byla spotřeba vody větší než ve čtvrtek a v pátek. C) Za tyto čtyři dny se spotřebovalo více než 320 litrů vody. D) V pátek se spotřebovalo více než 70 litrů vody.

34 19. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Jak velká je plocha obdélníku, který vznikne spojením dvou čtverců o obvodu 12 cm, jak je znázorněno na uvedeném obrázku? Nabízená řešení jsou : A) 9 cm2; B) 12 cm2; C) 18 cm2; D) 24 cm2. Obvod čtverce vypočítáme podle vzorce O = 4a. Pokud je obvod roven 12, dostaneme rovnost 12 = 4. a. Z toho a = 12 : 4 = 3 cm. Obsah čtverce vypočítáme podle vzorce S = a. a. Jestliže strana čtverce má délku 3 cm, pak S = 3. 3 = 9 cm2. Tyto čtverce jsou dva, a proto 2. 9 = 18 cm2. Správnou odpovědí je varianta C).

35 20. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Model geometrického tělesa na uvedeném obrázku je sestaven z kousků špejlí dlouhých 10 cm, spojených plastelínovými kuličkami. Jaká je celková délka všech špejlí použitých na stavbu tohoto modelu? Nabízená řešení jsou: A) 120 cm; B) 150 cm; C) 240 cm; D) 300 cm. 1 Výsledné těleso se skládá ze čtyř jehlanů obsahujících stejný počet špejlí. Pro jeden z těchto jehlanů je potřeba šesti špejlí (viz označení na obrázku). Jehlanů jsou celkem čtyři, tedy 4 x 6 = 24 špejlí. Jiný možný postup je ten, že pečlivě sečteme všechny použité deseticentimetrové špejle (a také se dopočítáme k číslu 24). Pokud pokračujeme ve výpočtu, dostaneme 10 x 24 = 240 cm. Správnou odpovědí je varianta C)

36 21. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Které z následujících tvrzení je na základě uvedeného grafu spotřeby vody pravdivé? Nabízená tvrzení jsou: A) Druhá nejmenší spotřeba vody byla ve čtvrtek. B) Za víkend byla spotřeba vody větší než ve čtvrtek a v pátek. C) Za tyto čtyři dny se spotřebovalo více než 320 litrů vody. D) V pátek se spotřebovalo více než 70 litrů vody. Tvrzení A): Pořadí dnů sestupně podle spotřeby je neděle, čtvrtek, sobota, pátek. Tedy dnem s druhou nejmenší spotřebou nebyl čtvrtek, ale byla to sobota. Tvrzení A) není pravdivé. Tvrzení B): Za víkend, tj. sobotu a neděli, byla spotřeba = 170 l a ve čtvrtek a pátek = 130 l, tedy za víkend byla spotřeba nižší. Tvrzení B) není pravdivé. Tvrzení C): Celkem se spotřebovalo = = 350 l, což je víc než 320. Tvrzení C) je pravdivé. Tvrzení D): V pátek se spotřebovalo 50 l, což je méně než 70 l. Tvrzení D) není pravdivé. Správnou odpovědí je varianta C).

37 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 22. Čokoládové dortíky na uvedeném obrázku jsou zabalené jednotlivě v krabičkách tvaru trojúhelníku, jehož rozměry jsou poloviční ve srovnání s rozměry velké krabice, do níž jsou vloženy. Kolik čokoládových dortíků se vejde do krabice? 23. Rovnoramenný trojúhelník má obvod 40 cm a rameno dlouhé 14 cm. O kolik cm musíme zvětšit jeho základnu, aby se z něj stal rovnostranný trojúhelník? 24. Těleso na uvedeném obrázku sestavené ze stejně těžkých krychliček váží 420 g. Kolik by vážilo, kdybychom ho stejně těžkými krychličkami doplnili do celé krychle?

38 22. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Čokoládové dortíky na uvedeném obrázku jsou zabalené jednotlivě v krabičkách tvaru trojúhelníku, jehož rozměry jsou poloviční ve srovnání s rozměry velké krabice, do níž jsou vloženy. Kolik čokoládových dortíků se vejde do krabice? 1 Nabízená řešení jsou: A) 4; B) 5; C) 6; D) Viz obrázek. Do krabice se vejdou 4 čokoládové dortíky. Správnou odpovědí je varianta A)

39 23. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Rovnoramenný trojúhelník má obvod 40 cm a rameno dlouhé 14 cm. O kolik cm musíme zvětšit jeho základnu, aby se z něj stal rovnostranný trojúhelník? Nabízená řešení jsou: A) o 2 cm; B) o 3 cm; C) o 4 cm; D) o 5 cm. Rovnoramenný trojúhelník základna Rovnostranný trojúhelník Obvod rovnoramenného trojúhelníka je složen ze dvou stejně dlouhých ramen a základny. Pokud je jedno rameno dlouhé 14 cm, mají obě ramena délku 2 x 14 = 28 cm. Délku základny vypočteme odečtením délky obou ramen od obvodu trojúhelníku, tj = 12 cm. A délka základny je pak o = 2 cm kratší, proto ji je třeba o 2 cm prodloužit. Správnou odpovědí je varianta A).

40 24. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Těleso na uvedeném obrázku sestavené ze stejně těžkých krychliček váží 420 g. Kolik by vážilo, kdybychom ho stejně těžkými krychličkami doplnili do celé krychle? Zadní část Nabízená řešení jsou: A) 480 g; B) 500 g; C) 520 g; D) 540 g Prostřední část Přední část 5. Přední část Prostřední část Zadní část Těleso je složeno ze = 21 krychliček. Tedy 1 krychlička váží 420 : 21 = 20 g. Na doplnění do krychle chybí = 6 krychliček, které váží 6 x 20 = 120 g. Celkový součet hmotností pak bude = 540 g. Výpočet lze ověřit tak, že si řekneme, kolik krychliček tvoří celou krychli a je jich 3 x 3 x 3 = 27 a 27 x 20 = 540 g. Těleso váží 540 g. Správnou odpovědí je varianta D).

41 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/ Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník ( úloha) V. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.025

42 Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

43 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 25. Jakub vyjel z domova přímým směrem na kole v 10:25. Cestou nikde nezastavil a jel stále stejnou rychlostí. V 11:55 byl od domova vzdálen 30 km. Jak daleko by byl od domova ve 14:55, pokud by jel stále stejnou rychlostí, stejným směrem a nikde by se cestou nezastavil? 26. Je dáno číslo Jak se toto číslo změní, pokud cifru na místě stovek prohodíme s cifrou na místě desetitisíců? 27. Lenka dlužila v knihovně 30 Kč. Od babičky dostala 100 Kč, za které si koupila časopis za 22 Kč a šest sušenek. Když zaplatila dluh v knihovně, nic jí nezbylo. Kolik Kč stála jedna sušenka?

44 25. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Jakub vyjel z domova přímým směrem na kole v 10:25. Cestou nikde nezastavil a jel stále stejnou rychlostí. V 11:55 byl od domova vzdálen 30 km. Jak daleko by byl od domova ve 14:55, pokud by jel stále stejnou rychlostí, stejným směrem a nikde by se cestou nezastavil? Nabízená řešení jsou: A) 45 km; B) 70 km; C) 75 km; D) 90 km 10:25 11:55 14:55 Jakub vyjel v 10:25 a než ujel 30 km bylo 11:55, tedy byl na cestě 35 minut (od 10:25 do 11:00) + 55 minut (od 11:00 do 11:55) = 90 minut. Za 90 minut ujel 30 km a tedy za 30 minut (což je třikrát méně) ujel 30 : 3 = 10 km (také třikrát méně) a tedy za 1 hodinu (60 minut) ujel 2 x 10 = 20 km. Následně vyjel v 11:55 a cestu ukončil ve 14:55, tj. po 3 hodinách a ujel 3 x 20 = 60 km. Celkem tak ujel = 90 km. Správnou odpovědí je varianta D).

45 26. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Je dáno číslo Jak se toto číslo změní, pokud cifru na místě stovek prohodíme s cifrou na místě desetitisíců? Nabízená řešení jsou: A) zmenší se o 3 600; B) zmenší se o 9 900; C) zmenší se o ; D) zmenší se o Z čísla se stane číslo Tato čísl od sebe odečteme Číslo se zmenší o Správnou odpovědí je varianta B).

46 27. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Lenka dlužila v knihovně 30 Kč. Od babičky dostala 100 Kč, za které si koupila časopis za 22 Kč a šest sušenek. Když zaplatila dluh v knihovně, nic jí nezbylo. Kolik Kč stála jedna sušenka? Nabízená řešení jsou: A) 6 Kč; B) 8 Kč; C) 12 Kč; D) 15 Kč. Od částky od babičky odečteme cenu za časopis, tj = 78 Kč. Od zbylé částky odečteme dluh v knihovně, tj = 48 Kč. To je částka, která zbyla na nákup šesti sušenek a tedy 1 sušenka stála 48 : 6 = 8 Kč. Správnou odpovědí je varianta B).

47 úloha testu Scio z matematiky pro 6. ročník (podzim 2012) 28. Ve třídě 6. A je 15 dívek, z nichž 9 do školy dojíždí autobusem. Dojíždí rovněž 9 chlapců. Kolik žáků je v 6. A, pokud je ve třídě celkem 10 nedojíždějících žáků? 29.?, 11, 23, 47, 95, 191,... Které z následujících čísel patří na první místo uvedené číselné řady? 30. Místnost je dlouhá 4 m a široká 2 m. Kolik čtvercových dlaždic o straně 20 cm se spotřebuje na položení dlažby v této místnosti?

48 28. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Ve třídě 6. A je 15 dívek, z nichž 9 do školy dojíždí autobusem. Dojíždí rovněž 9 chlapců. Kolik žáků je v 6. A, pokud je ve třídě celkem 10 nedojíždějících žáků? Nabízená řešení jsou: A) 21; B) 25; C) 26; D) 28. dojíždí nedojíždí celkem dívky chlapci celkem = = = = = 28 Z 15 dívek jich 9 dojíždí a tedy 15 9 = 6 jich nedojíždí. Pokud celkem 10 žáků nedojíždí, zbývá na chlapce 10 6 = 4. Chlapců je tedy 9 dojíždějících a 4 nedojíždějící, tj = 13. Celkem je ve třídě dívek a chlapců = 28. Správnou odpovědí je varianta D).

49 29. otázka testu Scio z matematiky pro 6. ročník (podzim 2012)?, 11, 23, 47, 95, 191,... Které z následujících čísel patří na první místo uvedené číselné řady? Nabízená řešení jsou: A) 5; B) 8; C) 9; D) 10.?, 11, 23, 47, 95, 191 Rozdíl mezi třetím a druhým číslem je = 12. Rozdíl mezi čtvrtým a třetím číslem je = 24. Rozdíl mezi pátým a čtvrtým číslem je = 48. Rozdíl mezi šestým a pátým číslem je = 96. Tedy vždy se rozdíl zdvojnásobí a z toho vyplývá, že rozdíl mezi druhým a prvním číslem je 12 : 2 = 6. Následně 11 6 = 5. Správnou odpovědí je varianta A).

50 30. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Místnost je dlouhá 4 m a široká 2 m. Kolik čtvercových dlaždic o straně 20 cm se spotřebuje na položení dlažby v této místnosti? Nabízená řešení jsou: A) 160; B) 200; C) 320; D) m = 400 cm a 400 : 20 = 20, což je potřebný počet dlaždic na délku. Obdobně 2 m = 200 cm a 200 : 20 = 10, což je potřebný počet dlaždic na šířku. Celkový počet dlaždic je roven součinu dlaždic potřebných na délku i na šířku, tj. 20 x 10 = 200. Správnou odpovědí je varianta B).

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 9. ročník (1. 6. úloha)

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 9. ročník (1. 6. úloha) Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/21.1977 Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Kolik os souměrnosti má kruh?

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva

Více

Matematika 5. ročník

Matematika 5. ročník Matematika 5. ročník Pátá třída (Testovací klíč: GSZGTH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Slovní úlohy / Geometrie / 0/9 0/10 0/7 Obecná škola

Více

Matematika 5. ročník

Matematika 5. ročník Matematika 5. ročník Pátá třída (Testovací klíč: EFPNGSXL) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Slovní úlohy / Geometrie / Počítání s čísly / 0/10 0/7 0/9 Obecná

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA K 8LETÉMU STUDIU NA SŠ ROK 2013

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA K 8LETÉMU STUDIU NA SŠ ROK 2013 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA K 8LETÉMU STUDIU NA SŠ ROK 203 POČET TESTOVÝCH POLOŽEK: 6 MAXIMÁLNÍ POČET BODŮ: 50 (00%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

1BMATEMATIKA. 0B5. třída

1BMATEMATIKA. 0B5. třída 1BMATEMATIKA 0B5. třída 1. Kdybych dostal 5 Kč od své sestry, která má 10 Kč, měli bychom oba stejně. Kolik korun mám? (A) žádné (B) 5 Kč (C) 10 Kč (D) 15 Kč 2. Otci je 40 let. Věk Adélky je roven čtvrtině

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Maminka má v peněžence 4 stokoruny,

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Prohlédni si obrázek a vyber správnou

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 5 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV

TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV Školní rok_2014/2015 vyučující: Lenka Šťovíčková Září Opakuje početní výkony a uplatňuje komutativní, asociativní a distributivní zákon v praxi. G.:narýsuje přímku, polopřímku, kolmici, rovnoběžky, různoběžky.

Více

Ukázka zpracování učebních osnov vybraných předmětů. Škola Jaroslava Ježka základní škola pro zrakově postižené

Ukázka zpracování učebních osnov vybraných předmětů. Škola Jaroslava Ježka základní škola pro zrakově postižené Ukázka zpracování učebních osnov vybraných předmětů Škola Jaroslava Ježka základní škola pro zrakově postižené Škola má deset ročníků, 1.stupeň tvoří 1. až 6., 2.stupeň 7. až 10.ročník. V charakteristice

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

II. kolo kategorie Z6

II. kolo kategorie Z6 Z6 II 1 Pat napsal na tabuli příklad: 62. ročník Matematické olympiády II. kolo kategorie Z6 589+544+80=2013. Mat chtěl příklad opravit, aby se obě strany skutečně rovnaly, a pátral po neznámém čísle,

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.14 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Klíčová slova: Matematika a její aplikace Početní operace s přirozenými

Více

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY Růžena Blažková Úvod Tématický okruh Nestandardní aplikační úlohy a problémy poskytuje žákům možnosti řešení úloh a problémů zábavnou formou, úloh s tématikou z

Více

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice a její aplikace čte, zapisuje a porovnává přirozená čísla do 1 000, užívá a zapisuje vztah rovnosti a nerovnosti 3. užívá lineární uspořádání, zobrazí čísla na číselné ose 8. zaokrouhluje přirozená čísla,

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

c) Matematické myšlení

c) Matematické myšlení c) Matematické myšlení Koš 1: 1. Které číslo doplníte místo otazníku?? 8 11 15 20 a) 3 b) 4 c) 5 d) 6 Správné řešení d) 2. Které číslo doplníte místo otazníku? 5 7? 17 25 a) b) 10 c) 11 d) 12 3. Které

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Přijímačky nanečisto - 2011

Přijímačky nanečisto - 2011 Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Sčítá a odčítá v oboru 0 6. Numerace v oboru 0 6 Manipulace s předměty, třídění

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

Kód uchazeče ID:... Varianta:

Kód uchazeče ID:... Varianta: Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 01 Kód uchazeče ID:.................. Varianta: 1. Mějme dvě čísla zapsaná v sedmičkové soustavě 3456 7 a 3310 7. Vyjádřete

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

Charakteristika předmětu Matematika

Charakteristika předmětu Matematika Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika předmětu Matematika Vyučovací předmět matematika se vyučuje jako samostatný

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky PRACOVNÍ LIST_ŽÁCI 1 Matematika prakticky Matematika prakticky - Pracovní listy pro žáky Fotka nebo fotky Pracovní listy pro žáky PRACOVNÍ LIST_ŽÁCI 2 Vážení kolegové, tuto publikaci připravil kolektiv

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

MATEMATIKA 4. ročník 1. Část I. SLOVNÍ ÚLOHY

MATEMATIKA 4. ročník 1. Část I. SLOVNÍ ÚLOHY MATEMATIKA 4. ročník 1. Část I. SLOVNÍ ÚLOHY 1. Květ tulipánu stojí 8 korun. Ozdobná stuha je za 6 korun. Kolik korun stojí kytice s 5 tulipány se stuhou a beze stuhy? se stuhou: beze stuhy: Jakou kytici

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI MA1ACZZ506DT Hodnocení výsledků vzdělávání žáků 5. ročníků ZŠ 2006 MATEMATICKÉ DOVEDNOSTI DIDAKTICKÝ TEST A Testový sešit obsahuje 12 úloh. Na řešení úloh máte 40 minut. Zde v testovém sešitě si můžete

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

M08-01 Přijímačky nanečisto osmileté studium matematika

M08-01 Přijímačky nanečisto osmileté studium matematika M08-01 Přijímačky nanečisto osmileté studium matematika Řešení 1) Bratři Martin a Tomáš dostali stolní hru, ve které se hrálo o papírové peníze - dolary. Martin rozdělil peníze před začátkem hry tak, že

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Druháci a matematika VII. Násobíme, dělíme do 20

Druháci a matematika VII. Násobíme, dělíme do 20 Druháci a matematika VII Násobíme, dělíme do 20 1. Násobení 1. Vyznačte, jak děti stojí na hřišti. V kolika řadách stojí? V kolika stojí zástupech? Kolik je všech dětí na hřišti? Jak to vypočítáme? 2.

Více

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm 1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce

Více

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3 MATEMATIKA Vypracovala skupina pro přípravu standardů z matematiky ve složení: Vedoucí: Koordinátor za VÚP: Členové: Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno RNDr. Eva Zelendová, VÚP

Více