Optika Elektromagnetické záření

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Optika Elektromagnetické záření"

Transkript

1 Elektromagnetické záření Záření, jehož energie se přenáší prostorem prostřednictvím elektromagnetického vlnění, nazýváme elektromagnetické záření. Ke svému šíření nepotřebuje látkové prostředí, může se šířit i vakuem. Má tzv. duální charakter, za určitých podmínek se projevuje jako látka ( fotony : částicový korpuskulární charakter), za jiných jako vlnění (vlnový charakter). Základní charakteristikou elektromagnetického vlnění je vlnová délka λ nebo c frekvence ν ( ν = ), vlnění se šíří ve vakuu rychlostí světla, tj. c = m s -1 λ m s -1. Tuto rychlost lze ji spočítat podle Maxwellovy teorie vztahem 1 c = ε µ 0 0 Rychlost elektromagnetických vln závisí na prostředí 1 c v = = εµ ε µ Přenášená elektromagnetická energie není libovolně dělitelná, ale úzce souvisí s frekvencí vlnění. Při dané frekvenci je nejmenší možná hodnota energie (kvantum vlnění) energie hc jednoho fotonu E ν, Eν = hν =, kde h je Planckova konstanta h = 6, J s. λ Energie fotonu E ν je tak třetí možnou charakteristikou elektromagnetického záření. r r

2 základní pojmy: Optika Elektromagnetické záření Světlo je elektromagnetické vlnění s vlnovými délkami od 380 nm do 760 nm, které v lidském oku způsobuje fyziologický vjem zvaný vidění. Prostředí, kterým se světlo šíří, nazýváme optické prostředí. Může být průhledné (propouští světlo bez podstatného zeslabení nebo rozptýlení) nebo neprůhledné (většina světla se odráží nebo rozptyluje), průsvitné (propouští světlo, ale rozptyluje ho všemi směry) nebo neprůsvitné. Má-li prostředí ve všech místech stejné optické vlastnosti je homogenní, má-li stejné vlastnosti i ve všech směrech je izotropní. Směr šíření světla je určen světelným paprskem (čára probíhající kolmo k vlnoplochám), pro šíření světla platí Huyghensův princip. Světla s různými vlnovými délkami způsobují v lidském oku subjektivní dojem jedné barvy. Světlo o jedné vlnové délce nazýváme monochromatické. Složené světlo je směs skládající se z více monofrekvenčních složek. Bílé světlo (např. sluneční) je složeno z elektromagnetických vlnění různých vlnových délek. Frekvence světla nezávisí na prostředí, kterým prochází, je určena zdrojem světla, vlnová délka a fázová rychlost na prostředí závisí.

3 Geometrická optika Geometrická optika předpokládá přímočaré šíření světla, studuje zákonitosti jeho šíření plynoucí z tohoto předpokladu. základní zákony jsou: - přímočarého šíření: v homogenním izotropním prostředí - nezávislosti světelných paprsků: jedním bodem může procházet libovolný počet paprsků, aniž by se navzájem ovlivnily - odrazu (reflexe) a) velikost úhlu odrazu je rovna velikosti úhlu dopadu (měříme vždy od kolmice dopadu) b) odražený paprsek zůstává vždy v rovině dopadu c) úhel odrazu nezávisí na frekvenci světla - lomu (refrakce) a) velikost úhlu lomu je dána Snellovým vztahem sinα v 1 1 n1 sinα = v = n 1 je relativní index lomu při přechodu z prostředí 1 do Používá se také absolutní index lomu prostředí - poměr rychlosti světla ve vakuu a v prostředí b) lomený paprsek zůstává vždy v rovině dopadu c) úhel lomu závisí na frekvenci světla (nejméně se láme červené, nejvíce fialové světlo) Při šikmém dopadu bílého světla na rozhraní dvou prostředí dochází k disperzi (rozkladu světla na jednotlivé barevné složky) n = c v

4 příklad 59. Potápěč je 10 m pod hladinou klidného jezera. Jaký je průměr kruhu na hladině, kterým může potápěč vidět svět vně vody? Když se potápěč ponoří hlouběji, jak se změní průměr tohoto kruhu? Index lomu vody je 1,33. [,8 m] Řešení: Světlo z vnějších zdrojů dopadá do očí potápěče poté, co se lomilo na rozhraní vzduch-voda podle zákona lomu Zavedeme indexy 1 pro vzduch a pro vodu, n 1 = 1,00 a n = 1,33; n > n 1. Lom paprsků při průchodu rozhraním vzduch-voda probíhá směrem k normále. Lom obecného paprsku s úhlem dopadu θ 1 a úhlem lomu θ je ukázán na a). Potápěč je v bodu E. Lomený paprsek svírá se svislicí v bodě E úhel θ. Abychom našli úhly, pod kterými paprsky z vnějších zdrojů dosáhnou E, musíme najít příslušný rozsah úhlů θ 1. To nám pak dá rozmezí úhlů θ. Nejmenší hodnota θ 1 je 0, což je hodnota pro paprsek dopadající na rozhraní 1 sinθ = sin 0 = 0 θ = 0 1,33 kolmo. Maximální hodnota θ 1 je přibližně 90, tj. hodnota pro světlo, které dopadá téměř rovnoběžně s rozhraním. 1 sinθ = sin90 = 0,75 θ = 48,8 1,33 Při chodu paprsku opačným směrem je úhel θ maximální úhel, pod kterým se paprsky ještě dostanou do druhého prostředí. Nazýváme ho mezní úhel.

5 Geometrická optika Optické zobrazení činí předměty viditelné na jiném místě, případně zlepšuje jejich viditelnost. Útvar, který zobrazujeme, je předmět; zařízení, které realizuje optické zobrazení (provádí transformaci svazku reálných nebo myšlených paprsků vycházejících z předmětu na paprsky sbíhající se v obrazu) je optická soustava (např. oko, zrcadlo, čočka, lupa, mikroskop, dalekohled). Výsledkem optického zobrazení je obraz předmětu. Prostor, v němž se nachází předmět je předmětový prostor, prostor, v němž se vytváří obraz, je obrazový prostor. Transformace paprsků může probíhat lomem (čočky) nebo odrazem (zrcadla). Z technického hlediska se v optických soustavách nejčastěji užívá rovinných nebo kulových ploch, středy křivosti kulových ploch se řadí do jediné přímky, kterou nazýváme optická osa. Poměr vhodně sdružených veličin předmětu a obrazu nazýváme zvětšení y a) příčné β = obraz zvětšený zmenšený; přímý převrácený y tanσ b) úhlové γ = tanσ Dále rozlišujeme obraz (předmět) reálný a virtuální (podle znaménka obrazové a předmětové vzdálenosti). Důležité body optické soustavy jsou především ohniska: a) předmětové bod na optické ose, který se zobrazí na optické ose v nekonečnu b) obrazové bod optické osy, který je obrazem na bodu ležícího v předmětovém prostoru nekonečně daleko od optické soustavy

6 Zobrazení rovinným zrcadlem Optika Geometrická optika zrcadlo: dokonale hladké rozhraní dvou optických prostředí a) vzniká zdánlivý (virtuální) obraz za zrcadlem b) obraz stejně velký jako předmět, vzpřímený, stranově převrácený c) obraz nelze zachytit na projekční stěně d) předmětová a obrazová vzdálenost jsou stejné (předmět a obraz jsou sdružené podle roviny zrcadla) Zobrazení kulovým zrcadlem kulové (sférické) zrcadlo: odrážející plocha je částí kulové plochy - duté (konkávní) - vypuklé (konvexní) optická osa zrcadla o, paraxiální paprsky, paraxiální prostor, střed křivosti C, poloměr křivosti R, ohnisko F (společné předmětové i obrazové), ohnisková vzdálenost R f =, ohnisková rovina, předmětová vzdálenost a, obrazová vzdálenost a

7 Geometrická optika Zobrazení tenkou čočkou Čočka je průhledné lámavé prostředí ohraničené dvěma centrovanými kulovými plochami (jedna může být rovinná). Index lomu čočky je odlišný od okolního prostředí. Rozlišujeme čočky a) spojné svazek paprsků vycházející z daného bodu v předmětovém prostoru se sbíhá do jednoho bodu v obrazovém prostoru obrazová ohnisková vzdálenost je kladná je nejtlustší v místě optické osy b) rozptylné - svazek paprsků vycházející z daného bodu v předmětovém prostoru se rozbíhá z jiného bodu v předmětovém prostoru obrazová ohnisková vzdálenost je záporná je nejtenší v místě optické osy Při grafické konstrukci obrazu využíváme 3 význačné paprsky a) paprsek rovnoběžný s optickou osou se láme do obrazového ohniska b) paprsek procházející předmětovým ohniskem se láme do rovnoběžně s optickou osou c) paprsek jdoucí optickým středem čočky se neláme zobrazovací rovnice čočky = a a f

8 Příklady řešení viz Studium FBI Základního kurzu fyziky Další materiály k předmětu Fyzika II Studijní materiály - Sbírka úloh z fyziky Modul 4. Optika (kapitoly ) 1. Potápěč je 10 m pod hladinou klidného jezera. Jaký je průměr kruhu na hladině, kterým může potápěč vidět svět vně vody? Když se potápěč ponoří hlouběji, jak se změní průměr tohoto kruhu? Index lomu vody je 1,33. [,8 m]. Určete předmětovou vzdálenost předmětu tak, aby duté zrcadlo vytvořilo jeho převrácený, a) 4krát větší; b) 4krát menší obraz. (BLP ) [1,5f ; 5f] 3. Poloměr vypuklého zrcadla je 0cm.Ve vzdálenosti 30cm od zrcadla je umístěn předmět velikosti 1cm. Vypočítejte, kde vznikne obraz a jak bude velký. (ZLP 4..-8) [-7,5 cm; 0,5 cm] 4. Předmět je pozorovaný lupou, která je ve vzdálenosti c = 0,0 m od oka. Vypočítejte ohniskovou vzdálenost lupy, jestliže při 6-ti násobném úhlovém zvětšení se obraz vytvoří ve vzdálenosti 0,3 m od lupy. (BLP ) [0,045m] 5. Předmět je umístěn 8cm před rozptylkou, která má ohniskovou vzdálenost 4cm. Vypočítejte obrazovou vzdálenost a příčné zvětšení předmětu. [ 0,06m ; 0,75] 6. Určete nejvyšší řád spektra, ve kterém je ještě možno pozorovat červenou čáru vlnové délky 700 nm pomocí optické mřížky, která má 300 vrypů na milimetr. (BLP ) [4] 7. Svazek bílého světla dopadá kolmo na optickou destičku tloušťky 400nm a indexu lomu 1,5. Destička je ve vzduchu. Vypočítejte, které vlnové délky viditelné části spektra se v odraženém světle zesilují, a odhadněte, jaké barvy jim odpovídají. (BLP ) [480 nm] I.M.Hlaváčová Strana 6

9 otázky Základní zákony geometrické optiky paprsek, index lomu (definice, rovnice), optické prostředí (základní rozdělení), optické rozhraní, opticky hustší a řidší prostředí, optická osa, optická dráha (délka), kolmice dopadu, zákon odrazu (rovnice, obrázek, odvození), zákon lomu (rovnice, obrázek, odvození), úplný odraz, lom ke kolmici a od kolmice, mezní úhel (odvození vzorce). Zobrazení tenkou čočkou Čočka (definice, druhy tlustá/tenká, spojná/rozptylná, ploskovypuklá), význačné body, chod paprsků, znaménková konvence, předmětový/obrazový prostor/vzdálenost, příčné/úhlové zvětšení, konvenční zraková vzdálenost, zobrazovací rovnice pro tenkou čočku. Zobrazení zrcadlem zrcadlo (definice, druhy rovinné, kulové, duté, vypuklé), význačné body, chod paprsků, znaménková konvence, předmětový/obrazový prostor, předmětová/obrazová vzdálenost, obraz reálný a zdánlivý, obraz zmenšený a zvětšený, zobrazovací rovnice pro zrcadlo. Vlnová optika, interference světla, základní jevy vlnové optiky, interference světla (definice, příklad: tenká vrstva průchod a odraz), dráhový a fázový rozdíl světelných vlnění, podmínku pro zesílení (maximum) a zeslabení (minimum), podmínka koherence, koherentní světelné zdroje. I.M.Hlaváčová Strana 7

10 Vlnová optika Vlnová optika studuje jevy založené na vlnové povaze světla - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) n = ) Jevy pozorované při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla Ryze interferenční jevy: - nastává interference, aniž se současně projeví odchylky od přímočarého šíření Ohybové jevy: - dochází-li k interferenci v oblastech, které při přímočarém šíření světla jsou světelným paprskům nepřístupné (tzv. oblasti geometrického stínu) - disperze (jev související se závislostí n( λ) interference - nutná podmínka interference: Pozorovatelný interferenční jev může nastat pouze mezi dvěma koherentními vlnami, které mají stejné frekvence a časově neproměnný fázový rozdíl. Pozn.: pokud se fázový rozdíl skládaných světelných vln neustále mění, vzniká nesmírně rychle proměnné a nestálé rozdělení světelné intenzity, což se vymyká pozorování. Zdroje světelných vln (zářiče): atomy - vysílají veliký počet vln s různou vzájemnou fází v optice je k dosažení pozorovatelné interference nutno skládat světelné svazky, které získáme rozdělením světla z jednoho zdroje, přičemž nesmí být překročen určitý maximální dráhový rozdíl obou světelných vln zdroj koherentního vlnění: LASER Light Amplification by Stimulated Emission of Radiation I.M.Hlaváčová Strana 8 LS011

11 Vlnová optika I.M.Hlaváčová Strana 9 LS011

12 Odraz světelného vlnění na rozhraní: Optika Vlnová optika Dva extrémní případy při skládání světelných vlnění: a) maximální zesílení dopadajícího vlnění b) maximální zeslabení dopadajícího vlnění - mějme dvě světelná vlnění koherentních zdrojů Z 1 a Z - setkají-li se vlnění v určitém bodě P: - se stejnou fází interferenční maximum - s opačnou fází interferenční minimum Fázový rozdíl, se kterým se vlnění setkávají v bodě P, závisí na rozdílu optických drah l = l l1 = ns n1s 1 c Optická dráha: l = n s = s = ct, kde s je geometrická dráha, n je v index lomu prostředí (dráha, jakou by světlo za stejnou dobu urazilo ve vakuu) Světlo projde stejnými optickými drahami v různých prostředích za stejnou dobu. λ Interferenční maximum: l = n s n1s1 = k = kλ, k = 0,1,,3, λ l = n s n s = k + 1, k = 0,1,,3, Interferenční minimum: 1 1 ( ) odraz na opticky hustším prostředí: změna fáze o π - mění se na opačnou - změna optické dráhy o odraz na opticky řidším prostředí: beze změny fáze. I.M.Hlaváčová Strana 10 LS011 λ l =

13 Kvantová optika Fotoelektrický jev. Fotony Fotoelektrický jev byl objeven v roce 1888 A.G. Stoletovem při sledování vlivu světla na elektricky nabitá tělesa. Schéma uspořádání jeho pokusu je na obrázku. Katodu (K) tvořila zinková elektroda, anodu (A) kovová síťka, obě byly připojeny ke zdroji napětí. Katoda byla osvětlována elektrickým obloukem Účinkem světla ztrácela záporně nabitá elektroda svůj náboj a obvodem začal procházet el. proud. Podobný jev byl pozorován i při umístění obou elektrod do vakuové baňky a při použití libovolného kovu pro elektrody. Tento fotoelektrický jev se označuje jako vnější fotoelektrický jev. Intenzita procházejícího proudu se vzrůstajícím napětím na elektrodách zpočátku roste až dosáhne hodnoty tzv. nasyceného proudu. Má-li kovová síťka (A) záporný potenciál proti osvětlenému kovu, brzdí záporné elektrody vymršťované z jeho povrchu a při dostatečně vysokém záporném napětí na síťce (tzv. brzdné napětí U b ) proud přestane obvodem procházet. Z této U b hodnoty napětí lze stanovit kinetickou energii, s níž jsou elektrony emitovány. Experimentálně byly prokázány tyto závislosti fotoelektrického jevu: 1) Intenzita fotoelektrického proudu je úměrná osvětlení a nezávisí na frekvenci světla. ) Energie elektronů uvolněných při monochromatickém osvětlení roste lineárně s frekvencí světla. 3) Fotoelektrický jev nastává jen v případě pokud frekvence dopadajícího světla na kov je větší než jistá mezní frekvence kovu. I.M.Hlaváčová Strana 11 LS011

14 Kvantová optika Tyto zákonitosti fotoelektrického jevu nebylo možno vysvětlit na základě vlnové teorie světla. Podle představ vlnové teorie by musel elektron dostávat energii dopadajícího záření postupně a teprve po nahromadění energie potřebné k překonání výstupní práce by se mohl uvolnit z kovu. Při malých intenzitách světla by muselo být pozorováno zpoždění emise elektronů za dopadajícím světlem, které však nebylo nikdy zjištěno. Vlnovou teorií nelze pak vůbec vysvětlit pozorovanou existenci mezní frekvence. Jednoduchý výklad všech zákonitostí fotoelektrického jevu podal v roce 1905 Einstein na základě Planckova předpokladu světelných kvant fotonů. Předpokládal, že každý fotoelektron získá celou energii fotonu ε = hv a spotřebuje ji zčásti na práci potřebnou k překonání potenciální bariéry na povrchu kovu (výstupní práce A v ) a na kinetickou energii uvolněného elektronu E k. Energetická bilance při uvolnění jednoho fotoelektronu se pak nazývá Einsteinovou rovnicí fotoelektrického jevu a má tvar: hν = Av + Ek Minimální energie fotonu umožňující uvolnění elektronu z kovu s nulovou kinetickou energií určuje mezní frekvenci kovu (charakteristickou frekvenci kovu) hν 0 = Av Einsteinovu rovnici lze potom zapsat ve vztahu h( ν ν 0 ) = Ek = eub, kde eu b je práce potřebná k překonání brzdícího pole s napětím U b. Protože kinetická energie uvolněného elektronu nemůže být záporná, je zřejmé, že fotoemise elektronu může nastat jen při dopadu záření s frekvencí ν ν o resp. s vlnovou délkou λ menší, než odpovídá mezní hodnotě λ o. Pro většinu kovů leží λ o v UV oblasti, u alkalických kovů spadá do viditelné oblasti (Na - 58,5 nm, Zn - 37 nm, Pt -196, nm). K úkazu velmi blízkému popsanému fotoelektrickému jevu v kovech dochází v důsledku osvětlení v polovodičích. Při vnitřním fotoefektu absorpce světla nevyvolá emisi elektronů, způsobí vznik volných nositelů náboje, což vede ke zvýšení vodivosti polovodiče. Mezní vlnová délka vnitřního fotoelektrického jevu je zpravidla větší než mezní délka vnějšího fotoelektrického jevu a zasahuje až do infračervené oblasti. I.M.Hlaváčová Strana 1 LS011

15 Kvantová optika Světelná kvanta zavedená Planckem a nazvaná Einsteinem fotony, se šíří rychlostí světla a chovají se současně jako hmotné částice. Má-li foton energii ε = hv, pak podle Einsteinova vztahu mezi energií a hmotností m ν W = hv= m ν c mu přísluší hmotnost m ν a hybnost p podle vztahů h h h h = = p= m ν c= = c λc c λ 1 m = v 1 c Z relativistické závislosti hmotnosti m na rychlosti částice I.M.Hlaváčová Strana 13 LS011 vyplývá, že částice s klidovou hmotností m o > 0 nemůže dosáhnout rychlosti světla. Pro fotony pohybující se rychlostí světla z toho plyne, že jejich klidová hmotnost m o = 0. Hmotný charakter fotonů byl prokázán pokusy s ohybem světelných paprsků v gravitačním poli. Dalším potvrzením je tzv. rudý posuv ve spektrech těžkých hvězd způsobených průchodem fotonu gravitačním polem hvězdy. Výraz pro hybnost fotonu byl prokázán experimentálně tzv. Comptonovým jevem. Při průchodu RTG paprsků lehkými kovy (např. Li, Be, Mg, Al, Cu, S, Ag) dochází k jejich rozptylu, přičemž rozptýlené paprsky obsahují kromě záření původní vlnové délky ještě záření s větší vlnovou délkou λ. Compton z předpokladu, že se jedná o srážku fotonu s elektronem, který je v těchto kovech slabě vázán a lze jej pokládat za prakticky volný, odvodil na základě zákona zachování energie a hybnosti pro posuv vlnové délky vztah λ λ ( 1 cosθ) h = kde λ je vlnová délka dopadajícího mc záření, h Planckova konstanta, m e hmotnost elektronu, c rychlost světla, θ - rozptylový úhel.

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Přednáška č.14. Optika

Přednáška č.14. Optika Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu. 1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 N á z e v m a t e r i á l u : S v ě t l o j a k o v l n ě n í. T e m a t i c k á o b l a s t : F y z i k

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

7.ročník Optika Lom světla

7.ročník Optika Lom světla LOM SVĚTLA. ZOBRAZENÍ ČOČKAMI 1. LOM SVĚTLA NA ROVINNÉM ROZHRANÍ DVOU OPTICKÝCH PROSTŘEDÍ Sluneční světlo se od vodní hladiny částečně odráží a částečně proniká do vody. V čisté vodě jezera vidíme rostliny,

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech PaedDr. Jozef Beňuška jbenuska@nextra.sk Elektromagnetické vlnění s vlnovými délkami λ = (380 nm - 780 nm) - způsobuje v oku fyziologický vjem, jenž

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kd se v zrcadle vidíme převrácení PaedDr. Jozef Beňuška jbenuska@nextra.sk Kulová zrcadla - jsou zrcadla, jejichž zrcadlící plochu tvoříčást povrchu koule (kulový

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Optika pro studijní obory

Optika pro studijní obory Variace 1 Optika pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Světlo a jeho šíření Optika

Více

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní

Více

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ Světlo - ze zdroje světla se světlo šíří jako elektromagnetické vlnění příčné, které má ve vakuu vlnovou délku c λ = υ, a to

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

Vlnové vlastnosti světla

Vlnové vlastnosti světla Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci

Více

ZOBRAZOVÁNÍ ZRCADLY. Mgr. Jan Ptáčník - GJVJ - Septima - Optika

ZOBRAZOVÁNÍ ZRCADLY. Mgr. Jan Ptáčník - GJVJ - Septima - Optika ZOBRAZOVÁNÍ ZRCADLY Mgr. Jan Ptáčník - GJVJ - Septima - Optika Úvod Vytváření obrazů na základě zákonů optiky je častým jevem kolem nás Základní principy Základní principy Zobrazování optickými přístroji

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 5201, 5202 Dva druhy dutých zrcadel: kulové = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (aby se zobrazovalo přesně, musíme použít

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Optika - AZ kvíz. Pravidla

Optika - AZ kvíz. Pravidla Optika - AZ kvíz Pravidla Ke hře připravíme karty s texty otázka tvoří jednu stranu, odpověď pak druhou stranu karty (pro opakované používání doporučuji zalaminovat), hrací kostku a figurky pro každého

Více

ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova

ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. KVANTOVÁ FYZIKA: Koncem 19. století byly zkoumány optické jevy, které nelze vysvětlit jen vlnovými vlastnostmi světla > vznikly nové fyzikální teorie,

Více

Jan Kopečný ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Jan Kopečný ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA ZÁKLADY FYZIKY Modul 4 Optika a atomové jádro Jan Kopečný Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3..15.1/0016

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

SEMINÁŘ Z FYZIKY 2 22

SEMINÁŘ Z FYZIKY 2 22 SEMINÁŘ Z FYZIKY 2 22-1- 1. ELEKTROSTTIK 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Na skleněné tyči třené kůží vznikl kladný náboj 80 nc. Kolik elektronů přešlo z tyče na kůži? Jak se změní při tomto ději hmotnost skleněné

Více

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1. nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně

Více

8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM. Viditelné světlo Rozklad bílého světla:

8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM. Viditelné světlo Rozklad bílého světla: 8. Optika 8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM Jak vzniká elektromagnetické záření? 1.. 2.. Spektrum elektromagnetického záření: Infračervené záření: Viditelné světlo Rozklad bílého světla:..

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9.

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9. 1 Transport světla Pro popis šíření světla se může použít více metod v závislosti na okolnostech. Pokud je vlnová délka zanedbatelně malá nebo překážky, které klademe světlu do cesty, jsou mnohem větší

Více

APLIKOVANÁ OPTIKA A ELEKTRONIKA

APLIKOVANÁ OPTIKA A ELEKTRONIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie

Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Fyzika 7. ročník Zpracovala: Ing. Irena Košťálková Rozhodne, jaký druh pohybu těleso koná vzhledem k jinému tělesu Uvede konkrétní příklady, na kterých doloží jednotlivé

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102 5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3 ZOBRAZENÍ ČOČKAMI Studijní text pro řešitele FO a ostatní zájemce o fyziku Jaroslav Trnka Obsah Úvod 3 1 Optické zobrazení 4 1.1 Základnípojmy... 4 1.2 Paraxiálníaproximace.... 4 2 Zobrazení jedním kulovým

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

4. STANOVENÍ PLANCKOVY KONSTANTY

4. STANOVENÍ PLANCKOVY KONSTANTY 4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Základy fyzikálněchemických

Základy fyzikálněchemických Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Mechanické vlnění představte si závaží na pružině, které

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika 336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:

Více