Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově"

Transkript

1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_2_Elektrický proud v kovech Ing. Jakub Ulmann

2 1 Elektrický proud a jeho vlastnosti 1.1 Elektrický proud jako fyzikální děj Propojíme-li nabité desky kondenzátoru, přechází náboj tak dlouho, dokud se náboje nevyrovnají. Analogie se spojenými nádobami. Př. 1: Přiřaďte šipkám uvedené veličiny a poté analogické veličiny elektrické: průtok rozdíl hladin výšky hladin objem vody škrtící ventil

3 Př. 2: Popište, co se děje při uzavření tohoto obvodu. Elektrony cestují od mínus k plus, kde je jich nedostatek obvodem začne téct elektrický proud elektrony musí projít i vláknem žárovky, které zahřejí a ono se rozsvítí.

4 Elektrický proud je uspořádaný pohyb volných částic s elektrickým nábojem. Pohybují se nejčastěji elektrony v kovech, ale směr proudu je dohodnutý opačně, podle pohybu kladných částic např. kladných iontů v kapalinách. Elektrony se pohybují uspořádaně velmi pomalu 10-4 m s -1, tedy desetiny mm za sekundu, vzhledem k rychlostem jejich chaotického pohybu 10 5 m s -1. Proud v jednoduchém obvodu tedy vychází z kladného pólu zdroje a směřuje do pólu záporného.

5 1.2 Elektrický proud jako fyzikální veličina Označení: I Udává množství náboje, který projde průřezem vodiče za jednotku času. [I] = A (ampér) = C s 1 Základní jednotka SI. I Vodičem prochází proud 1 A, jestliže projde průřezem vodiče náboj 1 C za 1 s. Q t [Q] = [I]. [t] = A. s = C Pro jednotku elektrického náboje používáme také název ampérsekunda. V praxi se používají ampérhodiny či miliampérhodiny mah. Např. kapacita baterie.

6 Př. 1: Urči náboj, který projde za 1 s obvodem s žárovkou, kterou prochází proud I = 0,3 A. Kolik elektronů při tom projde za 1 sekundu průřezem vodiče v libovolném místě? e = 1, C Q I t 0,31 0, 3C Q Q 18 en n... 1,87510 e Př. 2: Urči jakou kapacitu v F by musel mít kondenzátor, který by udržel náboj Q = 0,3 C při napětí U = 4,5 V. C = 0,067 F = 67 mf = F (běžně 2000 F!) Tento kondenzátor by rozsvítil žárovku po dobu 1 s. Naše žárovka by díky baterii vydržela svítit alespoň hodinu, tedy 3600 krát déle.

7 Baterie tedy nebude kondenzátor (nádrž plná elektronů). Př. 3: Jak můžeme baterii popsat? Co se uvnitř děje? Baterii obsahuje mechanismus, který elektrony, které dorazí k +, přepumpuje uvnitř baterie zpět k (uvnitř baterky teče proud obráceně než venku). Baterie není nádrž plná elektronů. Baterie je čerpadlo na přenášení elektronů proti elektrickým silám.

8 I E + I I I - F e Na elektron působí ještě jiná síla F v opačném směru! V baterii vzniká tato síla díky chemickým reakcím.

9 1.3 Měření elektrického proudu Laboratorní práce. Elektrický proud měříme ampérmetrem, který se zapojuje sériově (do obvodu). Nikdy neměříme proud bez spotřebiče (bez nějakého odporu). Jediný odpor by byl vnitřní odpor přístroje a ten je pro měření proudu malý - vzniká velký proud. Pokus s baterií - vybíjející proud. Pokud zkratujeme plochou baterii, vybíjí se proudem např. 8 A.

10 5.58 Určete proud procházející vodičem, jestliže za jednu minutu prošel jeho průřezem náboj: a) 150 C, b) 30 C. 2,5 A 0,5 A 5.59 Vodičem prochází stejnosměrný proud. Za 30 minut jím prošel náboj C. Určete velikost proudu. Za jakou dobu projde při tomto proudu vodičem náboj 600 C? 1 A 10 min

11 2 Elektrický zdroj - trvale udržuje svorkové napětí a způsobuje pohyb elektrických částic vně i uvnitř zdroje. + - F e I E Př. 1: Nakresli ve vnější části tohoto obvodu v blízkosti žárovky: a) směr elektrického proudu, b) jeden elektron a směr jeho pohybu, c) směr elektrické intenzity, d) směr elektrostatické síly působící na vyznačený elektron.

12 Elektrická síla na elektron koná kladnou práci a způsobuje pohyb elektronů. Nabité částice ztrácejí elektrickou potenciální energii, která se přeměňuje v jiné formy energie vnější část obvodu se chová jako spotřebič. 2.1 Svorkové a elektromotorické napětí zdroje Pokus s baterií napětí zatíženého zdroje (svítící žárovky) porovnáme s napětím nezatíženého zdroje. Poklesne ze 4,6 V na 4,2 V. Jak velkou práci vykoná elektrická síla ve vnější části obvodu? W U Q U I t U je svorkové napětí je to napětí naměřené na svorkách zatíženého zdroje.

13 Př. 2: Nakresli obrázek vnitřní části jednoduchého elektrického obvodu a vyznač: a) směr elektrického proudu, b) jeden elektron a směr jeho pohybu, c) směr elektrické intenzity, d) směr elektrostatické síly působící na vyznačený elektron. I E + I - F e Na elektron působí ještě jiná síla F z v opačném směru!

14 2.2 Elektromotorické napětí zdroje Uvnitř zdroje konají práci jiné síly než elektrostatické. Tato práce je větší než práce W. Při přenesení náboje Q uvnitř zdroje vykonají práci W z. W z U e Q U e I t Elektromotorické napětí je větší než svorkové napětí zatíženého zdroje. Při zatíženém zdroji (např. svítící žárovce) naměříme svorkové napětí a uvnitř zdroje je větší elektromotorické napětí. Na nezatíženém zdroji naměříme na svorkách napětí, které odpovídá napětí elektromotorickému uvnitř zdroje. Říká se mu také napětí naprázdno.

15 Směr svorkového napětí kreslíme jako intenzitu ve směru od + k -. U I Na zdroj se můžeme podívat jako na zařízení, které má nějakou účinnost. Např. Napětí ploché baterie ve chvíli, kdy je zapojena do obvodu se dvěma žárovkami, pokleslo ze 4,6 V na 4,2 V. P P 0 W W z U U Po dosazení zjistíme, že baterie pracuje s účinností 91%. e Q Q U U e U I

16 Co nutí elektrony, aby uvnitř baterky běhaly tam, kam nechtějí a vyrábí tak napětí? Odkud bere zdroj energii? 2.3 Elektrické zdroje V elektrickém zdroji se přeměňuje určitý druh energie na energii elektrickou. elektrodynamické zdroje (dynamo, alternátor) přeměňují mechanickou práci na el. energii, jsou zdrojem proměnlivého proudu a napětí. galvanický článek články fotočlánek termočlánek

17 Galvanické články Využívají chemickou energii uvolněnou při reakci kovových elektrod s elektrolytem (vodivou kapalinou). Zasunutím měděného a zinkového plíšku do (promačkaného) citrónu nebo pomeranče získáme zdroj napětí asi 0,5 V, ale žárovku s touto baterií nerozsvítíme

18 Voltův článek Pb elektrody elektrolyt roztok salmiaku - gel Suchý článek (monočlánek) Olověný akumulátor (autobaterie) zředěná H 2 SO 4 Zn směs grafitu a burelu PbO 2 Cu NiCd, NiMH, Li-ion jiné látky (mp3 přehrávače, mobilní telefony) Baterie - vznikne spojením více článků. Akumulátory můžeme je nabíjet.

19 Fotočlánky Využívají solární energii světla dopadajícího na vhodně upravenou destičku polovodiče (probíhá fotoelektrický jev). Kalkulačky, fotovoltaika, družice, solární nabíječky.

20 Termočlánky DÚ ručně na A4. Jakého jevu využívají? Jednoduché vysvětlující schéma. Využití. Jaké kovy se používají u nejrozšířenějšího typu v průmyslu? Při jakém rozsahu teplot?

21 3 Elektrický proud v kovech 3.1 Ohmův zákon Pokud má kovový vodič stálou teplotu, je proud procházející vodičem přímo úměrný napětí mezi konci vodiče (I U). I U Konstanta úměrnosti je elektrický odpor : Jednotkou elektrického odporu je ohm: Př. 1: Urči odpor 2 rezistorů. Prvním při napětí 4,7 V procházel proud 0,1 A, druhým 0,02 A. U I U I

22 Voltampérová charakteristika (VA charakteristika) - závislost proudu na napětí konkrétní součástky Laboratorní práce. Ohmův zákon pro součástku: Pokud je vodivá součástka během měření VA charakteristiky dostatečně chlazena a její teplota se nemění, platí, že procházející proud je přímo úměrný napětí mezi jejími konci. ezistor je elektrická součástka, která se zapojuje do obvodu kvůli svému odporu, aby zmenšovala procházející proud. VA charakteristika bývá lineární. U konkrétních součástek při měření VA charakteristiky nemusí vyjít přímá úměrnost - odpor se mění s teplotou. Např. žárovka, termistor.

23 Př. 2: Na obrázku jsou nakresleny VA charakteristiky dvou různých rezistorů. Porovnej jejich odpory. 1 větší proud menší odpor. Př. 3: Na obrázku je načrtnuta VA charakteristika žárovky. Odhadni, jak se při zvyšování proudu procházejícího přes žárovku mění její odpor. Zpočátku malý, po rozžhavení vlákna velký.

24 Elektrická vodivost G G I U 1 Jednotkou elektrické vodivosti je siemens (S).

25 3.2 Závislost odporu vodiče na rozměrech Př. 1: Odhadněte jakou úměrou bude záviset odpor vodiče na délce a ploše průřezu. Čím delší je vodič, tím větší je jeho odpor. Čím je jeho průřez větší, tím menší je odpor. l S S průřez vodiče, l délka vodiče, měrný elektrický odpor (rezistivita). Hodnoty pro různé kovy jsou v tabulkách [] = m

26 Př. 2: Porovnej uvedené materiály podle jejich konstant. Z jaké uvedené látky se dělá spirála varné konvice?

27 5.66 Kus neizolovaného měděného vodiče složíme na polovinu a zkroutíme. Jak se změní jeho odpor? Klesne na jednu čtvrtinu Telefonní vedení z měděného drátu má a) délku 3 km a průměr 1,6 mm, b) délku 5 km a průměr 1,4 mm. Určete odpor jednoho vodiče vedení. 25, Wolframové vlákno má délku 65 cm, průměr 0,05 mm a při pokojové teplotě má odpor 18,5. Určete měrný odpor wolframu. 5, m

28 3.3 Závislost odporového vodiče na teplotě Odpor kovového vodiče se s rostoucí teplotou zvyšuje. Závislost el. odporu vodičů na teplotě je ve velkém teplotním intervalu prakticky lineární a můžeme ji vyjádřit vztahem: 0 1 t teplotní součinitel elektrického odporu (udává, kolikrát se zvětší odpor při zahřátí vodiče o 1 C) t teplotní rozdíl 0 odpor vodiče na začátku ohřívání

29 Také měrný elektrický odpor závisí na teplotě (v tab. při 0 C) lineárně podle vztahu: Při velmi nízkých teplotách klesá odpor některých materiálů na neměřitelnou hodnotu. Tento jev se nazývá supravodivost. Příklad využití supravodivosti: LHC Large Hadron Collider Pomocí 120 tun kapalného hélia dosahujeme na magnetech teploty 1,9 K (-271,3 C) v celém okruhu LHC (4 700 tun materiálu). Supravodivé materiály umožňují přenášet proudy řádově kolem A kabely se 100 krát menším průřezem. Tento proud pak vytváří silné magnety k urychlování částic. 1 t 0

30 30

31

32 5.74 Odpor platinového drátu při teplotě 20 C je 20 a při zahřátí na 500 C se zvýší na 59. Určete střední hodnotu teplotního součinitele odporu platiny. α = 4, K Hliníkový vodič má při 0 C odpor 4,25. Určete jeho odpor při teplotě 200 C. 7, Odpor vlákna nerozsvícené žárovky je 60. Při svícení odpor vlákna žárovky vzrostl na 636. Určete zvýšení teploty vlákna žárovky. (α = K 1 ) 1900 C 5.77 Měděný vodič má při teplotě 15 C odpor 58. Určete jeho odpor při teplotách -30 C a +30 C. (α Cu = K 1 ) 48 ; 61

33 3.4 Sériové zapojení rezistorů Dva rezistory nahrazujeme jedním. Obvod se nevětví I I 1 I 2 Př. 1: Vysvětlete pomocí nějaké analogie, jaký bude výsledný odpor. Odpor = překážka pro průchod elektronů (vody, aut apod.). Elektrony musí projít přes dvě překážky výsledný odpor je větší než pro jeden z odporů.

34 Platí: 1 2 Součástky jsou zapojeny sériově napětí se dělí: U U 1 U 2 Pokles napětí můžeme znázornit i pomocí potenciálu (analogie kaskád na řece): Celkové napětí se rozdělí podle: U : U 1 : U2 : U3 : 1 : 2 : Největší napětí bude na odporu s největší hodnotou. 3

35 5.125 Tři sériově spojené rezistory o odporech 2, 2,5, 3 jsou připojeny ke zdroji o napětí 6 V. Nejprve určete, na kterém rezistoru bude největší napětí, poté vypočítejte všechna napětí na rezistorech. Největší napětí bude na třetím rezistoru. Nejprve vypočítáme celkový odpor. Nyní můžeme spočítat proud a postupně vypočítat napětí na jednotlivých odporech podle Ohmova zákona. U1 1 I Nebo počítáme poměry podle: U : U 1 : U2 : U3 : 1 : 2 : U 1 = 1,6 V, U 2 = 2 V, U 3 = 2,4 V 3

36 3.5 Paralelní zapojení rezistorů Obvod se větví I I 1 I 2 Př. 1: Vysvětlete pomocí nějaké analogie, jaký bude výsledný odpor. Elektrony (voda, auta apod.) mají dvě cesty místo jedné je snazší se procpat přes dvě cesty (dohromady tvoří větší prostor) výsledný odpor je menší než odpor jednoho.

37 Platí: Výsledný odpor je vždy menší než menší z odporů. Pro 2 stejné bude: Napětí se měří mezi dvěma místy: Platí také: I : I 1 : I : 1 1 : U U 1 2 Největší proud bude protékat větví s nejmenším odporem. (Klasická cesta nejmenšího odporu.) 1 2 U

38 Př.1: Čtyři rezistory o odporech 10, 20, 30, 40 jsou spojeny paralelně. Kterým rezistorem bude protékat největší proud? Určete celkový odpor spojených rezistorů a vypočítejte proudy, které rezistory protékají, připojíme-li obvod na napětí 12 V. Největší proud bude protékat prvním rezistorem. Celkový odpor: Proudy spočítáme Ohmovým zákonem: I 1 U 1 I 1 = 1,2 A, I 2 = 0,6 A, I 3 = 0,4 A, I 4 = 0,3 A Sbírka úloha až 5.140

39 Př.2: Jaké hodnoty elektrického odporu můžeme získat různým zapojením max. tří stejných rezistorů o odporech 100? Zakreslete zapojení a napište výsledný odpor. 100, 200, 300, 33, 50, 150, 66.

40 3.6 Ohmův zákon pro uzavřený obvod Budeme zkoumat zdroj baterii AA 1,5 V. Zjistíme tzv. zatěžovací charakteristiku zdroje - závislost napětí na proudu (osy opačně než VA charakteristika). Použijeme následující zapojení: Při rozpojeném obvodu bez proudu naměříme na svorkách elektromotorické napětí 1,4 V. Při zkratu (zapojíme pouze ampérmetr) bude protékat napětí značně poklesne na 0,26 V. Naměříme největší proud 2,8 A. eostatem měníme velikost odporu např. od 0 do 20 a zjistíme odpovídající hodnoty napětí a proudu.

41 Pomocí soupravy Vernier získáme současné hodnoty proudu a napětí. Některé z nich vybereme: I [A] 0 0,13 0,26 0,35 1,4 2,2 2,37 2,8 U [V] 1,4 1,33 1,27 1,2 0,7 0,4 0,37 0,26 Př. 1: Narýsuj zatěžovací charakteristiku zdroje graf závislosti napětí na proudu (osy opačně než u VA charakteristiky).

42 I [A] 0 0,13 0,26 0,35 1,4 2,2 2,37 2,8 U [V] 1,4 1,33 1,27 1,2 0,7 0,4 0,37 0,26

43 Podle toho, jak rychle klesá napětí zdroje rozlišujeme: tvrdé zdroje: napětí při zvětšování proudu klesá pomalu, např. el. zásuvka měkké zdroje: napětí při zvětšování proudu klesá rychle, např. články, baterie Př. 2: Co způsobuje pokles napětí zdroje? Nejvýrazněji při velmi malém odporu ve vnějším obvodu a vysokém proudu - při zkratu. Z baterie nemůžeme odebírat libovolně velký proud, i při minimálním (zkrat) bude proud v obvodu omezovat vnitřní odpor i. Při malém proudu je i zanedbatelný.

44 Pokles napětí při vysokém proudu způsobuje vnitřní odpor reálného zdroje i. Na obvod se díváme jako na sériové zapojení. Celkový odpor je součet odporů. I U e i U U e i U i U e U U

45 Př. 2: Jaký je vnitřní odpor tužkové baterie 1,5 V, jestliže dodávala zkratový proud 2,5 A? I U e i U 0 e i i Ue 1,5 0, 6 I 2, Proč se v kapesní svítilně používá baterie o elektromotorickém napětí 4,5 V, ale žárovka má jmenovité hodnoty napětí a proudu 3,5 V a 0,2 A? Určete vnitřní odpor baterie. Jmenovité hodnoty jsou skutečné při svícení. Pokles napětí je způsoben úbytkem napětí na vnitřním odporu zdroje. i Ui Ue U 4,5 3,5 5 I I 0,2

46 5.109 Ke svorkám zdroje o elektromotorickém napětí 15 V je připojen vnější obvod, kterým prochází proud 1,5 A. Voltmetr připojený ke svorkám zdroje ukazuje napětí 9 V. Určete odpor vnějšího obvodu a vnitřní odpor zdroje. U 9 6 I 1,5 i Ui Ue U I I 1, Ke svorkám zdroje o elektromotorickém napětí 2 V a vnitřním odporu 0,8 je připojen niklový drát délky 2,1 m o obsahu kolmého řezu 0,21 mm 2. Určete napětí na svorkách zdroje. Změnu odporu s teplotou neuvažujte. ( Ni = 4, m) l S I U e i U I 1, 7V

47 3.7 Elektrická práce a elektrický výkon Práce vykonaná elektrickou silou ve vnější části obvodu: (viz kapitola 2.1) W U Q U I t Vykonaná práce odpovídá odebrané energii E. Z definice výkonu (práce za čas) dostáváme: P W t U I t t U I P U I Př. 1: Urči proud a odpor svítící 100 W žárovky připojené na síťové napětí 230 V. 0,43 A, 529 Ω

48 Př. 2: Odvoď vzorce, které udávají závislost výkonu na: a) odporu a napětí (ve vzorci se nevyskytuje proud), b) odporu a proudu (ve vzorci se nevyskytuje napětí). P U I U U U 2 P U I I I I Př. 3: Elektrický sporák s troubou má při plném výkonu příkon W. Urči, jaký proud odebírá ze sítě při standardním napětí 230 V. Jaký proud by odebíral, kdyby se v síti používalo bezpečné napětí 12 V? 17,4 A, 333 A Správně hovoříme o elektrickém příkonu. Trouba odebírá elektrický příkon a její výkon je energie tepla, kterou odevzdává. 2

49 Př. 4: Tři sériově spojené rezistory o odporech 2, 2,5, 3 jsou připojeny ke zdroji o napětí 6 V. Určete: kterým rezistorem bude protékat největší proud, na kterém rezistoru naměříme největší napětí, který rezistor má největší příkon a jakou má tento příkon hodnotu Na elektrickém spotřebiči jsou údaje a) 220 V, 100 W, b) 120 V, 400 W. Jaký proud prochází spotřebičem? a) 0,45 A b) 3,3 A

50 Př. 5: Tři paralelně zapojené rezistory o odporech 20, 30, 40 jsou připojeny ke zdroji o napětí. Určete: kterým rezistorem bude protékat největší proud, na kterém rezistoru naměříme největší napětí, který rezistor má největší příkon.

51 Účinnost elektrického zařízení je dána poměrem získaného výkonu (světlo, teplo, mechanický výkon) a elektrického příkonu. P P P 0 P 0 Nejlepší účinnost dosahují tepelné elektrospotřebiče, potom elektromotory, nejslabší obyčejné žárovky. Světelný výkon 100 W žárovky je např. stejný jako 24 W zářivky nebo 12 W diodového světla, ale jejich příkony jsou značně odlišné. Žárovka 100 W

52 5.200 Obráběcí stroj má výkon 3,8 kw a pracuje s účinností 75 %. Určete příkon elektromotoru stroje a spotřebu elektrické energie za pracovní směnu (8 h) v kwh. 5,1 kw 41 kwh Př. 6: Jakou účinnost mají obyčejné žárovky, jestliže LED žárovky mění 90 % elektrické energie na světlo. Z výše uvedeného plyne: 10,8 % P 1 P01 2 P02

53 DÚ: Zjistěte příkony elektrických spotřebičů v domácnosti a odečtěte spotřebu energie vaší domácnosti za den. Odebraná elektrická energie (odpovídá práci) se měří v kwh (kilowathodinách). V následujících příkladech budeme počítat, že za 1 kwh zaplatíme 5 Kč. Př. 7: Převeď 1 kwh na Joule J Př. 8: Jak dlouho svítí 20 W žárovka než spotřebuje 1 kwh energie? Kolik platíte za 1 hodinu běhu počítače, pokud odebírá ze sítě výkon 100 W. Kolik stojí provoz tvého počítače za 1 měsíc, jestliže pracuje 6 hodin denně? 50 h, 90 Kč Konec prezentace

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

4.2.12 Spojování rezistorů I

4.2.12 Spojování rezistorů I 4.2.2 Spojování rezistorů Předpoklady: 4, 4207, 420 Jde nám o to nahradit dva nebo více rezistorů jedním rezistorem tak, aby nebylo zvenku možné poznat rozdíl. Nová součástka se musí vzhledem ke zbytku

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

Elektrický proud v kapalinách

Elektrický proud v kapalinách Elektrický proud v kapalinách Kovy obsahují volné (valenční) elektrony a ty způsobují el. proud. Látka se chemicky nemění (vodiče 1. třídy). V polovodičích volné náboje připravíme uměle (teplota, příměsi,

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

13 Vznik elektrického proudu

13 Vznik elektrického proudu 13 Vznik elektrického proudu Historické poznámky 1. polovina 19. století: žeň objevů v oblasti elektromagnetismu Luigi Galvani (1737 1798): italský lékař a fyzik; průkopník moderního porodnictví; objevil,

Více

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková pracovní list studenta Elektrický proud v kovech Eva Bochníčková Výstup RVP: Klíčová slova: žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data formou grafu; porovná získanou závislost s

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 9. 1. 2014

Více

Elektřina a magnetizmus

Elektřina a magnetizmus Elektřina a magnetizmus Elektrický náboj Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

VÝKON ELEKTRICKÉHO SPOTŘEBIČE

VÝKON ELEKTRICKÉHO SPOTŘEBIČE Mateřská škola, Základní škola a Dětský domov, Ivančice VÝKON ELEKTRICKÉHO SPOTŘEBIČE Autor: PaedDr. Miroslava Křupalová III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací oblast: Člověk

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Předmět: Ročník: Vytvořil: Datum:

Předmět: Ročník: Vytvořil: Datum: Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 7. 203 Ele stejnosměrný proud (Ohmův zákon, řazení odporů, elektrická práce, výkon, účinnost, Kirchhofovy

Více

Zdroje elektrického napětí

Zdroje elektrického napětí Anotace Učební materiál EU V2 1/F15 je určen k výkladu učiva zdroje elektrického napětí fyzika 8. ročník. UM se váže k výstupu: žák uvede hlavní jednotku elektrického napětí, její násobky a díly Zdroje

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Protokol o měření. Jak ho správně zpracovat

Protokol o měření. Jak ho správně zpracovat Protokol o měření Jak ho správně zpracovat OBSAH Co je to protokol? Forma a struktura Jednotlivé části protokolu Příklady Další tipy pro zpracování Co je to protokol o měření? Jedná se o záznam praktického

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010

Více

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti Název: Měření příkonu spotřebičů výpočet účinnosti hledání energetických úspor v domácnosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy)

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Solární dům. Vybrané experimenty

Solární dům. Vybrané experimenty Solární dům Vybrané experimenty 1. Závislost U a I na úhlu osvitu stolní lampa, multimetr a) Zapojíme články sériově. b) Na výstup připojíme multimetr. c) Lampou budeme články nasvěcovat pod proměnlivým

Více

Elektrotechnika. Bc. Mgr. Roman Hodslavský. Elektronická učebnice

Elektrotechnika. Bc. Mgr. Roman Hodslavský. Elektronická učebnice Elektrotechnika Elektronická učebnice Bc. Mgr. Roman Hodslavský Tento materiál byl vytvořen v rámci projektu CZ..07/..07/03.007 Tvorba elektronických učebnic O B S A H Přehled fyzikálních veličin a symbolů...

Více

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Učební osnova vyučovacího předmětu elektrotechnika Obor vzdělání: 23-41-M/01 Strojírenství Délka a forma studia: 4 roky, denní studium Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Pojetí

Více

C-1 ELEKTŘINA Z CITRONU

C-1 ELEKTŘINA Z CITRONU Experiment C-1 ELEKTŘINA Z CITRONU CÍL EXPERIMENTU Praktické ověření, že z citronu a také jiných potravin standardně dostupných v domácnosti lze sestavit funkční elektrochemické články. Měření napětí elektrochemického

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VII. Stejnosměrné obvody Obsah 7 STEJNOSMĚNÉ OBVODY 7. ÚVOD 7. ELEKTOMOTOICKÉ NAPĚTÍ 3 7.3 EZISTOY V SÉIOVÉM A PAALELNÍM ZAPOJENÍ 5 7.4 KICHHOFFOVY ZÁKONY 6 7.5 MĚŘENÍ NAPĚTÍ A

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky Uvede hlavní jednotky práce a výkonu, jejich díly a násobky

Více

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava 14. ELEKTRICKÉ TEPLO Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod, výhody, zdroje Elektrické odporové a obloukové pece Indukční a dielektrický ohřev Elektrický

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

Polovodičové usměrňovače a zdroje

Polovodičové usměrňovače a zdroje Polovodičové usměrňovače a zdroje Druhy diod Zapojení a charakteristiky diod Druhy usměrňovačů Filtrace výstupního napětí Stabilizace výstupního napětí Zapojení zdroje napětí Závěr Polovodičová dioda Dioda

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 2 název Vlastnosti polovodičových prvků Vypracoval Pavel Pokorný PINF Datum měření 11. 11. 2008 vypracování protokolu 23. 11. 2008 Zadání 1. Seznamte se s funkcí

Více

ELEKTRICKÉ ZDROJE. Elektrické zdroje a soklové zásuvky

ELEKTRICKÉ ZDROJE. Elektrické zdroje a soklové zásuvky Elektrické zdroje a soklové zásuvky ELEKTRICKÉ ZDROJE Bezpečnostní zvonkový transformátor TZ4 K bezpečnému oddělení a napájení obvodů o příkonu max. 4 VA bezpečným malým napětím 6, 8, 12 V a.c. K napájení

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

3. Elektrický náboj Q [C]

3. Elektrický náboj Q [C] 3. Elektrický náboj Q [C] Atom se skládá z neutronů, protonů a elektronů. Elektrony mají záporný náboj, protony mají kladný náboj a neutrony jsou bez náboje. Protony jsou společně s neutrony v jádře atomu

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Základní poznatky o vedení elektrického proudu, základy elektroniky

Základní poznatky o vedení elektrického proudu, základy elektroniky Pedagogická fakulta Masarykovy univerzity Katedra technické a informační výchovy Základní poznatky o vedení elektrického proudu, základy elektroniky PaedDr. Ing. Josef Pecina, CSc. Mgr. Pavel Pecina, Ph.D.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z

Více

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny.

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny. Psaní testu Pokyny k vypracování testu: Za nesprávné odpovědi se poměrově odečítají body. Pro splnění testu je možné využít možnosti neodpovědět maximálně u šesti o tázek. Doba trvání je 90 minut. Způsob

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011 ODPOR TERMISTORU Pomůcky: voltmetr DVP-BTA, ampérmetr DCP-BTA, teplotní čidlo STS-BTA, LabQuest, zdroj napětí, termistor, reostat, horká voda, led (resp. ledová tříšť), svíčka, sirky, program LoggerPro

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

CZ.1.07/1.1.30/01,0038

CZ.1.07/1.1.30/01,0038 Jitka oubalová Elektrotechnika Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost Z..7/../,8 Automatizace výrobních procesů ve strojírenství a řemeslech Střední průmyslová škola

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ

MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ ZÁKLADY ELEKTROTECHNIKY pro 1. ročníky tříletých učebních oborů MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ Ing. Arnošt Kabát červenec 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021

Více

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika Vzdělávací oblast Člověk a příroda Vyučovací předmět Fyzikální praktika Charakteristika předmětu Obor, vzdělávací oblasti Člověk a příroda, Fyzika, jehož součástí je předmět Fyzikální praktika, svým činnostním

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Diody a usměrňova ovače Přednáška č. 2 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Diody a usměrňova ovače 1 Voltampérová charakteristika

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Semestrální práce RLC obvody Michaela Šebestová 28.6.2009 Obsah 1 Úvod 2 Teorie elektrotechniky 2.1 Použité teorémy fyziky 2.1.1

Více

Pojetí vyučovacího předmětu

Pojetí vyučovacího předmětu Učební osnova předmětu ZÁKLADY ELEKTROTECHNIKY studijního oboru 26-41-M/01 ELEKTROTECHNIKA Pojetí vyučovacího předmětu Učivo vyučovacího předmětu základy elektrotechniky poskytuje žákům na přiměřené úrovni

Více

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem, 1 SVAŘOVACÍ ZDROJE PRO OBLOUKOVÉ SVAŘOVÁNÍ Svařovací zdroj pro obloukové svařování musí splňovat tyto požadavky : bezpečnost konstrukce dle platných norem a předpisů, napětí naprázdno musí odpovídat druhu

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ60 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Technické údaje SI 75TER+

Technické údaje SI 75TER+ Technické údaje SI 75TER+ Informace o zařízení SI 75TER+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM 2007 integrovaný - Místo instalace Indoor - Výkonnostní

Více

T03 Voda v anorganické chemii e-learning pro žáky

T03 Voda v anorganické chemii e-learning pro žáky T03 Voda v anorganické chemii e-learning pro žáky Elektrochemie Protože redoxní reakce jsou děje spojené s přenosem elektronů z redukčního činidla, které elektrony odevzdává, na oxidační činidlo, které

Více