22. Mechanické a elektromagnetické kmity

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "22. Mechanické a elektromagnetické kmity"

Transkript

1 . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou a naoa). Pojy související s itavý ohybe: - oažitá výchyla y - alituda výchyly y - rychlost v - zrychlení a - rajní oloha v /s, y y, a ax. - rovnovážná oloha v - ax., y, a s - - doba itu erioda (doba, za terou ejde oscilátor z jedné rajní olohy do druhé a zt) - doba yvu t - frevence f (oet it za asovou jednotu), [f] s - Hz - úhlová frevence π ω πf, [ ω ] s - A. Kineatia haronicého itavého ohybu: v ω y a y M: ω ϕ ωt (fáze it. ohybu) a a sinϕ a - a sinωt a - ω y A: (rovnovážná oloha) B: (rajní oloha) ϕ π ϕ (-zdrazuje oanou orientaci výchyly y a vetoru a ) v cosϕ v v cosωt v ω y cosωt v y y sin y y sin π y ax. a ω y s a ω y ax. π v ωy cos ω y ax. v ω y cos s

2 Haronicý itavý ohyb je taový ohyb, u terého zrychlení je ío úrné oažité výchylce a vetor zrychlení suje vždy do rovnovážné olohy (je oan orientovaný než výchyla) graf závislosti oažité výchyly y na ase t je sinusoida áze itavého ohybu: ϕ - oátení fáze (odovídá úhlu, terý á osán rvodi oscilátoru v ase t s ) oud oscilátor nerochází v ase t s rovnovážnou olohou latí: y y sin( ω t + ϕ ) a y ω sin( ωt + ϕ ) v ω y cos( ωt + ϕ ) raficé znázornní haron. it. ohybu: ) asový diagra - graf y f (t) ) fázorový diagra (fázor ~ vetor) Sládání itavých ohyb:. IZOCHRONNÍ... y y sin( ω t + ϕ) y y sin( ω t + ϕ ) - stejná, f - stejná, ω - stejná a) asový diagra: b) fázorový diagra: Pro aždý asový oaži je oažitá výchyla výsledného ohybu rovna algebraicéu soutu dílích oažitých výchyle. ýsledný ohyb je haronicý a jeho erioda a frevence je stejná jao u ohyb sládaných. y y sin( ω t + ϕ ), de y y + y. NIZOCHRONNÍ složité na.

3 B. Dynaia haronicého itavého ohybu: leso o hotnosti zavšené na ružin o tuhosti : N N g l + g ( l + y) y a Haronicé itání echanicého oscilátoru je zsobeno silou, jejíž veliost je ío úrná výchylce y a á v aždé oažiu sr do rovnovážné olohy: y, de je tuhost ružiny, terá je charateristicou vlastností ružiny oscilátoru, [ ] N lastní itání oscilátoru itání echanicého oscilátoru, i nž je oscilátoru dodaná energie jen v oátení oažiu a dále robíhá eriodicá ena závisí ouze na araetrech oscilátoru je vždy tluené Mateaticé yvadlo: erioda vlastních it ružinového oscilátoru: frevence vlastních it ružinového oscilátoru: erioda vlastních it yvadla: frevence vlastních it yvadla: f π f π π l g π g l nezáleží na hotnosti zavšeného tlesa

4 C. nergie haronicého itavého ohybu: - ZZ: Pi haron. it. ohybu dochází en v a naoa a to ta, že celový souet obou energií je v aždé oažiu onstantní. C + C y Chcee-li, aby oscilátor ital netluen, usíe dodávat energii. Oscilátor netluených it rezonátor. Psobení vnjší eriodicé síly na oscilátor vzniá nucené itání oscilátoru. Jeho erioda odovídá eriod vnjšího sobení na oscilátor. Alituda oscilátoru je i aždé frevenci itání jiná. Nejvtší alitudu á i rezonanci. Rezonance jev rudého zvýšení alitudy výchyly rezonátoru v oažiu, dy se frevence dodáve energie shodne s frevencí vlastních it rezonátoru. Užití rezonance: - zesilování it zesílení zvuu hudebních nástroj (rezonanní síy) v eletroausticých zaízeních - ladní anál (rozhlas, televize) ω ω rezonance atro se - šodlivý vliv rezonance stroje v továrn: stroje odlahy že roadnout rozitání autoobilu vlive nerovnosti vozovy ed oste velitel velí rot zrušit ro Potlaení nežádoucí rezonance: - zna frevence vlastního itání - dolnní echanizu tluii it - zvtšení tení echanizu

5 . letroagneticé ity letroagneticý oscilátor eletricý obvod, terý itá a je zdroje stídavého natí otebné frevence (nejjednodušší je oscilaní obvod tvoen cívou o indunosti L a ondenzátore o aacit C) záladní rve ro velé nožství zaízení (na. ro sdlovací techniu, souást aždého vysílae) eriodicy euje energii eletricého ole v energii agneticého ole a naoa (ouze v alé, oezené rostoru oscilátoru v raxi je oteba dostat el od zdroje e sotebii) v raxi dochází e ztrátá energie elg. ity jsou tluené Pro zísání netluených it je nezbytné dodávat v ravidelných intervalech energii (nabíjet ondenzátor ze zdroje stídavého natí), oužívají se tou další eletronicé obvody celé zaízení se nazývá generátor netlueného itání. Nucené itání elg. oscilátoru ity, terýi je dodána energie ω - nitelná frevence vlastní ity oscilaního obvodu: π LC f π LC využití sdlovací ω LC technia 3. Analogie ezi echanicý a elg. oscilátore analogicé veliiny: ech. elg. v y el g L I Q C U

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze 1. Úol měření Úolem měření na rotorové (Müllerově) odparce je sestavit energeticou a látovou bilanci celého zařízení a stanovit součinitele prostupu tepla odpary a ondenzátoru brýdových par.. Popis zařízení

Více

ž ú Ď ň ň ú Á É ž Ý Ě É ň Ě É É ž Ť Ť Ť ú Ň ŤŤ Ť ó Á ú ú Ť ň ú ň ž É Š Š ž ó ó Ť É Ť Ě Ť ň Ťň Ť ž ňž Ť Ó Ť ú ž Ť ú ž Ť ó ž ž Ť Ť ž Ě Š ú ž ž ň Č ž ž ž ž Ť Ť Ť Č Ň Á Ť Ý ú Ť ž ň ž Ť Ý Ť Ť ž ň Ťň Š ž ú ž

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

RLC obvody Jaroslav Reichl, 2006

RLC obvody Jaroslav Reichl, 2006 obvody Jaroslav eichl, 6 obvody obvody e název pro obvody, které sou pipoeny ke zdroi stídavého naptí a které sou obecn tvoeny rezistore o odporu, ideální cívkou s indukností a ideální kondenzátore s kapacitou

Více

ť Ý É É ó š Ř ř ň ř é é ž ř ú ě ř ž ě ř š ÚČ ř Č é ř ě ě ř é é ř ě ě ř ě ě ř ě ř ě ě ř š š ž ř ě ě é ř ž Ž é é ř Ů é Ů Ý Ť š ž ž é ř ě ě ž é ř ě ě žž é š ř ě ř ř ě ě š ř Ů š Č ě Č ě š é š ř é š ř ž é ř

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Ť ť Ú Ť ň Ú úč ň Á Úč úč úč úč Ú Í Ú ť ď ů ů ů úý ň č ú úč ů č ú ů úč Č ů úč úč č Ú ů Ú Í ú č Í ň Á Á ú č Č ú ů ů Á Á Á ď Í Ú Ú Í Ú ň ó Á ď ň Ú ů ť č č č úč Ý č ú úč Ó Ú ů ó ď ď Í Ť č ú č ú ť úč Úč ů č

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

Í ž š Ě Í š Ď Ť Í Ó ú ž š Ť š ž ž Ť Ť ž ž Ď Ď š š š š Ť ž ž š ž ň ž Ť š Ť ž š š š Ť ž ž ň š ž ž ž š ž ú ň š Ť Ť Ť Ť ž Í Ť ž ň ž š Ť Ť š š ž ň ž ň Ť ž š ž ž ž ž Ť Ť Í ž Š Í Í Ě Í Ř É É Í Ě ž ž ň š Ž ž ž

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

Schválení Vruty EASYfast 8-12 mm, technické schválení pro izolační systémy

Schválení Vruty EASYfast 8-12 mm, technické schválení pro izolační systémy Schválení Vruty EASYfast 8-1 mm, technicé schválení pro izolační systémy Jazyy / Languages: cs BERNER_78156.pdf 013-07-5 Z-9.1-619 pro tesařsé vruty EASYfast 8,0 1,0 mm Všeobecné stavebně technicé schválení

Více

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny: DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale

Více

ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú

Více

Střední průmyslová škola a Vyšší odborná škola Chomutov, Školní 50, 430 01 Chomutov, příspěvková organizace

Střední průmyslová škola a Vyšší odborná škola Chomutov, Školní 50, 430 01 Chomutov, příspěvková organizace Střední průmyslová šola a Vyšší odborná šola Chomutov, Šolní 5, 43 Chomutov, příspěvová organiace Střední průmyslová šola a Vyšší odborná šola, Chomutov, Šolní 5, příspěvová organiace Šolní 6/5, 43 Chomutov

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria

Více

Ě Č Ř č ž š č ů Ž č š č ě ě ě č ě ě ů š ě ě č č č ě š ž ó ů š ó Ť ó ž Ť ó Ť ó ó š ů ě č Ť ó ó š š ů ó ěť Ť čó č Ť ó Ť ó úž Ť š č ú č ž ů š č ž ž ě Ž š č ě š ě ě č š ě ů Ý Ý ť Í č ž ň č ž š č š ž š ě ň

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření

Více

Š é ě ěř é ě é ř ě ř Ž é č ř é č Í č ř ě é ř ě č č č ý ý ř č é é ř č é ď ě ř ř ě ň Žď č ř Ž é č š é ú č é č é ř ě ř ě úř úř ý é ě ř ř č š é ř é ý č ř Ž é č š é Ž Ž č é č ě ý ě ň š ěř ěř é ě ěř é ě ď ě

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

ť Íť š š ž ž š ž š š š ů ů ú š ů ž š š š ů ž ó š š Í š š ó ů š š ůž ž ň Ž ž ň š š ž ž ň ň ž ž š š š š š š ž Ú š Č š ž ú ž ů ď ů Č ž š ú š Í Í š ú ů ú ů ž ť ž ú ů ž š ž ž ž ú ú ď ž Í š š ů ž š š ó Č ó š

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

ú ú ň Ž Ž Ť ú Č ň ť ď ú Č ň Č Ť Ž Ť Ť ť Ť Ž ď Č Š Ž ň ť ú ď ú ň Ť Ž ú ď ú ť Ť Ť Ž ú Č ň Ž Č ú Ž ť Ž ť Ž ť ť Š ó ť É ť ť ť ť ó ť ú Ž ó Ž ú ú Ť ň Ť Č Ý Ť Ť Ž Ž ť Ž Ž Ž ú ň ň ó ť Ž Ž Ú Č Ť Ž ň ó ú Ž ď ň Á

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

čí ř ý č ř ě č ů ý ý ů Ž Í íř é Ž ý ř Ž ž é ě ů ý č Ž Ž Š ě č Ž č ý ěď Ž ž ě ť Í ř ů ř Ť ří ž ř ř š č ř í í ň í Č ě é ř š í ů é í Ž ů í ů č š ř í ě é í í é ž é ě í í ě ž ů í č é ří ž ý é č í ží ž í é ž

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.06 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Ý Í Á Í Ž ý č ý ů ů ž ž ý č ť ú ď ů ó ž ý ž č ž ž ú č č č ď č ž ť ž ž ž č ž ž ď č ž ž ď ú ť ť ý ň ž ú ž ť č ž ú ž ú ž č ž ý ž ý ň ž ž č ď č ž č ť ú Ď ž č ž č ó ůž ť ú ž č ý ž Ď ď ď ž ž ž ďť ť ú č č ž Ž

Více

17. Elektrický proud v polovodiích, užití polovodiových souástek

17. Elektrický proud v polovodiích, užití polovodiových souástek 17. Elektrický proud v polovodiích, užití polovodiových souástek Polovodie se od kov liší pedevším tím, že mají vtší rezistivitu (10-2.m až 10 9.m) (kovy 10-8.m až 10-6.m). Tato rezistivita u polovodi

Více

Ř Č Č ž ž žž ž Ž ž ž ž ž Ú ž ž ž Ú ČŠ ň Š Ú Š Ú ČŠ ď ň ň Ř Ř Š Č Š Č Ú ČŠ Ú Ž Ú ČŠ Č Ž Ú ČŠ Č Ž Ž Ú Ú ČŠ Ú Ú Ú Č Ž Ú Ž Ž ž Ž Ž Ž ú ž ž Ž ú Ž Č Č Č Ú ž Ž ď ž ž ž Ú ČŠ Ú ČŠ ú ú ú Ú ČŠ ú Ž ž ž ž ž ž ž ž Š

Více

Hmotnostní procenta (hm. %) počet hmotnostních dílů rozpuštěné látky na 100 hmotnostních dílů roztoku krát 100.

Hmotnostní procenta (hm. %) počet hmotnostních dílů rozpuštěné látky na 100 hmotnostních dílů roztoku krát 100. Roztoky Roztok je hoogenní sěs. Nejčastěji jsou oztoky sěsi dvousložkové (dispezní soustavy. Látka v nadbytku dispezní postředí, duhá složka dispegovaná složka. Roztoky ohou být kapalné, plynné i pevné.

Více

Experimenty se systémem firmy Vernier

Experimenty se systémem firmy Vernier Experimenty se systémem firmy Vernier JAROSLAV REICHL St ední pr myslová škola sd lovací techniky Panská, Praha Experiment a jeho vyhodnocení jsou nedílnou sou ástí výuky fyziky. V p ípad zkoumání n kterých

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ NÁVRH PARAMETRŮ LOGISTICKÝCH CENTER, DIMENZOVÁNÍ TECHNICKÝCH PROSTŘEDKŮ A ZAŘÍZENÍ THE ARGUMENTS CONCEPT OF LOGISTIC CENTRE, DIMENSOINING OF TECHNICAL INSTRUMENT AND DEVICE Václav Cempíre 1 Anotace:Příspěve

Více

Čelní nakladače ZL & ZX

Čelní nakladače ZL & ZX Čelní nakladače ZL & ZX Společnost ZETOR TRACTORS ve spolupráci s Alo AB uvádí na trh čelní nakladače pod označení Zetor Syste. Nabízeny jsou dvě odelové řady základní ZL a préiová ZX Čelní nakladače ZL

Více

Enthalpie, H. Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Teplo, které se uvolňuje za konstantního tlaku.

Enthalpie, H. Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Teplo, které se uvolňuje za konstantního tlaku. Enthalpie, H U = Q + W Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Q p = U W = U + p V = U + ( pv ) = H H = U + pv nová stavová funkce ENTHALPIE Teplo, které se uvolňuje

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Inteligentní ešení kamerového PC systému

Inteligentní ešení kamerového PC systému Inteligentní ešení kamerového PC systému Inteligentní hybridní system IP kamer a analogových kamer Až 6 kamer na jednom PC H. 6 komprese Inteligentní ešení kamerového PC systému IVS IP + Analogové kamery

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

B ETISLAV PAT Základní škola, Palachova 337, 250 01 Brandýs nad Labem

B ETISLAV PAT Základní škola, Palachova 337, 250 01 Brandýs nad Labem Pokusy s kyvadly II B ETISLAV PAT Základní škola, Palachova 337, 250 01 Brandýs nad Labem Soubor pokus voln navazuje na p ísp vek Pokusy s kyvadly, uvedený na druhém ro níku Veletrhu nápad, Plze 1997.

Více

Výpočty podle chemických rovnic

Výpočty podle chemických rovnic Výpočty podle cheických rovnic Cheické rovnice vyjadřují průběh reakce. Rovnice jednak udávají, z kterých prvků a sloučenin vznikly reakční produkty, jednak vyjadřují vztahy ezi nožstvíi jednotlivých reagujících

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

34OFD Rev. A / 1SCC390116M0201. Elektronický monitor stavu pojistek pro stejnosmrná naptí typ OFD Instalace a návod k obsluze

34OFD Rev. A / 1SCC390116M0201. Elektronický monitor stavu pojistek pro stejnosmrná naptí typ OFD Instalace a návod k obsluze 4OFD Rev. A / SCC906M00 Elektronický monitor stavu pojistek pro stejnosmrná naptí typ OFD Instalace a návod k obsluze Úvod Monitor stavu pojistek, oznaený OFD, signalizuje pepálení pojistky zapojené ve

Více

5. Dsledky zákona zachování energie

5. Dsledky zákona zachování energie 5. Dsledky zákona zachování energie 5. Pohyb lyž po sjezdovce 5.. Zadání úlohy Lyža sjíždí ze svahu po sjezdovce o svislé výšce h = 8 m. Na zaátku sjezdu je jeho rychlost nulová. Jaká je jeho rychlost

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý OBVODY STŘÍDVÉHO POD S NEÁNÍM JEDNOBNY DVOJBNY Studijní text pro řešitele FO a ostatní zájemce o yziku Přemysl Šedivý Obsah Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového

Více

Ú š šť ž Č Č Č Ž ž š š ž ž š š ď ď Č š š ž š š š Ú š š š š ď š š ď ž š š ď š ů ď ď š Í Ž ů ů ů ů ů š š Ú Í Í ť š š š š ž ů š š š š Ž ž ďš š š Íš Ž š Č š ž Ý ď š Ž š ď ť ž É š š Í š Ž š Č ž ď š Ň ž š óó

Více

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík Petr Kulí Dimenzování prvů dřevěných onstrucí 7 Dimenzování prvů dřevěných onstrucí 7.1 Úvod U dřevěných onstrucí musíme ověřit jejich stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ

SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ Elektromagnetická vlna Z elektiny a magnetismu již víte, že v elektrickém obvodu, do kterého je zapojen kondenzátor a cívka, vzniká elektromagnetické kmitání, které lze

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Ó Á Ň Í Ž Č Í Ž ň Ž Ž ú Ž Ž Á Ž Í ú ú ú Í Í ť ť ď Í Í ú Í ď Ž Ř Í ň ď Č Í Č Č ď ď Ž Č ď Ž Ž ď Í Ž ú ď Ó ď ú Í Í ď ď ď ď ň Žď ú ú ť ď ď ď Ž Ž Á ď Ž Í Ž Ž Ž ď Ž Č Ž Ž ú Ž Í ú ň Ž ú ď ň ď Č Č ď ú Č ť Ó Í

Více

Á Ž Ú ž ň š ž Ž š Ť Ť Ž Ď Ť Ž ž Ť š ř Ť Ť Ť Ť Ť ž š ž š Ť š Ť Ť š ř Ť Ť Ť Ť Š Ť Ť Ý Á ť ř Ť ž š ň Ť Ť Ž Ť Ť Ť Ž Ž ř ž ž Ť Ž Ě Ť ž Ť Ť Ť Ť š Ť Ž š Ť Ů Ť ť ť Ť ť Ž Č Ž š Ť ř Ť Ž š Ů Ť Ť š Ť Ť ž š ť Ť Ž Ž

Více

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí.

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Petr Martínek martip2@fel.cvut.cz, ICQ: 303-942-073 27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Multiplexování (sdružování) - jedná se o

Více

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie Obsah 1 Vznik a druhy vlnění 1 2 Interference 3 3 Odraz vlnění. Stojaté vlnění 5 4 Vlnění v izotropním prostředí 7 5 Akustika 9 6 Dopplerův jev 12 1 Vznik a druhy vlnění Mechanické vlnění vzniká v látkách

Více

ZNALECKÝ POSUDEK. 004/mov/2012

ZNALECKÝ POSUDEK. 004/mov/2012 Poet výtisk: 2 Výtisk.: 1 Poet list: 14 ZNALECKÝ POSUDEK. 004/mov/2012 o stanovení hodnoty prvk movitého majetku HIM nacházejícího se v zasedací místnosti a v prostorách souvisejících polikliniky O Krajské

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Tuhost pružiny Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

Výpočty zkratů v technické praxi členění textu. Co je to zkrat?

Výpočty zkratů v technické praxi členění textu. Co je to zkrat? Výpočty zratů v technicé praxi 1. Josef Voál, 01 Výpočty zratů v technicé praxi členění textu (Ing. Josef Voál) 1.Zrat, zratový proud, stanovení poměrů při zratu... Výpočty zratových proudů 3... Něco z

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

MS OFFICE MS WORD. Editor rovnic - instalace

MS OFFICE MS WORD. Editor rovnic - instalace MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více