Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ

Rozměr: px
Začít zobrazení ze stránky:

Download "Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ"

Transkript

1 Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum:

2 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již kolm roku 45 př. n. l. staří řčtí filozofové Lukippos a Démokritos. Ti si na základě dlouhodobých pozorování přírody přdstavovali, ž každá látka j složna z vlmi malých částic, ktré mohou mít různý tvar a vlikost a ktré jsou již dál ndělitlné. Tyto částic byly nazvány atomy (a tomos - ndělitlný). Běhm dalších staltí s však tato tori nrozvíjla, a tprv v roc 83 anglický chmik a fyzik John Dalton vypracoval první fundovanější atomovou torii, jjíž něktré závěry platí dodns. Vycházl přitom z násldujících postulátů: - každá látka sstává z npatrných částčk - atomů, ktré nlz vytvořit, rozdělit ani zničit - atomy téhož prvku mají stjné chmické vlastnosti, hmotnost, vlikost a běhm chmických rakcí si udržují svou idntitu - atomy různých prvků s navzájm odlišují - spojováním atomů různých prvků vznikají složitější částic, ktré italský fyzik Amdo Avogardo nazval v roc 8 molkuly I když vědci 9.stoltí přijali myšlnku, podl níž s chmické prvky skládají z atomů, o atomch samých toho moc nvěděli. Za počátk histori fyziky částic v dnšním slova smyslu lz považovat objv lktronu (Josph J. Thomson, 897), ktrý podstatně změnil starou přdstavu o atomch jako ndělitlných stavbních kamnch hmoty. Za skutčně lmntární částici s tak na přlomu 9. a. stoltí začal považovat lktron a libovolný lktricky nutrální atom nbo nabitý iont bylo možno si přdstavit jako složný systém končného počtu záporně nabitých lktronů pohybujících s v silovém poli buzném kladným nábojm. Vlikost náboj lktronu byla přitom přirozně nazvána lmntárním nábojm. Záhy bylo také zřjmé, ž lktrony nsou jn vlmi malou část hmotnosti atomu, nboť např. njjdnodušší (jdnolktronový) atom atom vodíku j o tři řády těžší nž lktron. To vd k myšlnc, ž právě kladné nabitá složka dodává atomu téměř vškrou jho hmotu.

3 Thomsonův modl atomu: Když J.J. Thomson v roc 898 vyslovil hypotézu, ž nutrální atomy mají spcifickou lktrickou vnitřní strukturu. Domníval s, ž atom j objktm tvořným lktricky kladně nabitou látkou, v níž plavou záporně lktricky nabité lktrony. Jho modl bývá často nazýván pudinkový. Clkový náboj tohoto systému j pak nulový. Tnto modl s jvil jako modl dobř vystihující základní vlastnosti atomu, ktrý umožňuj vysvětlní intrakc atomu s lktromagntickým polm. Vyhovuj totiž Lorntzově přdstavě lmntárních oscilátorů vázaných v látc. Těmito oscilátory mohou být podl tohoto modlu lktrony, vázané v atomch a molkulách, vychýlné vnějším zásahm, z rovnovážné polohy. Intrakc (lmntárních oscilátorů s lktromagntickým pol) vysvětluj vznik zářní atomu, rozptyl zářní na atomu apod. Jako příklad vzmm atom vodíku s jdním lktronm umístěným v rovnovážné poloz v střdu kladné nabité koul o poloměru R. Intnzita lktrického pol uvnitř koul: E r = pro r R 4 πε R () r 3 Vychýlím-li lktron do vzdálnosti r z střdu koul, působí na něj síla: F = (-)E = - 4πε R 3 r = -kr Elktron j pod vlivm kvasilastické síly a koná vynucné kmity s kmitočtm: υ = π k m = π 4πε m R 3

4 potom R = π ε mυ dosadím-li typický kmitočt mitovaného světla (υ = 5 4 s ), pak dostanm R = 3 - m, což souhlasí s rozměry atomů (zjištěno z kintické tori plynů). Al i přs úspěchy pudinkového modlu, zůstala nprověřna otázka prostorového rozdělní nábojů v atomu. Tnto tst byl provdn až za 3 lt po zformulování Thomsonova modlu a označil ho za nsprávný. Ruthrfordův modl atomu: V roc 9 na návrh Ernsta Ruthrforda, byl provdn xprimnt. Byla použita mtoda, ktrá spočívá v sondování atomů rychlými částicmi (částic α samovolné mitované něktrými radioaktivními prvky). Zkoumám pohyb částic (sondy) v silovém poli, vytvořném jinou částicí a sldujm paramtry částic přd a po intrakci. Změny určují charaktristiku silového pol zkoumané částic či modlu. V roc 9 (Gigr a Marsdn) použili atomy hélia (částic α), jž ztratily dva lktrony a zůstaly tak s nábojm +. Zdroj těchto částic umístili za olověnou dsku s malým otvorm, takž dostali úzký svazk částic alfa. Tnto svazk nasměrovali na tnkou zlatou fólii. Za fólii umístili pohyblivé stínítko z sirníku zinčnatého, ktré při dopadu α-částic vydává světlný záblsk. Podl Thomsona mělo dojít k tomu, ž by s na fólii měla zachytit většina částic a zbytk by ukazoval pouz npatrnou odchylku od původní dráhy (plynulo by to z rovnoměrného rozdělní náboj v atomu, a tím pádm by působila na částic při průchodu fólií jn slabá lktrická síla). V skutčnosti bylo zjištěno, ž většina částic sic fólií prochází téměř bz odchýlní (střdní hodnota odchýlní j pouz něco kolm - 3 ) od původního směru, al něktré s odchylují o vlký úhl a nbo s rozptýlí i do zpátčního směru. 3

5 Jlikož jsou částic α několikanásobně těžší nž lktron, musly na částic působit i vlké síly, ktré způsobily i odchylku do zpátčního směru. Díky těmto výsldkům Ruthrford zobrazil atom, jakoby složný z drobného jádra ( v němž j soustřděn kladný náboj a téměř vškrá hmota atomu) a lktronu v určité vzdálnosti od jádra. A procházjí-li pak částic α mimo jádro, jjich odchýlní bud minimální (lktron, díky malé hmotě vůči částici, pohyb této částic moc novlivní), přiblíží-li s ovšm k jádru, dostávají s částic do silného lktrického pol a budou znatlně rozptýlny. Odhady intnzity lktrického pol u obou modlů ukazují jak odlišné tyto modly jsou. U Thomsonova modlu: kladný náboj j rozložn rovnoměrné po clém objmu (zandbám-li lktrony) j intnzita na povrchu (kd j max.) asi 3 V/m U Ruthrfordova modlu: kladný náboj j v jádř a intnzita na povrchu jádra j v/m což j 8 krát větší, takové pol můž odchýlit nbo i obrátit směr pohybu částic α. Pozn: vlikost odchylky průchodu částic kolm jádra závisí na jadrném náboji. (Jadrný náboj nboli násobky (+) kladných nábojů, tnto počt (Z) s dns nazývá atomové číslo prvku.) Střdní odchylka (stanovná Gigrm a Marsdnm) měla vlikost kolm. Dál bylo zjištěno, ž o úhl větší nž (např. 9 a víc) s odchýlí částic z 8 případů. Pravděpodobnost výskytu těchto odchýlných částic j -35. Nboli z každých 35 částic α by s měla rozptýlit o úhl 9 a víc, což j rozpor s provdným xprimntm a Thomsonův modl proto j chybný. Úhl rozptylu částic Úhl rozptylu částic odvodil Ruthrford (na základě přdstavy složní atomu z jádra a obalu). Využil při tom fyzikální zákony mikrosvěta: částic α i jádro považoval za hmotné body s lktrickým nábojm (zákony mchaniky: pohyb v cntrálním poli) mzi oběma body působí pouz odpudivá síla (popsané zákony lktrostatiky tvar síly) jádro j mnohm těžší nž α- částic a uvažujm též, ž j stabilní běhm intrakc

6 vzorc pro rozptyl: 4 N i n t Z N( ϑ) = 4 ( 8πε ) r T sin ϑ počt částic α, dopadajících na jdnotkovou plochu stínítka v vzdálnosti r od rozptylující fóli, přímo úměrný tloušťc t fóli, počtu atomů fóli n v jdnotkovém objmu a čtvrci atomového čísla Z těchto atomů j npřímo úměrný čtvrci kintické nrgi T částic α sin 4 ϑ, kd ϑ j úhl rozptylu. RUTHERFORDOVI SE PŘIPISUJE OBJEV ATOMOVÉHO JÁDRA. Jádrový modl atomu Atom s skládá z dvou částí: a) z jádra, kd j uložna kladně nabitá hmota atomu b) z obal, tvořného lktrony Poloměr atomového jádra j mnší nž -4 m a podstatně mnší nž rozměr atomu - m.v jádř j soustřděna většina hmoty (např. u vodíku j poměr hmoty jádra ku obalu asi 84:). Náboj jádra j tvořn clistvým násobkm lmntárního náboj (toto plyn z toho, ž za normálního stavu jsou atomy nutrální a nosič záporného náboj jsou lktrony) Ruthrfordův modl atomu, bývá často označován jako plantární modl atomu, v ktrém s lktrony pohybují na stabilních drahách (orbitách), díky působní přitažlivé síly coulombovské.

7 Atom vodíku: mv Podmínka stability: F = = r 4πε r Postupná rychlost lktronu: Clková nrgi lktronu: v = () 4πε mr E = E k + E p m = v E + 4πε r mínus u E p značí, ž síla působící na lktron j přitažlivá. Po dosazní z vztahu () za v dostanm: E = = 8πε r 4πε r 8πε r Clková nrgi j záporná, protož j lktron vázaný k jádru. Kdyby byla nrgi větší nž nula, měl by lktron mnoho nrgi a nzůstal by na uzavřné dráz kolm jádra. Enrgi potřbná k rozdělní vodíkového atomu na + a j 3,6 V. Vazbná nrgi j tdy 3,6 V =, -8 J, pak poloměr dráhy lktronu v vodíku j 5,3 - m Chyba Ruthrfordova modlu: Z lktromagntické tori vyplývá, ž lktrické náboj s pohybují s zrychlním, vyzařují nrgii. Elktron pak zářním ztrácí nrgii, jho clková nrgi s zmnšuj a lktron s po spirál blíží k jádru. Po uplynutí asi -6 s by s atom vodíku zhroutil a lktron by splynul s jádrm. Což s nstává. Budm tdy must konstatovat, ž v mikrosvětě přstávají platit něktré fyzikální zákony, ktré platí v makrosvětě. Bohrův modl atomu První torii vodíkového atomu, ktrá uspěla při vysvětlování významnějších aspktů chování vodíku, přložil v roc 93 Nils Bohr. Ukázal, ž Ruthrfordův plantární modl atomu nní stabilní podl klasických zákonů fyziky. Opravil jho modl, vyslovil přdpoklady, ktré jsou v rozporu s klasickou mchanikou tak i s lktrodynamikou. Postuláty: ) Atomy s nacházjí v nrgticky ustálných stavch, v ktrých nabsorbují ani nmitují nrgii.enrgi E k odpovídající těmto stavům, tvoří diskrétní posloupnost a řídí s kvantovými pravidly. ) Atom mituj nbo absorbuj zářní po kvantch při přchodu z jdnoho stacionárního stavu do druhého. Pro kvantum zářní platí: hυ = E i - E f kd j E i nrgi počátčního stavu nrgi koncového stavu E f

8 Na lktron působí coulombova síla: F c = 4 πε V h ε dál platí: m = pak poloměr orbity j : r n = r 4πε r π m poloměr orbity r n j kvantován, můž nabývat jn určitých hodnot r n n =,,3, r n = a n h ε kd a r = πm výraz a j složn jnom z základních fyzikálních konstant a nazývá s. (Bohrův) poloměr a = 5,3 - m a j v shodě s rozměry atomů podl kintické tori. Vztah mzi nrgií a poloměrm orbity: E i = m 4 = k 8ε h n n k = 3,6 V hf = Ei E f = k k = k i f i f h c υ = k i f k υ = hc i f k R = R. Rydbrgova konstanta (R=,97-7 m - ) hc Kvantově mchanický modl atomu Vyřšil řadu ndostatků Bohrova modlu, tato tori vycházla z zákonů klasické fyziky s omzujícími podmínkami (postuláty). Elktron má mchanické i vlnové vlastnosti (vlnový dualismus) fotony s chovají jako částic s nulovou klidovou hmotností a lktrony vykazují vlnové vlastnosti (např. lktronové mikroskopy). Kvantovým stavům lktronu lz přiřadit stojaté lktronové vlny v trojrozměrném prostoru. Každé z kvantovým čísl n, l, m charaktrizuj trojrozměrnou vlnu. Nní možné určit přsný popis dráhy lktronu v atomu, proto s musím omzit na pravděpodobnostní popis dráhy. Tnto modl j přvážně matmatický, jhož názornost j značně omzna. Stav částic, popř. systému částic j vyjádřna pomocí vličiny vlnové funkc ψ a j možné ji vypočítat pro zvláštní stavy podl Schrödingrovy rovnic. Oblast, kd j njvyšší pravděpodobnost výskytu lktronu orbital. Orbital a vlastnosti vlnové funkc charaktrizují kvantová čísla:

9 kvantové číslo Názv možné hodnoty význam n hlavní n =,, 3, určuj nrgii a vlikost orbitalu l vdljší l =,,,, n určuj tvar orbitalu m magntické m =, ±, ±,, ±l určuj orintaci orbitalu v prostoru s spinové s = ± ½ určuj momnt hybnosti lktronu Danému kvantovému číslu n odpovídá n kvantových stavů s různými hodnotami l a m. Slupka lktronového obalu: v ní jsou jn lktrony s stjným kvantovým číslm n. V každé slupc j n lktronů. Slupky jsou označny písmny (pro n = K, L,, 7 Q). Hlavním kvantovým číslům odpovídají řádky: priody Mnděljvovy soustavy prvků. Vdljší kvantová čísla jsou vyjádřna také písmny: pro s, pro p, pro d, pro 3 f, pro 4 g (prvk s tak vysokým protonovým číslm jště nbyl objvn, první prvk, jhož lktrony by vstupovaly do orbitalů g by měl protonové číslo ) Pro lktrony stjně jako pro protony či nutrony platí Pauliho vylučovací princip: Což znamná, ž v daném atomu nmohou xistovat dva lktrony v stjném kvantovém stavu, tj. s stjnými kvantovými čísly n, l, m, s. Částic, pro ktré Pauliho vylučovací princip platí, s nazývají frmiony. Ty, pro ktré nplatí bosony (např. fotony). Pro vyplňování orbitalů lktrony platí jště Hundovo pravidlo: Sommrfldův modl atomu Sommrfld nahradil kruhové dráhy modlu atomu Nils Bohra dráhami liptickými.(zdokonalil kvantově mchanický modl atomu). Očkával, ž s tak zjmní kvantování drah jdnak co do vlkosti hlavní poloosy a také co do tvaru dráhy vymzném xcntricitou, což v svých důsldcích povd i v torii k rozštěpní spktrálních čar. Kromě hlavního kvantového čísla n zavdl jště vdljší kvantové číslo k (ta nyní charaktrizovala vlkou i malou poloosu lipsy. Vlikost poloos udávaly vztahy: a n n = a b n = kna pro k n V roc 96 dfinoval magntické kvantové číslo a v roc 96 vnitřní kvantové číslo. Svojí tortickou prací s pokusil vysvětlit význam vnitřního kvantového čísla, což vdlo k objvu spinu lktronu. Ukázalo s však, ž ani tnto přdpoklad nsplnil očkávání tprv po zavdní rlativistických rovnic s částčně podařilo jmnou strukturu čar vysvětlit. Vysoká rychlost lktronů totiž ovlivňuj jho hmotnost a vyvolává tím stáční liptické dráhy do růžic. Díky změnám xcntricity (hlavní poloosy zůstávají stjné) při přchodu z jdnoho oběhu do druhého můž pak lktron na též kvantové dráz nabývat různé hodnoty nrgi. Npodařilo s al vysvětlit řadu tzv. dubltů (dvě spktrální čáry těsně u sb, rozznatlné jn na silných spktrografch).

10 Holandští fyzici Gorg Uhlnbck a Samul Goudsmit s v násldujících ltch pokusili vysvětlit tuto skutčnost přdpokladm, ž na každé hlavní kvantové dráz obíhají dva lktrony, ktré navíc rotují kolm své osy, každý v jiném smyslu. (této rotaci s říká spin). I přs dílčí výsldky s nikdy npodařilo zcla vystihnout jmnou strukturu spktrálních čar a naopak z něho vyplynula xistnc vlkého množství jiných čar, ktré s xprimntálně npodařilo prokázat. Tímto pokusm skončily xprimnty vdoucím tímto směrm, jlikož přístroj vhodné pro popis makrokosmu nbyly vhodné pro popis atomových mikrostruktur. Bylo nutné najít vhodnější mtodiku a tou s stala vlnová optika. Použitá litratura:,arthur Bisr: Úvod do modrní fyziky (přložil RNDr. Josf Čada), Praha 975, Acadmia,Atomová a jadrná fyzika, skripta (Doc. RNDr. Františk Drsa, Doc. RNDr. Michal Suk, CSc, Doc. RNDr. Zbyšk Trka, CSc) 3,Intrnt

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

6 Elektronový spin. 6.1 Pojem spinu

6 Elektronový spin. 6.1 Pojem spinu 6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

7. Jaderná a ásticová fyzika

7. Jaderná a ásticová fyzika 7. Jadrná a ásticová fyzika 7.1 Základní vlastnosti atomových jadr 7.1.1 Složní atomových jadr V roc 1903 navrhl anglický fyzik J. J. Thomson první modl atomu, podl ktrého j v clém objmu atomu spojit rozložný

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ATOMOVÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Kvantování nrgi lktroagntického zářní opakování téa Elktroagntické zářní Planck (1900): Enrgi lktroagntického zářní ůž být vyzářna

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových

Více

Kapitola 2. Bohrova teorie atomu vodíku

Kapitola 2. Bohrova teorie atomu vodíku Kapitola - - Kapitola Bohrova tori atomu vodíku Obsah:. Klasické modly atomu. Spktrum atomu vodíku.3 Bohrův modl atomu vodíku. Frack-Hrtzův pokus Litratura: [] BEISER A. Úvod do modrí fyziky [] HORÁK Z.,

Více

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I Zmnšní intnzita světla při prostupu hmotou: pravou absorpcí - pohlcné zářní zvýší vnitřní nrgii molkul systému a přmění s v tplo Lambrtův-Brův zákon: I = I c x o ( - xtinční koficint) rozptylm na částicích

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Stavba atomu. protony p + nukleony neutrony n 0. elektrony e -

Stavba atomu. protony p + nukleony neutrony n 0. elektrony e - Stavba atomu atom (elektroneutrální) jádro (kladně nabité) elektronový obal (záporně nabitý) protony p + nukleony neutrony n 0 elektrony e - Mikročástice Klidová hmotnost (kg) Klidová hmotnost (u) Náboj

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praz Úloha 3: Měrný náboj lktronu Datum měřní: 18. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátk 7:30 Vypracoval: Tadáš Kmnta Klasifikac: 1 Zadání 1. DÚ: Odvoďt

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

Struktura atomu. Beránek Pavel, 1KŠPA

Struktura atomu. Beránek Pavel, 1KŠPA Struktura atomu Beránek Pavel, 1KŠPA Co je to atom? Částice, kterou již nelze chemicky dělit Fyzikálně ji lze dělit na elementární částice Modely atomů Model z antického Řecka (Démokritos) Pudinkový model

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie ATOM 1. ročník Datum tvorby 11.10.2013 Anotace a) určeno pro

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu:

Více

Jednokapalinové přiblížení (MHD-magnetohydrodynamika)

Jednokapalinové přiblížení (MHD-magnetohydrodynamika) Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i

Více

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,

Více

Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času

Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času Aktivita počt rozpadů za jdnotku času Curi (Ci) = 3.7 10 10 rozp.s -1 1 Ci aktivita 1g 6 Ra (a, T 1/ = 1600 lt) 1 Bcqurl (Bq) = 1 rozp. s -1 =.7 10-11 Ci = 7 pci 1 MBq = 7 mci Dávka množství radiac absorbované

Více

Příběh atomového jádra

Příběh atomového jádra Příběh atomového jádra Pavl Cjnar ÚČJF MFF UK Praha cjnar @ ipnp.troja.mff.cuni.cz Stručná histori jádra Tři objvy 1896: Bcqurl objv radioaktivity paprsky z nitra atomu 191: Ruthrford modl atomu atom má

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory Datum (období) vytvoření:

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou

Více

- 1 - Čtvrtá přednáška na téma axiom jednoty VÝVOJ ATOMOVÝCH TEORIÍ. Ph. M. Kanarev. 1. Úvod

- 1 - Čtvrtá přednáška na téma axiom jednoty VÝVOJ ATOMOVÝCH TEORIÍ. Ph. M. Kanarev. 1. Úvod - 1 - Čtvrtá přdnáška na téma axiom jdnoty 15.11.04 VÝVOJ ATOMOVÝCH TORIÍ Ph. M. Kanarv -mail: kanil@mail.ru http://kanarv.innoplaza.nt 1. Úvod Milí hldači vědcké pravdy, již znát podmínky pro zavdní axiomu

Více

3.10. Magnetické vlastnosti látek

3.10. Magnetické vlastnosti látek 3.10. Magntické vlastnosti látk 1. Sznáit s s klasifikací látk podl charaktru intrakc s agntický pol. 2. Nastudovat zdroj agntického pol atou, ktré souvisí s pohyb lktronu v lktronové obalu atou. 3. Vysvětlit

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message. Stavba atomu Atom je v chemii základní stavební částice, jeho průměr je přibližně 10-10 m. Je složen z jádra a obalu. Atomové jádro obsahuje protony p + (kladný náboj) a neutrony n 0 (neutrální částice).

Více

ATOMOVÁ STRUKTURA. Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy.

ATOMOVÁ STRUKTURA. Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy. ATOMOVÁ STRUKTURA Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy. Daltonova atomová teorie, 1807 Všechny prvky jsou tvořené z velmi malých částic, které nazval

Více

INOVACE PŘEDNÁŠEK KURZU Fyzikální chemie, KCH/P401

INOVACE PŘEDNÁŠEK KURZU Fyzikální chemie, KCH/P401 Fakulta životního prostřdí v Ústí nad Labm INOVACE PŘEDNÁŠEK KURZU Fyzikální chmi, KCH/P401 - ZAVEDENÍ EXPERIMENTU DO PŘEDNÁŠEK Vypracovala Z. Kolská (prozatímní učbní txt, srpn 2012) K několika kapitolám

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

Balmerova série vodíku

Balmerova série vodíku Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,

Více

- 1 - Druhá přednáška o axiomu jednoty CHYBY NIELSE BOHRA. Ph.M. Kanarev. 1. Úvod

- 1 - Druhá přednáška o axiomu jednoty CHYBY NIELSE BOHRA. Ph.M. Kanarev. 1. Úvod - - Druhá přdnáška o axomu jdnoty 5.0.04. CHYBY NILS BOHRA mal: kanl@mal.ru Ph.M. Kanarv http://kanarv.nnoplaza.nt. Úvod Nyní s pokusím najít zdroj chy Nls Bohra, ktré způsoly chyné přdstavy, týkající

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Anihilace pozitronů v pevných látkách

Anihilace pozitronů v pevných látkách Anihilac pozitronů v pvných látkách Jakub Čížk katdra fyziky nízkých tplot Tl: 1 912 788 jakub.cizk@mff.cuni.cz http://www.kfnt.mff.cuni.cz výuka Anihilac pozitronů v pvných látkách Doporučná litratura:

Více

Orbitalová teorie. 1.KŠPA Beránek Pavel

Orbitalová teorie. 1.KŠPA Beránek Pavel Orbitalová teorie 1.KŠPA Beránek Pavel Atom Základní stavební částice hmoty je atom Víme, že má vnitřní strukturu: jádro (protony + neutrony) a obal (elektrony) Už víme, že v jádře drží protony pohromadě

Více

Příklady z kvantové mechaniky k domácímu počítání

Příklady z kvantové mechaniky k domácímu počítání Příklady z kvantové mchaniky k domácímu počítání (http://www.physics.muni.cz/~tomtyc/kvant-priklady.pdf (nbo.ps). Počt kvant: Ionizační nrgi atomu vodíku v základním stavu j E = 3, 6 V. Najdět frkvnci,

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected CCSD(T) Stationary Schrödingr quation H Ψ = EΨ MP Elctron corrlation Expansion ovr Slatr dt. Φ= C0Ψ 0 + CSΨ S + CDΨ D + Non-rlativistic Hamiltonian Born-Oppnhimr approximaion occ Elctron Dnsity ρ( r) ϕ

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Model atomu Číslo DUM: III/2/FY/2/2/2 Vzdělávací předmět: Fyzika Tematická oblast: Elektrické a

Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Model atomu Číslo DUM: III/2/FY/2/2/2 Vzdělávací předmět: Fyzika Tematická oblast: Elektrické a Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Model atomu Číslo DUM: III/2/FY/2/2/2 Vzdělávací předmět: Fyzika Tematická oblast: Elektrické a magnetické jevy Autor: Mgr. Petra Kejkrtová Anotace: Žák

Více