Mgr. Petr Janeček. Interaktivní fyzika - virtuální fyzikální experiment

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Mgr. Petr Janeček. Interaktivní fyzika - virtuální fyzikální experiment"

Transkript

1 Mgr. Petr Janeček Modul 4 Interaktivní fyzika - virtuální fyzikální experiment Učme fyziku jinak! - Modernizace výukových metod v zrcadle kurikulární reformy fyzikálního vzdělávání.

2 Obsah Úvod... 1 Matematická podstata počítačového modelu... 3 Modelování pomocí programu Microsoft Excel... 6 Rovnoměrný přímočarý pohyb...6 Rovnoměrně zrychlený přímočarý pohyb...8 Volný pád Volný pád v odporujícím prostředí Harmonické kmitání pružinového oscilátoru Tlumené kmitání pružinového oscilátoru Modelování pomocí programu Modellus Vodorovný vrh Vrh šikmý vzhůru Vrh šikmý vzhůru balistická křivka Demonstrace trajektorie cykloida Demonstrace trajektorie asteroida Harmonický kmitavý pohyb Skládání kmitavých pohybů Příčné postupné mechanické vlnění Podélné postupné mechanické vlnění Modelování pomocí programu Interactive Physics Vektor okamžité rychlosti Pohyb těles v centrálním gravitačním poli Země Přímý dokonale pružný centrální ráz koulí Spřažená kyvadla... 64

3 Obsah Aplety ve výuce fyziky Magnetické pole tyčového magnetu Vznik střídavého napětí Lom světla na rozhraní dvou optických prostředí Objasnění Huygensova principu Optická banka Tónový generátor Vzdálené laboratoře Měření základních meteorologických měření Vlastní a vynucené oscilace Ohyb elektromagnetického záření Videoanalýza fyzikálního děje Videoanalýza kmitavého pohybu kyvadla Videoanalýza rovnoměrně zrychleného přímočarého pohybu Výuka fyziky na interaktivní tabuli Závěr

4 Úvod Tento výukový materiál vznikl jako jeden z hlavních výstupů projektu zaměřeného na modernizaci výukových metod fyzikálního vzdělávání na 2. stupni základních škol a školách středních s názvem Učme fyziku jinak! Modernizace výukových metod v zrcadle kurikulární reformy fyzikálního vzdělávání. Klade si za cíl výrazným způsobem zefektivnit, zjednodušit a urychlit práci vyučujícího fyziky při zavádění nejmodernějších forem výuky. Hlavní podporu tento materiál zřejmě přinese ve fázi přípravy vyučujícího na vyučovací hodinu, ale může být též námětem např. pro samostatnou práci žáků ve fyzikální laboratoři. Celý projekt pokrývá výuku ve čtyřech základních modulech: 1. Reálný fyzikální experiment I. - mechanika, molekulová fyzika a termika, kmitání a vlnění 2. Reálný fyzikální experiment II. - elektřina, magnetismus, optika 3. IT podpora reálného fyzikálního experimentu 4. Interaktivní fyzika - virtuální fyzikální experiment Tento výukový materiál je určen pro výuku modulu č. 4, zabývajícího se virtuálním fyzikálním experimentem. Virtuální fyzikální experiment není už podle názvu experimentem v pravém slova smyslu, tak jak jej běžně známe z hodin fyziky. Zpravidla nepracuje přímo s fyzikálními objekty, ale s jejich modely v dnešní době nejčastěji počítačovými. Zdálo by se tedy, že virtuální experiment může do jisté míry potlačit experiment klasický, který by měl vždy být nedílnou součástí výuky fyziky. Je potřeba hned na úvod zdůraznit, že autor výukového materiálu si v žádném případě nikdy nekladl za cíl potlačit ve výuce fyziky reálný experiment. Chce pouze nabídnout vyučujícím možnost doplnění a zpestření výuky mimo jiné v těch oblastech, kde je často provedení reálného experimentu komplikované. Úvodní část textu se zaměřuje na objasnění samotného principu počítačového modelování fyzikálního děje na několika jednoduchých úlohách z kinematiky hmotného bodu. Ukazuje se, že k celkem pohodlnému modelování bohatě postačuje běžný tabulkový procesor, např. Microsoft Excel. Alternativou by mohlo být i použití modelovacího systému Modellus. Tento software byl lokalizován do českého jazyka a v dnešní době představuje v podstatě plnohodnotnou náhradu systému Famulus, který byl optimalizován pro systém MS-DOS a i přes své nesporné kvality je již poněkud zastaralý. Při použití obou výše uvedených metod je zapotřebí vložit do systému jisté množství matematických výrazů a 1

5 Úvod vzorců. Vytvoření počítačového modelu i jednoduššího děje, a zejména pak jeho grafická optimalizace, tak může být časově velmi náročná. Další část textu je zaměřena na systém Interactive Physics. Jedná se o špičkový modelovací systém firmy MSC.Software. Umožňuje interaktivní řešení fyzikálních problémů a provádění fyzikálních experimentů bez využití jediné reálné pomůcky. Tento produkt se prosazuje zejména proto, že je navržen v prostředí Windows. Zde již nepíšeme samotné rovnice a vzorce (i když i tento postup je možný a v některých případech vhodný nebo dokonce nezbytný), nýbrž systém je založen na vkládání jednotlivých fyzikálních objektů na plochu počítače. Po vytvoření jednotlivých vazeb a definování dalších podmínek, např. silových polí, tření a odporových sil začne systém sám řešit příslušné pohybové rovnice. Následující část textu popisuje možnosti využití apletů s fyzikální tématikou a vzdálených laboratoří volně dostupných na internetu ve výuce fyziky na základní a střední škole. Text popisuje tematicky nejtypičtější příklady aplikace těchto virtuálních nástrojů v jednotlivých částech výuky fyziky. Čtvrtá část textu popisuje možnost počítačového zpracování videozáznamu reálného fyzikálního děje pomocí vhodného software převážně německé provenience. Mezi nejznámější patří programy Easyvid, ViMPS a Viana. Videoanalýza vlastně představuje počítačový rozbor sekvence snímků, na nichž je zaznamenán vhodný reálný fyzikální děj. Poslední pátá část tohoto výukového materiál v podstatě shrnuje všechny možnosti počítačového modelování a virtuálního experimentu s důrazem na využití interaktivní tabule ve výuce a jejich praktické začlenění do interaktivních sešitů vytvořených nástrojem ActivStudio. Filozofie a struktura obslužného software pro interaktivní tabule je v podstatě u všech výrobců obdobná, takže znalosti získané prací s tabulí ActivBoard a softwarem ActivStudio lze pak snadno přenést na jiný typ zařízení a softwaru. 2

6 Matematická podstata počítačového modelu V této části textu bude nastíněna matematická podstata počítačového modelu fyzikálního děje. Její zvládnutí není nezbytně nutné při použití nástroje Interactive Physics, avšak při optimalizaci některých modelů vytvořených tímto nástrojem se nám některé poznatky z této oblasti týkající se např. nastavení přesnosti výpočtu nebo velikosti časového kroku mohou hodit. Veškeré pohyby v klasické mechanice lze popsat pomocí druhého Newtonova pohybového zákona ve tvaru: =, kde je celkové zrychlení, které tělesu o hmotnosti uděluje výslednice všech sil na toto těleso působících. V praxi se vlastně jedná o pohybovou diferenciální rovnici ve tvaru: =, kterou lze po souřadnicích rozepsat do tří skalárních rovnic: =, =, =. Přesné řešení těchto rovnic lze provést pouze pro úzkou skupinu nejjednodušších pohybů a navíc je v podstatě nemožné toto řešení provádět na střední škole (teorie diferenciálních rovnic). Navzdory tomu však existuje velmi jednoduchá přibližná metoda řešení těchto pohybových rovnic, která je pro studenty pochopitelná a navíc lze při řešení s výhodou použít počítač. Jedná se o Eulerovu metodu řešení diferenciální rovnice, kterou při výpočtu většinou používá i např. program Interactive Physics. Princip Eulerovy metody řešení pohybových diferenciálních rovnic lze snadno objasnit s využitím následujícího obrázku. 3

7 Matematická podstata počítačového modelu Předpokládejme těleso (žlutá kulička), které se pohybuje po trajektorii znázorněné zelenou barvou. Poloha kuličky je zde vyznačena v počátečním čase a dále pak ve dvou dalších časových okamžicích + a +2, tedy ve dvou stejně velkých časových intervalech. Hodnoty kinematických veličin v čase + můžeme pomocí hodnot v čase vyjádřit následovně: 1 = 0 + 0, 1 = 0 + 0, =, =, 1 = 0 + 0, 1 = 0 + 0, kde ; ; ; ; ; ; ; jsou hodnoty mechanických veličin v čase a ; ; ; jsou hodnoty těchto veličin v čase +. Z obrázku je vidět, že část 4

8 Matematická podstata počítačového modelu trajektorie mezi časovými okamžiky a + jsme přibližně nahradili úsečkou, tedy lineárním přírůstkem příslušných kinematických veličin. Hodnoty kinematických veličin v čase +2 můžeme pomocí hodnot v čase + vyjádřit následovně: 2 = 1 + 1, 2 = 1 + 1, =, =, 2 = 1 + 1, 2 = 1 + 1, kde ; ; ; ; ; ; ; jsou hodnoty mechanických veličin v čase + a ; ; ; jsou hodnoty těchto veličin v čase +2. Z obrázku je vidět, že část trajektorie mezi časovými okamžiky + a +2 jsme opět přibližně nahradili úsečkou, tedy lineárním přírůstkem příslušných kinematických veličin. Obecně hodnoty kinematických veličin v čase + +1 můžeme pomocí hodnot v čase + vyjádřit následovně: +1 = +, +1 = +, =, +1 = +, =, +1 = +, kde ; ; ; ; ; ; ; jsou hodnoty mechanických veličin v čase + a ; ; ; jsou hodnoty těchto veličin v čase Vytvoření modelu daného děje pak tedy pouze spočívá v tom, že výše uvedené posloupnosti jednoduchých matematických výrazů zadáme do vhodného programu uzpůsobeného k matematickým výpočtům a následného zobrazování těchto hodnot pomocí grafů. Na počátku výpočtu vždy musíme stanovit počáteční hodnoty jednotlivých kinematických veličin, což v podstatě odpovídá stanovení počátečních podmínek při řešení příslušných pohybových rovnic. Vytvoření některých typických modelů si v následujících dvou částech textu ukážeme v programech Microsoft Excel a Modellus. 5

9 Modelování pomocí programu Microsoft Excel Název modelu: Rovnoměrný přímočarý pohyb Cíl modelu: demonstrace rovnoměrného přímočarého pohybu zaměřená na grafické znázornění závislosti základních kinematických veličin na čase Určeno pro: 2. stupeň základní školy, nižší gymnázium, vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 10 minut Délka trvání použití modelu: 5 minut Základní nastavení vzorců je patrné z barevných popisků, vzorce z buněk I3 M3 nakopírujeme do dalších buněk tažením za pravý dolní roh označené skupiny těchto buněk. Adresaci na buňky B8 a B9 je třeba nastavit absolutně, neboť tyto hodnoty jsou neustále konstantní. Dvojitý symbol dolaru vložíme stiskem klávesy F4. 6

10 Modelování pomocí programu Microsoft Excel Grafické znázornění vypočtených číselných hodnot 7

11 Modelování pomocí programu Microsoft Excel Název modelu: Rovnoměrně zrychlený přímočarý pohyb Cíl modelu: demonstrace rovnoměrně zrychleného přímočarého pohybu zaměřená na grafické znázornění závislosti základních kinematických veličin na čase Určeno pro: vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 10 minut Délka trvání použití modelu: 5 minut Základní nastavení vzorců je patrné z barevných popisků, vzorce z buněk I3 M3 nakopírujeme do dalších buněk tažením za pravý dolní roh označené skupiny těchto buněk. Adresaci na buňky B8 a B9 je třeba nastavit absolutně, neboť tyto hodnoty jsou neustále konstantní. Dvojitý symbol dolaru vložíme stiskem klávesy F4. Časový krok je zde nastaven na poměrně velkou hodnotu (dt = 0,5 s). Výpočet je v tomto případě příliš hrubý a na grafickém znázornění výsledků je patrné, že graf závislosti dráhy na čase je velmi nepřesný, jedná se v podstatě o lomenou čáru. Na následujících dvou obrázcích je pro porovnání znázorněn výsledek modelu pro časový krok 0,5 s a 0,01 s. Zmenšíme-li časový krok, musí počítač udělat větší množství výpočtů. V praxi tedy musíme vzorce v Excelu rozkopírovat na mnohem větší počet buněk směrem dolů, chceme-li dosáhnout srovnatelného výsledného času celého děje. 8

12 Modelování pomocí programu Microsoft Excel Ve všech dalších modelech je použit časový krok o velikosti 0,01 s. Ze zkušenosti autora je takto nastavená velikost časového kroku dostatečná pro modelování všech běžných fyzikálních dějů. 9

13 Modelování pomocí programu Microsoft Excel Název modelu: Volný pád Cíl modelu: demonstrace volného pádu zaměřená na grafické znázornění závislosti základních kinematických veličin na čase Určeno pro: 2. stupeň základní školy, nižší gymnázium, vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 10 minut Délka trvání použití modelu: 5 minut U tohoto modelu je třeba výpočet doplnit o další dva sloupce (N, O), neboť v grafickém znázornění závislosti velikosti rychlosti a zrychlení zpravidla požadujeme, aby hodnoty těchto veličin byly kladné velikost rychlosti tělesa při volném pádu totiž roste. V uvedených dvou sloupcích se tedy počítá absolutní hodnota ze sloupců K a M a tyto absolutní hodnoty jsou také znázorněné v následujícím grafu. 10

14 Modelování pomocí programu Microsoft Excel Všechny doposud uvedené modely pohybů předpokládají, že pohyb se děje v neodporujícím prostředí. Za těchto podmínek jsou pohybové rovnice řešitelné snadno a žáci jejich řešení vlastně znají jsou to vztahy pro výpočet dráhy a rychlosti u jednotlivých dějů. Neodvozují se však jako řešení diferenciálních rovnic, ale jinak, např. graficky. U volného pádu se však přímo nabízí pokusit se tento děj vymodelovat i v odporujícím prostředí. Pro jednoduchost budeme předpokládat, že se těleso pohybuje malou rychlostí a velikost odporové síly na těleso působící je přímo úměrná první mocnině velikosti jeho rychlosti. Pro odporovou sílu tedy platí vztah: =, kde k je koeficient odporu prostředí. Tato odporová síla se při pohybu skládá se sílou tíhovou, která má opačný směr. Okamžité zrychlení tělesa pak určuje výslednice těchto dvou sil. 11

15 Modelování pomocí programu Microsoft Excel Název modelu: Volný pád v odporujícím prostředí Cíl modelu: demonstrace volného pádu v odporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase a srovnání s volným pádem ve vakuu Určeno pro: vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 20 minut Délka trvání použití modelu: 5 minut Oproti modelu v neodporujícím prostředí přibyla buňka B10, která udává hodnotu koeficientu odporu prostředí. Dále se změnil výpočet okamžité hodnoty velikosti výslednice působících sil. Změna vzorce je vyznačena v obrázku červeně a vychází z výše uvedeného poznatku, že velikost výsledné síly určíme jako vektorový součet síly tíhové a odporové. Na následujících obrázcích je výsledek modelu pro různé hodnoty koeficientu odporu prostředí (0,5; 5; 25; 50). Z výsledků je zřejmé, že velikost okamžitého zrychlení klesá s rostoucím časem k nule a velikost okamžité rychlosti se postupně asymptoticky blíží k nějaké maximální hodnotě, což je v souladu např. s poznatky o skoku parašutisty z letadla. 12

16 Modelování pomocí programu Microsoft Excel k = 0,5 k=5 13

17 Modelování pomocí programu Microsoft Excel k = 25 k = 50 14

18 Modelování pomocí programu Microsoft Excel Název modelu: Harmonické kmitání pružinového oscilátoru Cíl modelu: demonstrace kmitavého pohybu pružinového oscilátoru v neodporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase Určeno pro: vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 20 minut Délka trvání použití modelu: 5 minut Model je poněkud zjednodušen, předpokládá, že na těleso nepůsobí tíhová síla, nýbrž pouze síla pružiny, pro kterou platí: =, kde k je tzv. tuhost pružiny a je vektor okamžité výchylky. Vložení tohoto vzorce je opět v modelu zvýrazněno červeně. Další zajímavostí tohoto modelu je fakt, že při časovém kroku 0,01 s dochází k poměrně velké odchylce (amplituda jednotlivých veličin tak v grafech znatelně narůstá), proto je nutné volit v tomto modelu časový krok desetkrát menší. 15

19 Modelování pomocí programu Microsoft Excel Model opět předpokládá pohyb v neodporujícím prostředí, hovoříme pak o tzv. netlumeném kmitání harmonického oscilátoru. Lze jej opět velmi jednoduše upravit tak, aby simuloval kmitavý pohyb v odporujícím prostředí pak hovoříme o tlumeném kmitání harmonického oscilátoru. Kromě síly pružiny působí na těleso i síla odporu prostředí. Pro jednoduchost budeme opět předpokládat, že se těleso pohybuje malou rychlostí a velikost odporové síly na těleso působící je přímo úměrná první mocnině velikosti jeho rychlosti. Pro odporovou sílu tedy platí vztah: =, kde r je koeficient odporu prostředí. Tato odporová síla se při pohybu skládá se sílou pružnosti. Okamžité zrychlení tělesa pak určuje výslednice těchto dvou sil. 16

20 Modelování pomocí programu Microsoft Excel Název modelu: Tlumené kmitání pružinového oscilátoru Cíl modelu: demonstrace kmitavého pohybu pružinového oscilátoru v odporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase Určeno pro: vyšší gymnázium Prostředí: Microsoft Excel Časová náročnost na přípravu modelu: 20 minut Délka trvání použití modelu: 5 minut Oproti modelu v neodporujícím prostředí přibyla buňka B11, která udává hodnotu koeficientu odporu prostředí. Dále se změnil výpočet okamžité hodnoty velikosti výslednice působících sil. Změna vzorce je vyznačena v obrázku červeně a vychází z výše uvedeného poznatku, že velikost výsledné síly určíme jako vektorový součet síly pružnosti a síly odporové. Z teorie vyplývá, že podle vzájemného poměru hodnot k a r nastávají tři různé případy: a) podkritické tlumení oscilátoru nastává tehdy, pokud platí: <4, 17

21 Modelování pomocí programu Microsoft Excel b) kritické tlumení oscilátoru nastává tehdy, pokud platí: =4, pohyb oscilátoru je pak takový, že oscilátor se za nejkratší možnou dobu ustálí v rovnovážné poloze, 18

22 Modelování pomocí programu Microsoft Excel c) nadkritické tlumení oscilátoru nastává tehdy, pokud platí: >4, v tomto případě se jedná o neperiodický (aperiodický) pohyb, kdy se oscilátor bude pomalu vracet do své rovnovážné polohy. 19

23 Modelování pomocí programu Modellus Řešení některých vybraných úloh prostřednictvím programu Microsoft Excel je sice poměrně jednoduché, ale vzniklý model se omezuje v podstatě pouze na vykreslení příslušných grafických závislostí. Tento software neumožňuje modely dynamické, tzn. takové, které by simulovaly skutečný pohyb daného tělesa. Špičkou na českém trhu v této oblasti byl kdysi program Famulus. I přes svou jednoduchost poskytoval širokou škálu možností a nástrojů k tvorbě počítačových modelů zaměřených na různé oblasti fyziky i matematiky. Tento program byl vytvořen ještě v systému MS-DOS a v dnešní době je již poněkud morálně zastaralý. V podstatě plnohodnotnou náhradou za tento produkt může být program Modellus. Jedná se o portugalský produkt, který lze po zaregistrování stáhnout zdarma na adrese V současné době je dostupný ve verzi Na adrese lze stáhnout v české lokalizaci verzi 2.5. Pro nekomerční a výukové potřeby je program volně šiřitelný a veškeré modely v této kapitole jsou vytvořené v něm. Po bezproblémové instalaci a spuštění se objeví na monitoru následující rozložení jednotlivých modulů: 20

24 Modelování pomocí programu Modellus Popis jednotlivých modulů programu: Ovládání Tento modul obsahuje standardní tlačítka pro ovládání videosekvence a dále tlačítko Nastavení. Po jeho aktivaci se objeví následující dialog: Zde je nastavena jako nezávislá proměnná čas, dále časový krok (odpovídá časovému kroku např. při použití Eulerovy metody). Pokud je parametr t použitý u goniometrických funkcí, nastavíme, zda udává hodnotu v radiánech nebo ve stupních. Poslední důležitou volbou v tomto dialogu je nastavení počtu desetinných míst ve výpočtech a počet míst exponentu při zápisech čísel v semilogaritmickém tvaru. Model V okně tohoto modulu zapisujeme rovnice popisující daný model (viz. další text). V horní liště jsou funkce, které nám usnadňují zápis některých matematických operací (mocniny, odmocniny, ) a důležité tlačítko Přelož. Toto tlačítko musíme použít vždy, když dokončíme zápis modelu nebo provedeme jeho změnu. Program zkontroluje, zda je zápis syntakticky správný a v modulu Počáteční podmínky doplní veškeré nalezené parametry a vybídne k doplnění jejich číselných hodnot a k doplnění počátečních hodnot všech použitých proměnných. Je-li model přeložen bez chyb, objeví se zelený text Model přeložen!, je-li v zápise nalezena chyba, objeví se červený text Chyba v modelu! Graf V okně tohoto modulu je při běhu modelu vykreslován graf zvolené závislosti. To, která veličina se bude znázorňovat na které ose, zvolíme zakliknutím v sekcích Vertikálně a Horizontálně. V sekci Vertikálně je možné přidržením klávesy CTRL označit více položek a v obrázku se tak bude vykreslovat více grafů najednou. Tlačítkem Přizpůsobit dosáhneme toho, že dojde k přeškálování os tak, aby byl zachycen celý doposud vypočtený graf. Po aktivaci tlačítka Nastavení se objeví následující dialog: 21

25 Modelování pomocí programu Modellus V části Meze nastavujeme dolní a horní meze obou os. Při volbě položky Automatické měřítko se bude měřítko os přizpůsobovat vypočteným hodnotám při běhu modelu. Volbou položky Projekční čáry se budou společně s grafem překreslovat i kolmice k oběma osám. Volbou položky Stejná měřítka dosáhneme toho, že dílky na obou osách budou stejně veliké a volba položky Body zajistí, že v grafu budou zobrazeny pouze polohy bodů vypočtených modelem a nikoliv spojnice těchto bodů. Viditelného efektu u této volby dosáhneme pouze tehdy, když je časový krok v porovnání se zvoleným měřítkem dostatečně velký. Tabulka V okně tohoto modulu se zobrazují v tabulce vypočtené hodnoty zvolených proměnných. Opět lze použít tlačítko CTRL k výběru více proměnných, v takovém případě se v tabulce objeví další sloupce. Počáteční podmínky Tento modul již byl zmiňován. Po překladu modelu se v sekci Parametry objeví všechny konstanty modelu (např. tíhové zrychlení, tuhost pružiny, ) a v sekci Počáteční hodnoty nastavujeme počáteční hodnoty použitých proměnných (počáteční poloha, počáteční rychlost, ) Animace V tomto modulu probíhá samotná animace daného modelu. Nastavení jednotlivých parametrů je tak rozsáhlé, že jejich popis bude proveden vždy u každého modelu zvlášť. Na závěr tohoto odstavce je nutné podotknout, že v případě modulů Graf, Tabulka a Animace lze zobrazit i více těchto modulů současně. Volbu dalšího takového modulu provedeme v hlavním menu programu v položce Okno. 22

26 Modelování pomocí programu Modellus Název modelu: Vodorovný vrh Cíl modelu: demonstrace pohybu tělesa v homogenním tíhovém poli Země v neodporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase, animace tohoto děje a znázornění složek rychlosti pohybujícího se tělesa Určeno pro: vyšší gymnázium Prostředí: Modellus Časová náročnost na přípravu modelu: 15 minut Délka trvání použití modelu: 5-10 minut Zápis modelu a nastavení počátečních podmínek a parametrů je patrné z obrázků. Ze zápisu modelu je zřejmé, že k výpočtu pohybových rovnic je opět použita Eulerova metoda. Vložení tělesa do modulu Animace provedeme pomocí tlačítka Vytvořit novou částici. Po výběru tohoto nástroje a jeho umístění na pracovní plochu Animace se objeví následující dialog: V sekcích Horizontálně a Vertikálně nastavíme, kterými proměnnými bude ovlivňován pohyb částice v obou směrech. V sekci Druh objektu zvolíme jako Typ Částice a barvu. V sekci vlastnosti zvolíme, že při pohybu částice se budou v okně animace zobrazovat okamžité hodnoty 23

27 Modelování pomocí programu Modellus proměnných x a y, souřadnicové osy, trajektorie a pohybující se částice bude po každých deseti krocích zanechávat stopu. Dosáhneme tak typického tzv. stroboskopického efektu. K takto zvolené částici potom pomocí tlačítka Vytvořit nový vektor postupně připojíme dva vektory rychlosti. Po výběru tohoto nástroje se vždy objeví příslušný dialog. Nastavení parametrů v jednotlivých dialozích je patrné z následujících obrázků: Grafické znázornění modelu 24

28 Modelování pomocí programu Modellus Název modelu: Vrh šikmý vzhůru Cíl modelu: demonstrace pohybu tělesa v homogenním tíhovém poli Země v neodporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase, animace tohoto děje a znázornění složek rychlosti pohybujícího se tělesa Určeno pro: vyšší gymnázium Prostředí: Modellus Časová náročnost na přípravu modelu: 15 minut Délka trvání použití modelu: 5-10 minut Zápis modelu a nastavení počátečních podmínek a parametrů je patrné z obrázků. Ze zápisu modelu je zřejmé, že k výpočtu pohybových rovnic je opět použita Eulerova metoda. Vložení tělesa do modulu Animace provedeme podobným způsobem jako v předcházejícím modelu. Stejně tak nastavíme podobným způsobem připojení vektorů rychlosti a stroboskopický efekt. 25

29 Modelování pomocí programu Modellus Grafické znázornění modelu Pro tento model je typické, že se jej snažíme přizpůsobit reálné situaci, tedy upravit tak, aby odpovídal pohybu v odporujícím prostředí (např. pohyb střely) trajektorie takového pohybu se potom nazývá balistická křivka. Použijeme-li k výpočtu opět Eulerovu metodu, je úprava zápisu modelu velmi jednoduchá. Pro jednoduchost budeme opět předpokládat, že velikost odporové síly na těleso působící je přímo úměrná první mocnině velikosti jeho rychlosti. Pro odporovou sílu tedy platí vztah: =, kde k je koeficient odporu prostředí. Tato odporová síla se při pohybu skládá se silou tíhovou. Okamžité zrychlení tělesa pak určuje výslednice těchto dvou sil. 26

30 Modelování pomocí programu Modellus Název modelu: Vrh šikmý vzhůru balistická křivka Cíl modelu: demonstrace pohybu tělesa v homogenním tíhovém poli Země v odporujícím prostředí zaměřená na grafické znázornění závislosti základních kinematických veličin na čase, animace tohoto děje a znázornění složek rychlosti pohybujícího se tělesa Určeno pro: vyšší gymnázium Prostředí: Modellus Časová náročnost na přípravu modelu: 15 minut Délka trvání použití modelu: 5-10 minut Zápis modelu a nastavení počátečních podmínek a parametrů je patrné z obrázků. Ze zápisu modelu je zřejmé, že k výpočtu pohybových rovnic je opět použita Eulerova metoda. Vložení tělesa do modulu Animace provedeme podobným způsobem jako v předcházejícím modelu. Stejně tak nastavíme podobným způsobem připojení vektorů rychlosti a stroboskopický efekt. 27

31 Modelování pomocí programu Modellus Grafické znázornění modelu 28

32 Modelování pomocí programu Modellus Název modelu: Demonstrace trajektorie cykloida Cíl modelu: demonstrace vzniku netradiční trajektorie cykloidy, kterou opisuje bod na obvodu kružnice (např. ventilek kola) valící se po vodorovné podložce Určeno pro: vyšší gymnázium Prostředí: Modellus Časová náročnost na přípravu modelu: 10 minut Délka trvání použití modelu: 5 minut Zápis modelu a nastavení počátečních podmínek a parametrů je patrné z obrázků. Ze zápisu modelu je zřejmé, že k výpočtu není použita žádná přibližná metoda, nýbrž vycházíme ze znalosti parametrických rovnic cykloidy (první dva řádky modelu). V samotném modelu je třeba ještě simulovat valení kružnice po podložce. Poloměr této kružnice je určen v počátečních podmínkách modelu, střed kružnice se pohybuje pohybem rovnoměrným ve vodorovném směru. Okamžité souřadnice tohoto středu jsou vypočteny na třetím a čtvrtém řádku modelu. Vložení podložky do modulu Animace provedeme pomocí tlačítka Vytvořit nový geometrický objekt. Po výběru tohoto nástroje a jeho umístění na pracovní plochu Animace se objeví dialog, ve kterém provedeme následující nastavení: 29

33 Modelování pomocí programu Modellus Vložení valící se kružnice do modulu Animace provedeme opět pomocí tlačítka Vytvořit nový geometrický objekt. Po výběru tohoto nástroje a jeho umístění na pracovní plochu Animace se objeví dialog, ve kterém provedeme nastavení podle obrázku. Stiskem tlačítka Umístění v tomto dialogu dále nastavíme, jakým způsobem je určen střed této kružnice a jakým způsobem valící se bod na této kružnici. K definici valícího se bodu užijeme proměnné z prvních dvou řádků modelu, k definici středu kružnice další dva řádky modelu. Nastavení dialogu pak bude vypadat takto: Vložení valícího se poloměru kružnice do modulu Animace provedeme obdobným způsobem opět pomocí tlačítka Vytvořit nový geometrický objekt. Nastavení obou dialogů pak bude vypadat takto: 30

34 Modelování pomocí programu Modellus Vložení zapisovače (tužky) do modulu Animace provedeme pomocí tlačítka Vytvořit nový souřadnicový zapisovač. Nastavení dialogu bude vypadat takto: Grafické znázornění modelu 31

35 Modelování pomocí programu Modellus Název modelu: Demonstrace trajektorie asteroida Cíl modelu: demonstrace vzniku netradiční trajektorie asteroidy, kterou opisuje bod na obvodu kružnice valící se uvnitř jiné kružnice, která má čtyřikrát větší průměr Určeno pro: vyšší gymnázium Prostředí: Modellus Časová náročnost na přípravu modelu: 10 minut Délka trvání použití modelu: 5 minut Zápis modelu a nastavení počátečních podmínek a parametrů je patrné z obrázků. Ze zápisu modelu je zřejmé, že k výpočtu není opět použita žádná přibližná metoda, nýbrž vycházíme ze znalosti parametrických rovnic asteroidy (druhý a třetí řádek modelu). V samotném modelu je třeba ještě simulovat valení kružnice uvnitř větší kružnice. Poloměr této kružnice je určen v počátečních podmínkách modelu, střed kružnice se pohybuje pohybem rovnoměrným po kružnici s poloměrem ¾ R. Okamžité souřadnice tohoto středu jsou vypočteny na čtvrtém a pátém řádku modelu. Vložení větší kružnice do modulu Animace provedeme pomocí tlačítka Vytvořit nový geometrický objekt. Po výběru tohoto nástroje a jeho umístění na pracovní plochu Animace se objeví dialog, ve kterém provedeme následující nastavení: 32

36 Modelování pomocí programu Modellus Vložení valící se kružnice do modulu Animace provedeme opět pomocí tlačítka Vytvořit nový geometrický objekt. Po výběru tohoto nástroje a jeho umístění na pracovní plochu Animace se objeví dialog, ve kterém provedeme nastavení podle obrázku. Stiskem tlačítka Umístění v tomto dialogu dále nastavíme, jakým způsobem je určen střed této kružnice a jakým způsobem valící se bod na této kružnici. K definici valícího se bodu užijeme proměnné z druhého a třetího řádku modelu, k definici středu kružnice další dva řádky modelu. Nastavení dialogu pak bude vypadat takto: Vložení valícího se poloměru kružnice do modulu Animace provedeme obdobným způsobem opět pomocí tlačítka Vytvořit nový geometrický objekt. Nastavení obou dialogů pak bude vypadat takto: 33

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Školení obsluhy PC stručný manuál obsluhy pro používání PC

Školení obsluhy PC stručný manuál obsluhy pro používání PC Školení obsluhy PC stručný manuál obsluhy pro používání PC tabulkový procesor MS EXCEL Zpracoval: mgr. Ježek Vl. Str. 1 MS EXCEL - základy tabulkového procesoru Tyto programy jsou specielně navrženy na

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Excel 2007 praktická práce

Excel 2007 praktická práce Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

Začínáme pracovat s tabulkovým procesorem MS Excel

Začínáme pracovat s tabulkovým procesorem MS Excel Začínáme pracovat s tabulkovým procesorem MS Excel Nejtypičtějším představitelem tabulkových procesorů je MS Excel. Je to pokročilý nástroj pro tvorbu jednoduchých i složitých výpočtů a grafů. Program

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Úvod do problematiky ÚPRAVY TABULKY

Úvod do problematiky ÚPRAVY TABULKY Úvod do problematiky ÚPRAVY TABULKY Zaměříme se na úpravy, které určují finální grafickou úpravu tabulky (tzv. formátování.). Měnit můžeme celou řadu vlastností a ty nejdůležitější jsou popsány v dalším

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Prostředí Microstationu a jeho nastavení. Nastavení výkresu

Prostředí Microstationu a jeho nastavení. Nastavení výkresu Prostředí Microstationu a jeho nastavení Nastavení výkresu 1 Pracovní plocha, panely nástrojů Seznámení s pracovním prostředím ovlivní pohodlí, rychlost, efektivitu a možná i kvalitu práce v programu Microstation.

Více

Vytvoření modelu dvojitého kyvadla

Vytvoření modelu dvojitého kyvadla Vytvoření modelu dvojitého kyvadla Text je určen pro začátečníky v používání simulinku, vytvořeno v simulinku verze 7.6 (R2010b) 1. Spustíme MATLAB 2. V Command Window MATLABu spustíme příkaz: >> simulik

Více

VKLÁDÁNÍ OBJEKTŮ - obrázek

VKLÁDÁNÍ OBJEKTŮ - obrázek VKLÁDÁNÍ OBJEKTŮ - obrázek Autor: Mgr. Dana Kaprálová Datum (období) tvorby: srpen 2013 Ročník: šestý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žák se orientuje v prostředí aplikace

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

MS OFFICE MS WORD. Editor rovnic - instalace

MS OFFICE MS WORD. Editor rovnic - instalace MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

Tabulkový procesor. Orientace textu. O úroveň níž O úroveň výš

Tabulkový procesor. Orientace textu. O úroveň níž O úroveň výš Formátování Formátováním rozumíme změnu vlastností daného objektu, dle našich představ a možností programu MS Excel. Formátovat můžeme texty v buňkách, můžeme formátovat buňky, listy i celý sešit a měnit

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Obsah. Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje

Obsah. Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje Grafy v MS Excel Obsah Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje Funkce grafu Je nejčastěji vizualizací při zpracování dat z různých statistik

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Microsoft Office PowerPoint 2003

Microsoft Office PowerPoint 2003 Microsoft Office PowerPoint 2003 Školení učitelů na základní škole Meteorologická Maturitní projekt SSPŠ 2013/2013 Vojtěch Dušek 4.B 1 Obsah 1 Obsah... 2 2 Seznam obrázků... 4 3 Základy programu PowerPoint...

Více

FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT

FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT V PRODUKTECH YAMACO SOFTWARE PŘÍRUČKA A NÁVODY PRO ÚČELY: - RUTINNÍ PRÁCE S DATY YAMACO SOFTWARE 2008 1. ÚVODEM Vybrané produkty společnosti YAMACO Software obsahují

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KONTINGENČNÍ TABULKA FILTROVÁNÍ DAT Kontingenční tabulka nám dává jednoduchý filtr jako čtvrté pole v podokně Pole kontingenční tabulky. Do pole Filtry

Více

Novinky v Solid Edge ST7

Novinky v Solid Edge ST7 Novinky v Solid Edge ST7 Primitiva Nově lze vytvořit základní geometrii pomocí jednoho příkazu Funkce primitiv je dostupná pouze v synchronním prostředí Těleso vytvoříme ve dvou navazujících krocích, kde

Více

zpracováním dat, o kterém jsme hovořili v předchozí kapitole, úzce souvisí grafy.

zpracováním dat, o kterém jsme hovořili v předchozí kapitole, úzce souvisí grafy. . S problematikou posloupností, vektorů a matic, které byla věnována kapitola 8, i se zpracováním dat, o kterém jsme hovořili v předchozí kapitole, úzce souvisí grafy. Grafické zobrazení je vhodným doplňkem

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

MS Excel grafická prezentace dat

MS Excel grafická prezentace dat Název projektu Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast - téma Označení materiálu (přílohy) Pracovní list Inovace ŠVP na OA a JŠ Třebíč CZ.1.07/1.5.00/34.0143 III/2 Inovace

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

OFFICE MS EXCEL SEZNÁMENÍ S PROGRAMEM

OFFICE MS EXCEL SEZNÁMENÍ S PROGRAMEM Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Petr Koňařík MGV_VT_SS_1S2-D12_Z_OFF_EX_UVOD Informatika MS Office MS Excel - úvod OFFICE MS EXCEL SEZNÁMENÍ

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list KEPLEROVY ZÁKONY RNDr. Vladimír Vaščák Metodický list RNDr. V L A D I M Í R V A Š Č Á K Metodický list RNDr. Vladimír Vaščák www.vascak.cz Obsah O aplikaci... 1 Verze pro PC, ipad a Android... 2 1. Keplerův

Více

GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek

GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Word Metodický materiál pro základní

Více

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ Formátování textu Text formátujeme (určujeme jeho vlastnosti) na pásu karet DOMŮ. U textu můžeme formátovat font, velikost písma, řez, barvu písma, barvu

Více

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem.

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem. 83 14. (Pouze u verze Mathcad Professional) je prostředí pro přehlednou integraci a propojování aplikací a zdrojů dat. Umožní vytvořit složitý výpočtový systém a řídit tok dat mezi komponentami tohoto

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Proč Excel? Práce s Excelem obnáší množství operací s tabulkami a jejich obsahem. Jejich jednotlivé buňky jsou uspořádány do sloupců

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Vzdělávací předmět: Fyzika Tematický celek dle RVP: Látky a tělesa Tematická oblast: Vlastnosti látek a těles magnetické vlastnosti látek Cílová skupina: Žák 6. ročníku

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

VYUŽITÍ PC PROGRAMU INTERACTIVE PHYSICS VE VÝUCE FYZIKY NA SPŠ KARVINÁ

VYUŽITÍ PC PROGRAMU INTERACTIVE PHYSICS VE VÝUCE FYZIKY NA SPŠ KARVINÁ www.sps-karvina.cz/fyzwebik VYUŽITÍ PC PROGRAMU INTERACTIVE PHYSICS VE VÝUCE FYZIKY NA SPŠ KARVINÁ METODICKÉ MATERIÁLY POPISUJÍCÍ VYUŽITÍ NAŠICH SIMULACÍ V PROSTŘEDÍ INTERACTIVE PHYSICS 1 I. UČIVO 1. ROČNÍKU

Více

Návod k programu Graph, verze 4.3

Návod k programu Graph, verze 4.3 Návod k programu Graph, verze 4.3 Obsah 1 Úvod 2 2 Popis pracovní lišty a nápovědy 2 2.1 Nastavení os...................................... 2 2.2 Nápověda....................................... 3 3 Jak

Více

MS PowerPoint ZÁKLADY

MS PowerPoint ZÁKLADY MS PowerPoint ZÁKLADY UKÁZKA ŠKOLÍCÍCH MATERIÁLŮ Centrum služeb pro podnikání s.r.o. 2014, I. Verze, TP OBSAH 1. Úvod do PowerPointu... 1 2. Otevření PowerPointu... 1 3. Pracovní prostředí PowerPointu...

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE

MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE Úvodem Spedice je nová agenda WEBDISPEČINKU, která nahrazuje dosavadní Optimalizaci rozvozů a svozů. Umožňuje vytvářet rozvozové trasy (přepravy), zastávky

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Tabulkový kalkulátor

Tabulkový kalkulátor 1.1.1 GRAF Vhodným doplněním textů a tabulek jsou grafy. Graf je v podstatě obrázek graficky zobrazující hodnoty údajů z tabulky. Je vhodným objektem pro porovnávání údajů a jejich analýzu. Graf můžeme

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

KAPITOLA 4 ZPRACOVÁNÍ TEXTU

KAPITOLA 4 ZPRACOVÁNÍ TEXTU KAPITOLA 4 ZPRACOVÁNÍ TEXTU TABULÁTORY Jsou to značky (zarážky), ke kterým se zarovná text. Můžeme je nastavit kliknutím na pravítku nebo v dialogovém okně, které vyvoláme kliknutím na tlačítko Tabulátory

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Popis základního prostředí programu AutoCAD

Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD CÍL KAPITOLY: CO POTŘEBUJETE ZNÁT, NEŽ ZAČNETE PRACOVAT Vysvětlení základních pojmů: Okno programu AutoCAD Roletová

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Microsoft Office Excel 2003

Microsoft Office Excel 2003 Microsoft Office Excel 2003 Školení učitelů na základní škole Meteorologická Maturitní projekt SSPŠ 2013/2014 Vojtěch Dušek 4.B 1 Obsah 1 Obsah... 2 2 Seznam obrázků... 3 3 Základy programu Excel... 4

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více

Výsledný graf ukazuje následující obrázek.

Výsledný graf ukazuje následující obrázek. Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V

Více

8. Formátování. Úprava vzhledu tabulky

8. Formátování. Úprava vzhledu tabulky 8. Formátování Úprava vzhledu tabulky Výšku řádku nastavíme tak, že kurzorem najedeme na rozhraní mezi políčky s čísly řádků. Kurzor se změní na křížek s dvojšipkou. Stiskneme levé tlačítko a tahem myší

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Excel 2007 pro začátečníky

Excel 2007 pro začátečníky Excel 2007 pro začátečníky 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

GeoGebra Prostředí programu

GeoGebra Prostředí programu GeoGebra Prostředí programu Po instalaci a spuštění programu uvidí uživatel jediné škálovatelné okno hlavní okno programu. Podle toho, zda otevíráte okno ve standardní konfiguraci (obr. 1) nebo v konfiguraci

Více

Grafy EU peníze středním školám Didaktický učební materiál

Grafy EU peníze středním školám Didaktický učební materiál Grafy EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.09 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír Šauer Škola: Gymnázium,

Více

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Microsoft Excel kopírování vzorců, adresování, podmíněný formát Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Kopírování vzorců v mnoha případech je třeba provést stejný výpočet

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3 Technická měření v MS Excel Pracovní list 8 Měření na ventilátoru - graf Ing. Jiří Chobot VY_32_INOVACE_323_8

Více

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel Masarykovo gymnázium Příbor, příspěvková organizace Jičínská 528, Příbor Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Excel Metodický materiál pro základní

Více

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9. 6.07. Fyzika - FYZ Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu Vyučovací předmět fyzika

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů FYZIKA Gymnázium Nový PORG Fyziku vyučujeme na gymnáziu Nový PORG jako samostatný předmět od sekundy do sexty. Fyziku vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná v rámci předmětu

Více