zpracování signálů - Fourierova transformace, FFT Frekvenční

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "zpracování signálů - Fourierova transformace, FFT Frekvenční"

Transkript

1 Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier ( ) Zálady experimentální mechaniy

2 Frevenční analýza Proč se frevenční analýza provádí: B C a(t) A(f) A B C D E A čas D E vibrace frevence Jednotlivé jevy jsou v časové oblasti promíchány Jednotlivé jevy jsou ve frevenční oblasti od sebe odděleny 2/32

3 Digitální zpracování signálů Fourierova transformace (pro spojitou funci): funce x(t), periodicá v čase, může být vyjádřena jao neonečná posloupnost: x(t) = a n= a n 2πnt cos + b n 2πnt sin de a n a b n mohou být vypočteny ze znalosti x(t) pomocí vztahů 2 2πnt an = x(t) cos dt 0 2 2πnt bn = x(t) sin dt 0 2π = ω 3/32

4 Digitální zpracování signálů x Fourierova transformace (pro disretizovanou funci): funce x(t) je disretizována a trvá onečný čas, je definována na množině N jednotlivých časových oamžiů t : N / 2 a = 2 n= 2πnt 0 ( x( t )) = + a cos + b sin ;, N Koeficienty a n a b n jsou Fourierovy neboli spetrální oeficienty funce x(t) a často jsou zobrazovány ve tvaru amplitudy a fáze: 2πnt n n = cn c n = a n b n φ = n n arctg an x N / 2 b ( x( t )) = c cos + ϕ ;, N = n n = n= N / 2 2πnt tedy: 4/32

5 Disrétní Fourierova transformace - DF Vstupní signál je A/D převodníem digitalizován a zaznamenán jao množina N disrétních hodnot s pravidelnými časovými rozestupy v intervalu. Předpoládá se, že vzore v čase je periodicý. Je vypočtena onečná Fourierovařada (transformace) jao odhad požadované Fourierovy transformace. Platí záladní vztah mezi délou vzoru, počtem disrétních hodnot N, vzorovací (digitalizační) frevencí fs a rozsahem a rozlišením frevenčního spetra (fmax, f): fs fmax = = 2 f f = S = N 2 N f s vzorovací frevence f max Nyquistova frevence f frevenční rozlišení rozsah zísaného spetra je <0;f max > 5/32

6 Disrétní Fourierova transformace - DF Záladní rovnice pro určení spetrálního složení: x x x M x 2 3 N = cos cos cos cos ( 2π / ) sin( 2π / ) ( 4π / ) sin( 4π / ) ( 6π / ) sin( 6π / ) M M K a K a K b K M ( 2Nπ / ) sin( 2Nπ / ) K M 0 { x } = [ C] { } a n K určení neznámých spetrálních (Fourierových) oeficientů obsažených v {a n } tedy použijeme: { } [ ] a = C { x } n Nejpoužívanějším algoritmem výpočtu spetrální analýzy je rychlá Fourierova transformace - FF. ato metoda vyžaduje, aby N bylo celočíselnou mocninou 2. 6/32

7 Specificé rysy DF Digitální Fourierova analýza má mnoho rysů, teré mohou vést chybným výsledům, poud nejsou správně ošetřeny. Jsou důsledem disretizace nutnosti omezit délu časového signálu Je třeba uvážit: aliasing chyby úniem vliv oen filtrování frevenční lupu průměrování 7/32

8 Aliasing ento jev plyne z disretizace původně spojitého časového signálu. Při malé vzorovací frevenci je přítomnost vysoých frevencí v původním signálu při tomto disretizačním procesu špatně interpretována. yto vysoé frevence se ve spetru objeví jao nízé frevence, nebo spíše budou od sutečných nízofrevenčních slože nerozpoznatelné. nízofrevenční signál vysoofrevenční signál Spetrum zísané pomocí DF je zreslené, i dyž výpočet je proveden přesně! 8/32

9 Použití anti-aliasingového aliasingového filtru Nejvyšší frevence, terá může být ve spetru obsažena, je ω s /2. Vyšší frevence jsou zrcadleny do nižších frevencí. sutečné spetrum signálu spetrum zísané z DF 9/32

10 Použití anti-aliasingového aliasingového filtru Anti-aliasingový filtr podrobí původní časový signál nízopásmovému filtru s ostrou sestupnou hranou. nefiltrovaný signál anti-aliasingový filtr filtrovaný signál Protože filtry mají onečný slon sestupné hrany, odstraňují se i spetrální měření ve frevenčním rozsahu blízém Nyquistově frevenci ω s /2. Proto při 2048 bodové transformaci není výsledem úplné 024 čárové spetrum, ale typicy se zobrazuje pouze prvních 800 čar. Anti-aliasingová opatření tvoří nedílnou součást analyzátoru! 0/32

11 Chyba úniem - leaage,, použití váhových oen Když signál není periodicý, energie "unine" do mnoha spetrálních čar blízých sutečné frevenci a spetrum je rozprostřeno přes něoli čar: a(t) periodicý signál b(t) neperiodicý signál čas čas obdélníové ono (žádné vážení) A(f) B(f) frevence frevence /32

12 Chyba úniem - leaage,, použití váhových oen periodicý signál neperiodicý signál a(t) b(t) čas čas Hanningovo ono 2πt cos A(f) B(f) frevence frevence 2/32

13 Chyba úniem - leaage Vztah mezi časovým omezením signálu a chybou úniem ve spetru: spojitý signál a(t) A(f) a(t) w(t) w(t) čas * W(f) čas = = A(f)*W(f) * = frevence frevence čas a(t) digitální signál - naměřená data DF A(f) frevence čas časové omezení úni f = frevence 3/32

14 Chyba úniem - leaage Minimalizace chyby úniem: Změnou dély trvání měřeného vzoru ta, aby vyhověla záladní periodicitě signálu, např. změnou doby měření úplné odstranění chyby, málody realizovatelné Zvětšení dély trvání doby měření, taže frevenční rozlišení je jemnější vliv chyby se zmenší Uzavření signálu do oen - "oenní transformace" 4/32

15 Průměrování Dosavadní poznámy DF se týaly deterministicých dat. Vibrační data jsou náhodné signály nestačí vypočíst Fourierovu transformaci - ta ani pro náhodný proces neexistuje potřebujeme odhady spetrálních hustot a orelačních funcí (tyto jsou vypočteny z Fourierovy transformace) je nutné provést proces průměrování, terý zahrne něoli jednotlivých časových záznamů počet požadovaných průměrů ovlivňuje:» požadovaná statisticá spolehlivost» míra šumu v signálu 5/32

16 ypy průměrování bez přerytí s přerytím lineární exponenciální s držením špičy doba zpracování 6/32

17 ypy průměrování 7/32

18 a a frevenční analýza ještě jednou jina K frevenčním složám budeme přistupovat jao rotujícím vetorům fázorům Na obrázu je vetor F = a + ib zobrazený v omplexní rovině F = a + ib = F e iϕ F ϕ Re a b -ϕ F* = a - ib = F e -iϕ a = F cos ϕ b = F sin ϕ 2 F = a + b b ϕ = arctg a F = F cosϕ + isin 2 ( ϕ) Im -ib ϕ e i = cosϕ + isinϕ F = F e iϕ i 2 b = -b F iϕ F2 = F e F2 e = F F2 e iϕ2 i ( ϕ +ϕ ) 2 8/32

19 Záladní předpolady Záladem frevenční analýzy je Fourierova transformace Předpoládá, že signál se sládá z ( ) mnoha (o)sinusových slože různých frevencí Každá složa má svou frevenci, amplitudu a počáteční fázi 9/32

20 Zobrazení typicé složy ( 2πft + φ) Jao součet dvou vetorů s amplitudou A/2 A cos rotujících v opačném smyslu i θ ( ) θ i e + e A A cosθ = de θ = 2πft + φ 2 20/32

21 Rozlad periodicé funce do Fourierovy řady g(t) je periodicá funce, tzn. g(t) = g(t+n) Může být vyjádřena jao součet sinusových slože (rotujících vetorů) na frevencích f, de f = / celé číslo včetně nuly a záporných čísel -tou složu dostaneme z integrálu: i2πf t ( ) g( t) e dt G f / 2 = de f = f,tj. -tá harmonicá f / 2 2/32

22 Rozlad periodicé funce do Fourierovy řady Re Re φ Im Im o znamená, že dyž signál g(t) obsahuje složu, terá rotuje s frevencí f, ta e i2 π f násobení jednotovým vetorem (terý rotuje s frevencí f ) anuluje rotaci této složy signálu a její integrací v čase dostaneme onečnou hodnotu. t Všechny složy na jiných frevencích stále rotují i po násobení e i2 π f t a proto jejich integrál za časovou periodu je nulový. 22/32

23 Rozlad periodicé funce do Fourierovy řady / 2 Pomocí integrálu i2πf t G( f ) g( t) e dt extrahujeme ze signálu g(t) = / 2 složy rotující na všech frevencích f. ím tay fázové úhly aždé z nich zamrznou v poloze, ve teré byly v i2πf t nulovém čase (dy e = ) Sutečnou polohu aždého vetoru v libovolném čase lze zísat násobením jeho počáteční hodnoty G(f ) opačně rotujícím jednotovým vetorem i 2 f t e π Celový signál g(t) bude vetorový součet všech těchto vetorů v jejich oamžitých polohách, tj.: g ( t) = G( f ) = e i2πf t 23/32

24 3D zobrazení spetra Řada omplexních hodnot G(f ) je nazývána spetrum slože signálu g(t) Protože aždá z nich má amplitudu a fázi (nebo reálnou a imaginární složu), je úplnému zobrazení třeba 3D omplexní spetrum 24/32

25 Vlastnosti spetra Signál g(t), terý je v čase periodicý, má disrétní spetrum, jehož složy mají frevence, teré jsou vždy celočíselnými násoby záladní frevence f. Vetor se záladní frevencí f se otočí o 360º jednou za periodu. Vetor se záladní frevencí f se otočí o 360º -rát za periodu. Po uplynutí periody se všechny vetory vrátí do své výchozí pozice. Funce g(t) je reálná funce, protože aždé složce s frevencí f odpovídá složa s frevencí f, terá má stejnou amplitudu, ale opačnou fázi (tedy stejnou reálnou složu a opačnou imaginární složu). Imaginární složy na všech frevencích se vyruší a výslede je vždy reálný. Spetrum reálné funce je sudá funce: G(f ) = G*(-f ) Stejnosměrná složa je vždy reálná fázový úhel je 0 nebo ± π 25/32

26 Výonové spetrum Oamžitý výon časového signálu g(t) je roven [g(t)] 2 a průměrný výon za jednu periodu je dán integrací oamžité hodnoty signálu v průběhu periody: P průměrný = { g( t) } Pro typicou složu A cos 2πf t + φ to vede na: 0 ( ) 2 dt A Pprůměrný = A cos ( 2 ft ) dt cos[ 2( 2 ft )] dt = π + φ = π + φ A 2 2 protože integrál sinové části frevence 2f za periodu je nulový. o je známý výslede pro střední hodnotu sinusovy s amplitudou A a vede na hodnotu A efetivní hodnota (RMS) = 2 26/32

27 Výonové spetrum Výon na aždé frevenci je dán přímo druhou mocninou amplitudy složy Fourierova spetra: Amplituda složy G(f ) je A /2, de A je amplituda -té sinusovy, taže její druhá mocnina je A 2 /4. Jeliož amplitudové spetrum je sudá funce, platí to podobně pro zápornou frevenci a celový výon na frevenci f bude dán součtem těchto slože, tedy A 2 /2, což je stejný výslede, jaý jsme dostali v časové oblasti. Celový výon může být zísán buď integrací časového signálu nebo sečtením druhých mocnin amplitud všech frevenčních slože (Parsevalův teorém). Protože ve výonovém spetru už není obsažena informace o fázi, není možné z něj zísat zpět původní časový signál. 27/32

28 Fourierova transformace Předešlé výsledy se týaly periodicých signálů. o je možné zobecnit na případ, dy V tomto případě se frevenční rozlišení / mezi harmonicými blíží nule a G(f) se stává spojitou funcí frevence. i2πft ( ) = g( t) e dt G f g i2πft ( t) = G( f ) e dt přímá Fourierova transformace zpětná Fourierova transformace transformační pár Funce je spojitá v časové i frevenční oblasti. 28/32

29 Vzorovaná časová funce Funce reprezentovaná časovými vzory v evidistantníchčasových rocích (disrétní v časové oblasti, spojitá ve frevenční oblasti) Je to opačný případ Fourierověřadě (spojitá v časové oblasti, disrétní ve frevenční oblasti). V důsledu symetrie Fourierova transformačního páru je spetrum periodicé s periodou rovnou vzorovací frevenci f s f s = / t ransformační pár pro funci reprezentovanou časovými vzory má tvar: n= ( ) = g( t ) G f g f n e i2πft i2πftn ( t ) G( f ) e dt n n s =, de t f n = n t n-tý časový vzore s f s / 2 / 2 29/32

30 Disrétní Fourierova transformace Funce je vzorovaná v časové i frevenční oblasti signál i spetrum jsou implicitně periodicé ransformační pár má tvar: N N n= 0 ( ) = g( n) G e 2πn i N přímá DF N = 0 ( ) = G( ) g n e 2πn i N zpětná DF 30/32

31 Zálady experimentální mechaniy 3. přednáša 3/32 Disrétní Disrétní Fourierova Fourierova transformace transformace Vztah pro přímou DF lze zjednodušeně napsat: G g n N G A = de g n vetor reprezentující N omplexních frevenčních slože vetor reprezentující N časových vzorů /N jednoduché měříto A čtvercová matice jednotových vetorů = g g g g g g g g 8 G G G G G G G G řady matice frevence = 0,, 2 7 sloupce matice časové oamžiy n = 0,, 2 7 N n 2 i e π

32 Evivalence otáčení v ladném a záporném smyslu pro disrétní funce Re -/8 otáčy Im +7/8 otáčy Fourier ova transformace 32/32

33 Děuji za pozornost!

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01 Popis systému Revize 01 Založeno 1990 Vypracoval: Ing. Antonín POPELKA Datum: 30. června 2005 SYSTÉM FÁZOROVÝCH MĚŘENÍ FOTEL Systém FOTEL byl vyvinut pro zjišťování fázových poměrů mezi libovolnými body

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Měření rychlosti zvuku z Dopplerova jevu

Měření rychlosti zvuku z Dopplerova jevu Měření rychlosti zvuku z Dopplerova jevu Online: http://www.sclpx.eu/lab2r.php?exp=10 Měření rychlosti zvuku z Dopplerova jevu patří k dalším zcela původním a dosud nikým nepublikovaným experimentům, které

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě.

Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě. Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě. Množství je charakterizováno dodávkou elektrické práce, což představuje

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze 1. Úol měření Úolem měření na rotorové (Müllerově) odparce je sestavit energeticou a látovou bilanci celého zařízení a stanovit součinitele prostupu tepla odpary a ondenzátoru brýdových par.. Popis zařízení

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Í ř Á Á Č Č ř Š ó ř Č ř š ř ů ř ň ň ň ř Ž Ž Ž ň ř ť ň Ť ř ř ů ř ř Ž ř š ň É ó Ť š š ř ř ř š ř ř ř ř š ř š ř ř š ř š š ř ť ř ň š ř ř ť ř ř š Ť ř ř ř š ř Ť š ř ř ř š ř š ř ř ř š ů ř š ř ř š ř ř š ř ř ť š

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman

Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman Ultrazvuková defektoskopie M. Kreidl, R. Šmíd, V. Matz, S. Štarman Praha 2011 ISBN 978-80-254-6606-3 2 OBSAH 1. Předmluva 7 2. Základní pojmy 9 2.1. Fyzikální základy ultrazvuku a akustické veličiny 9

Více

Dřevo představuje obnovitelný zdroj energie, je to druh biomasy.

Dřevo představuje obnovitelný zdroj energie, je to druh biomasy. 11. Dřevo, materiálové vlastnosti. Dřevo a materiály na bázi dřeva, vlastnosti, třídy trvání zatížení, třídy provozu, charateristicé hodnoty pro výpočty, MSÚ, MSP. Dřevo představuje obnovitelný zdroj energie,

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz Administrativní kalkulačka skutečně pro každého, včetně manažerů Bohemius k.s. BIUS2 - BIUS 3 www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky DALŠÍ OBSAH : O produktu Kdo bude

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

3. Mechanická převodná ústrojí

3. Mechanická převodná ústrojí 1M6840770002 Str. 1 Vysoká škola báňská Technická univerzita Ostrava 3.3 Výzkum metod pro simulaci zatížení dílů převodů automobilů 3.3.1 Realizace modelu jízdy osobního vozidla a uložení hnacího agregátu

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více