Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu."

Transkript

1 1 1 Kategorie C V této kapitole se budeme věnovat problémovým úlohám a úlohám k procvičení, které jsou vhodným výchozím studijním materiálem pro úspěšné zvládnutí domácí části matematické olympiády kategorie C, tj. pro první ročníky čtyřletých studijních oborů a jim odpovídající ročníky víceletých gymnázií. 1.1 Slovnílogik C I 1 Než si uvedem pravidla hry slovní logik a motivační úlohy k tomto příkladu, vyřešme následující úlohu. 1.Z29 dětí sbírá 12 dětí známky, 13 pohlednice. Těch, kteří sbírají známkyipohledniceješest.kolikdětísbírájenomznámkyakolik jich nesbírá nic? Jenom známky sbíralo 6 dětí, 10 dětí nesbíralo nic, viz. diagram níže. 2.Ze30žákůjednétřídybylo7žákůoprázdnináchnarekreacivŘeckua právětolikvchorvatsku;itáliinavštívilo5žáků.vžádnéztěchtotří zemínebylo16žáků,všechnytřinavštíviljedenžák.vřeckuiitáliibyli 2žáci,vItáliiivChorvatsku1žák.Kolikžákůnavštívilooprázdninách Chorvatsko nebo Řecko, Itálii nebo Chorvatsko, jen Řecko?

2 2 Načrtneme Vennův digram pro tři množiny a postupně vyznačíme počty prvků v jednotlivých jeho částech. Chorvatsko nebo Řecko navštívilo 11 studentů, Itálii nebo Chorvatsko 1student,jenvŘeckubyli3studenti. 3.ZpětirodinodebírajítřirodinydeníkDnesadvěLidovénoviny.Existuje mezi nimi rodina, která neodebírá žádný z těchto materiálů? Ano, může. Možnosti při odebírání novin vidíme na následujících diagramech.

3 3 Uveďmesipravidlahry slovnílogik.hráč Asimyslíslovosloženézpěti rúzných písmen. Hráč B vysloví libovolné slovo složené z pěti různých písmenahráč Amuprozradí,kolikpísmenuhodlnasprávnépoziciakolik na nesprávné. Písmena považujeme za různá, i když se liší jen háčkem nebo čárkou. Například: Myslíme si slovo SEŠIT, hráč B řekne slovo ŠIŠKA, hráč A zkráceněodpoví1+1,neboťjednopísmenojenasprávnépozici(š)ajedno písmeno je na nesprávné pozici(i). Nebo jiná dvojice: LOĎKA + KOLÁČ ErikaaKlárkahrályhru slovnílogik.erikasimyslelaslovozpěti různých písmen a Klárka vyslovila slova SIRUP a VODKA. Erika v danémpořadíodpověděla0+3a1+1.dokažte,ževšechnapísmena slova,kterésierikamyslela,patřídomnožiny M= {S,I,R,U,P } {V,O,D,K,A}. Slova SIRUP a VODKA nemají žádné společné písmeno. Erika si mohla myslet například slovo DOPIS, RUSKO, IRSKO nebo PRVKU. 5.ErikaaKlárkahrályhruslovnílogik.ErikasimyslelaslovoAGÁTYa Klárka vyslovila slova KABÁT a MĚSTA. Ověřte, že Erika musela odpovědět stejně jako v úloze 4. Proč nyní nepatří všechna písmena slova, která si Erika myslela, do množiny L = {K,A,B,Á,T} {M,Ě,S,T,A}?

4 4 Slova mají společné písmeno A. Proto se v množině sestavené z písmen obou slov nenachází všech pět písmen hledaného slova. 6. Erika a Klárka hrály hru slovní logik. Klárka vyslovila slova OPAVÚ a ÚLOZE, přičemž Erika odpověděla stejně jako v úloze 4. Jaké slovo sierikamyslela,kdyžvšechnajehopísmenaužpatřídomnožiny L= {O,P,A,V,Ú} {Ú,L,O,Z,E}? Vybíráme3písmenavjinépozicizprvníhoslova,jednopísmenov nesprávné pozici a jedno ve správné pozici z druhého slova. Erika si myslela slovo PAVLE. 7. Třicet maturantů jednoho gymnázia podalo přihlášku k dalšímu studiu na některou ze šesti fakult ČVUT. Využili možnost podat více přihlášek, a tak polovina žáků podala přihlášku aspoň na tři fakulty, třetina si podala přihlášku na více než tři fakulty. Na fakultu architektury se s ohledem na talentovou přijímací zkoušku nehlásil nikdo. a)dokažte,žeaspoňnajednufakultusipodalopřihláškuaspoň14 studentů. b) Dokažte, že na některou ze zbývajících pěti fakult se přihlásilo méně než dvacet studentů. a)vpřípadě,žebyneplatilotototvrzení,mohlobybýtnejvýše5 13= 65 přihlášek. Dle zadání polovina studentů podala aspoň tři přihlášky, tedy druhá polovina studentů podala jednu nebo dvě přihlášky. Z druhé poloviny 10 studentů(třetina z celkového počtu) podalo aspoň čtyři přihlášky a zbývajících 5 studentů podalo právě tři přihlášky. Minimální početpřihlášekdlepodmínekzadáníje =70 >65. Tedy aspoň na jednu fakultu podalo přihlášku aspoň čtrnáct studentů. Rozpis pro případ, kdy na každou fakultu si podalo přihlášku právě 14 studentů viz. tabulka níže.

5 5 b)kdybytvrzeníúlohyneplatilo,bylobyzapotřebíaspoň5 20= 100 přihlášek. Z rozboru řešení v případě a) odhadneme, že maturanti podalinejvýše =95 <100,protonemohlipodatna každou fakultu aspoň 20 přihlášek. Rozpis pro případ, kdy na každou fakultu studenti podali právě 19 přihlášek viz níže. 8. Honza, Jirka, Martin a Petr organizovali na náměstí sbírku na dobročinné účely. Za chvíli se u nich postupně zastavilo pět kolemjdoucích. PrvnídalHonzovidojehokasičky3Kč,Jirkovi2Kč,Martinovi1Kč

6 6 apetrovinic.druhýdaljednomuzchlapců8kčazbylýmtřemnedal nic.třetídaldvěmachlapcůmpo2kčadvěmanic.čtvrtýdaldvěma chlapcůmpo4kčadvěmanic.pátýdaldvěmachlapcůmpo8kča dvěma nic. Poté chlapci zjistili, že každý z nich vybral jinou částku, přičemž tyto tvoří čtyři po sobě jdoucí přirozená čísla. Který z chlapců vybral nejméně a který nejvíce peněz? Dohromady chlapci dostali od kolemjdoucích celkem 42 Kč. Číslo 42 vyjádřímejednoznačnějakosoučetčtyřposobějdoucíchčísel =42.Úvahylzeuspořádatdotabulky,přičemžuvážíme,že nemohlanijedenzchlapcůdostatdvakrát8kč.ktomunejvýšejeden mohldostat4kč,jinakbybylidvasnejvyššívybranoučástkou12kč, viz tabulka níže Σ P H Nejmnéně vybral Honza a nejvíce vybral Petr. 1.2 Přímky a pravoúhelník C I 2 1. Na list papíru tvaru obdélníku narýsujte podle obrázku pravoúhelník ABCD tak, aby jeho strany AB a AD splývaly s okrajem papíru. Pak sestrojte přímku, aby měla s pravoúhelníkem společný jen bod C a její průnik listem papíru tvořil úsečku M N, podél níž papír rozřízněte.

7 7 Vzniklý papírový model trojúhelníku AM N s narýsovaným obdélníkem ABCD přehněte podél úseček BC a DC. Tuto činnost několikrát opakujte, přitom pro tentýž pravoúhelník ABCD volte různé délky úsečky BM.Colzezvýsledkuusouditopoměruobsahůtrojúhelníku AMN a pravoúhelníku ABCD? Hypotézu dokažte. Tímto modelováním nebo užitím programů dynamické geometrie, např. Cabri,jemožnédojítkhypotéze,žeobrazempřímky MN vobou souměrnostech je jedna a táž přímka CX. Uvážíme-li souhlasné úhly při vrcholech M a C v trojúhelnících N DC a NAM,pakmůžemepsát <)NCD = <)CMB = <)DCX =α a <)MCB = <)BCX =90 α. Součetúhlůsvrcholemvbodě Cjepakroven <)NCD + <)DCX + <)MCB + <)BCX = = α+α+90 α+90 α=180, tedy obrazy přímky M N v osových souměrnostech podle přímek BC a CD splývají. Zpodobnostitrojúhelníkuů NDCa CBMplyne,že y b = a x y= ab x.

8 8 Pak obsah AM N můžeme vyjádřit takto: S AMN = 1 ( 2 (a+x)(b+y)=1 2 (a+x) b+ ab ) = x = ab+ 1 ( x 2 a x) + a 2ab. Rovnostnastane,právěkdyž x=a.vtomtopřípaděje S AMN =2ab. 2.Jedánostrýúhel KBLabod M jehovnitřku.sestrojtebodem M přímku p tak, aby vytínala z úhlu KBL trojúhelník ABC nejmenšího obsahu. Analyzujte obsah trojúhelníku ABC pro různé případy polohy bodu Mvzhledemkúsečce AC.Naobrázkujebod M,jímproloženápřímka a trojúhelník ABC. Uvažme jinou přímku procházející bodem M. Z obrázku je patrno, že nově vzniklý trojúhelník má menší obsah než původní trojúhelník.

9 Uvážíme-lipolohubodu Mtakovou,žejestředemúsečky AC,pakz obrázku níže je patrno, že libovolnou jinou přímkou vedenou bodem M nedosáhneme trojúhelníku s menším obsahem, než má trojúhelník ABC. 9

10 10 3.Jedánapřímka pavjednépoloroviněbody A,B.Najdětenapřímce pbod Xtak,abysoučetvzdálenostíodbodů A,Bbylconejmenší. Hledanýbod X získámejakoprůsečíkúsečky AB spřímkou p,kde bod B jeobrazembodu Bvosovésouměrnostidanéosou p.adále platí,že XB = XB,tedy AX + XB = AX + XB.Projinou polohubodu X,např. X,platív AX B trojúhelníkovánerovnost, tj. AX + X B > AB.Probod Xzkonstruovanýtímtozpůsobem je součet minimální. 4.Jedánostrýúhel XV Y ajehovnitřníbod C.Sestrojtenarameni V X bod Aanarameni V Y bod Btak,abyvzniklýtrojúhelníkměl ABC měl minimální obvod. Analogicky předchozímu příkladu, zobrazíme bod C v osových souměrnostech podle ramen daného úhlu, viz. obrázek. Hledané zbylé vrcholy jsoupakprůsečíkemramenúhlusúsečkou C C.

11 11 5. Dokažte, že pro libovolná nezáporná čísla a, b platí 1 2 (a+b) ab, přičemžrovnostnastane,právěkdyž a=b. Uvažme a=u 2,b=v 2, u,v 0.Pakposubstitucidostaneme 1 2 (u2 + v 2 ) u2 v 2 = uvpronezápornáčísla.poúpravě u 2 + v 2 2uv,odkud (u v) 2 0,cožjevýrokpravdivý.Druhámocninalibovolnéhoreálného čísla je vždy nezáporná. 1.3 Celáčást x C I 3 1.Určete 0, 2,1, 2,8, 99,9, 5, 10, 2,001, 2,8, 99,9, 9. 0;2;2;99;5; 10; 3; 3; 100; 9. 2.Nechť a Zat 0;1).Určete a, a+t, a+ 1 2 t, a t, a+2t, a 2t.

12 12 a;a;a;apro t=0aa 1pro t (0;1); apro t 0; 1 2) a a+1pro t 1 2 ;1) ; apro t=0, a 1pro t ( 0; 1 2 a a 2pro t ( 1 2 ;1). 3.Načrtnětegrafyfunkcí: y= x, y= x x. 4.ŘeštevR: a) x+ x =68,5 b) x+ x =97 c) x x =68,5 d) x x =97 a)34,5;b)nemářešení;c)8 < x <9, x=8,5625;d)nemářešení. 5.Řešterovnice x R: a) 3x 5 =5x 8 b) 5+6x 8 = 15x 7 5 c) 3+2x 4 = 5 3x 2 d)soustavu x,y R:7 x +2y=117,4a5x+2 y =91,9 a)výraz5x 8jenutněceléčíslo,tedy k=5x 8,odkud x= 1(k+8). 5 Podosazení do zadání dostaneme 3 k+8 3k 1 5 = = k. 5 5 To podle definice celé části vede k nerovnostem k 3k 1 5 < k+1 3 < k 1 2, odkudpro k= 2je x 1 =1,2,nebo k= 1je x 2 =1,4. b)výraz 15x 7 = k Zatedy 15x 7 5+6x < 15x Zprvnínerovniceplyne x 9 = 81 41,zdruhénerovniceplyne x >

13 13 Dálevíme,že 15x 7 = k x= 30k+42,tedy40 <30k+42 81a 5 90 konečně 1 < k 39, k=0;1.podosazenímáme x = 7, x 15 2= 4. 5 c) Platísoučasně k 3+2x < k+1ak 5 3x < k+1.pak I 4 2 k1 = 4k 3 ) ; 4k a Ik2 = ( 3 2k; 5 2k 3 3 ahledáme,prokteráceláčísla kmají tytointervalyneprázdnýprůnik.tedy 4k+1 > 3 2k asoučasně 5 2k k 3,odkuddostanemepro kpodmínku,že 3 < k 19 k= Pro k=1apodosazení 3+2x 4 = 5 3x 2 =1,jevýslednýinterval x ( 1 2 2) ;5 1 ;1 = 1; d) Označme x x =x 0 a y y =y 0,kde x 0,y 0 0;1).Pakdaná soustava přejde na tvar 7 x +2 y = 117,4 2y 0 5 x +2 y = 91,9 5x 0. Nalevéstraněobourovnicsoustavyjesoučetcelýchčísel,tedyina pravéstraněrovnicsoustavymusíbýtceláčísla,odkudpro y 0 plynou dvěmožnosti: y 0 =0,2nebo0,7. Zprvnírovnicevyjádříme y = 117,4 2y 0 7 x,dálerovniceod 2 sebeodečteme,dostanemepro y 0 =0,2rovnici2 x =25,1+5x 0 a x y =.Protože0 5x 0 <5,je x =13,14nebo15.Z 2 důvodu y Z,musíbýt x liché.pakdostaneme x x 0 y x y 13 0, ,18 13,2 15 0, ,98 6, x Analogickyprodruhýpřípad,kdy y 0 =0,7a y =,dostanemepoodečtení2 x =24,1+5x 0.Protože0 5x 0 <5,je x =13 2 nebo14.zdůvodu y Z,musíbýt x sudé.pakdostaneme x x 0 y x y 14 0, ,78 9,7. Mámetedycelkemtřiřešení[13,18;13,2],[15,98;6,2],[14,78;9,7].

14 Mocnostbodukekružnici C I 4 1. Určete poloměry tří kružnic, jejichž středy tvoří vrcholy trojúhelníku sestranamidélek a,b,c,akaždédvěmajívnějšídotyk. Zobrázkuvidíme,že a=s+t, b=r+ t, c=r+ s.odkudsečtením prvnímdvourovniczískámerovnici a+b=r+s+2t=c+2t,zčehož plyne t= a+b c. Postupným dosazením získáme i velikosti zbývajících 2 poloměrů s= a+c b a r= b+c a Kružnice k,l,msepodvouvnědotýkajíavšechnytřimajíspolečnou tečnu.poloměrykružnic k,ljsou3cma12cm.vypočtětepoloměr kružnice m. Najděte všechna řešení. Označmepoloměrykružnic k,lpostupně r,sabodydotykunaspolečné tečně A,B,C.Vizobrázek.

15 Uvažujme lichoběžník ART C a dále vezměme pravoúhlý trojúhelník RUT, UT = AC = (r+ t) 2 (r t) 2 = 2 rt = 2 3t.Analogicky z lichoběžníků CT SB a ARSB dostaneme vztahy BC = 2sqrtst=4 3ta AB =2sqrtrs=12.Nejdříceuvažme,žebod Cleží mezibody AaB.Jepak2sqrt3t+4 3t=12,odkud t= 4 3.Jestliže bod Aležímezibody Ca B,dostanemerovnici2 3t+12=4 3t, odkud t=12.jinýpřípad,bod Bjemezibody AaC,nemářešení, viz. další obrázek. 15

16 16 Poloměr mjeroven 4 3 cmnebo12cm. 3.Kružnice k,l,msedotýkajíspolečnétečnyvetřechrůznýchbodecha jejichstředyležívpřímce.kružnice kalstejnějakokružnice lam mají vnější dotyk. Určete poloměr kružnice l, jestliže poloměry kružnic kamjsou3cma12cm. Zpravoúhlýchlichoběžníků KLV U,LMWV,KMWUplynepodlePythagorovy věty KL 2 = (r+3) 2 (r 3) 2 =12r LM 2 = (12+r) 2 (12 r) 2 =48r KM 2 = (3+2r+12) 2 (12 3) 2 =4r 2 +60r+144 a KL + LM = KM.Poúpravěpro rrovnici 4r 2 48r+144=0=4(r 6) 2. Mátatorovnicejedinéřešení r=6. Kružnice l má poloměr 6 cm.

17 17 4.Kružnice k,lsvnějšímdotykemležíoběvobdélníku ABCD,jehož obsahje72cm 2.Kružnice ksepřitomdotýkástran CD,DAaAB, zatímco kružnice l se dotýká stran AB a BC. Určete poloměry kružnic k, l, jestliže poloměr kružnice k je v centimetrech vyjádřen celým číslem. KL = (r+ s) 2 (r s) 2 =2 rsas ABCD = AD AB =2r (r+2 rs+s)=( r+ s) 2.Odkud rs=(6 r) 2 a s= (6 r)2 r. Zúlohyplyne,že s r,tj. s ra AB >2r.Dále72= AB AD 4r 2 r <4.Pak {r;s} {4,1}. Úlohamáprávědvěřešení: r=s=3cmar=4cm, s=1cm. 1.5 Algebraické nerovnosti C I 5 1.Dokažte,že a,b R:ab a2 +b 2 2. Poúpravě2ab a 2 + b 2 0 (a 2 2ab+b 2 ) 0 (a b) 2,cožje výrok pravdivý, druhá mocnina reálného čísla je vždy nezáporna.

18 18 2.Dokažte,že a,b R + : a b + b a 2. Poúpravě a2 +b 2 ab 2 a 2 + b 2 2ab (a b) Dokažte,že a,b R + : ab=1 a+b 2. Povyjádření a= 1 b adosazenímámenerovnicivetvaru 1 b + b 2 b 2 2b+1 0 (b 1) Dokažte,že a,b,c R:3(x 2 + y 2 + z 2 )=(x+y+ z) 2 x=y= z. 5.Dokažte,že a R + : a+ 1 a 2.Kdynastanerovnost? Viz.úloha3vtétopodkapitole.Rovnostnastanepro a=1. 6.Dokažte,že a R + : a a 2 2.Kdynastanerovnost? Analogickyupravímeadostanemevýraz a 4 2a 2 +1=(a 2 1) 2 0. Rovnostnastanepro a=1. 7.Najdětevšechnytrojickladnýchčísel a,b,c,prokteréplatí Poúpravě a+ 1 ( a +2 b+ 1 ) b a=b=c=1. a+2b+3c+ 1 a +2 b +3 c =12. ( +3 c+ 1 ) 12.Rovnostnatanepro c 8.Nechť a,b,c,djsoutakováreálnáčísla,že a+d=b+c.dokažtenerovnost (a b)(c d)+(a c)(b d)+(d a)(b c) 0. Zpodmínkynerovnicezískámevyjádřenípro d; d=b+c aatoto dosadímedolevéstranynerovnice.poúpravě2a 2 4ab+2b 2 =2(a b) 2. Výraz je nezáporný pro každé reálné číslo, tím je nerovnost dokázaná.

19 19 9. Dokažte, že pro libovolná různá kladná čísla a, b platí a+b 2 < 2(a2 + ab+b 2 ) 3(a+b) a2 + b < 2. 2 Nejprveupravímelevoučást,tedy3(a+b) 2 <4(a 2 + ab+b 2 ) 0< (a b) 2 pro a b.pravoučástumocníme(obéstranynerovnicejsou kladná čísla), roznásobíme a částečně upravíme na tvar 6a 2 b 2 < a 4 + b 4 +2a 3 b+2ab 3. Což můžeme chápat jako součet dvou nerovností 2a 2 b 2 < a 4 + b 4 0<(a b) 2 a 4a 2 b 2 <2a 3 b+2ab 3 0<2ab(a b) Určetevšechnakladnáčísla x,y,z,proněžsoučasněplatí: x+ 1 y 2, y+1 z 2, z+1 x 2 Sečtenímvšechtřínerovnicdostaneme x+y+ z+ 1 x +1 y +1 z 6. Provedemeodhadnazákladěúlohy5,resp.3.Tedy6 x+ 1 x + y+ 1 y + z+1 6.Tedy x=y= z=1. z 1.6 Dělitelnost C I 6 1. Trojciferné číslo je zakončeno číslicí 4. Přesuneme-li tuto číslici na první místo, dostaneme číslo, které je o 81 menší než číslo původní. Určete původní číslo.

20 20 Hledanéčíslojetvaru ab4,popřesunuposledníčíslice4ab,kde a,bjsou číslice0 < a 9,0 b 9.Rozepíšeme-lijejdorozvinutéhozápisuv desítkové sooustavě, obdržíme rovnici 100a+10b+4= a+b+81 10a+b=53. Uvážíme-li,že a,bjsoučíslice0<a 9, 0 b 9,získámejediné řešení a=5,b=3.hledanéčísloje Najděte všechna čtyřmístná čísla n, která mají následující tři vlastnosti: Vzápisečísla njsoudvěrůznéčíslice,každádvakrát.číslo njedělitelné sedmi. Číslo, které vznikne obrácením pořadí číslic čísla n, je rovněž čtyřmístné a dělitelné sedmi. Uvažmetřipřípady: aabb, ababaabba,kde0 < a,b 9. a) n=aabb=1100a+11ban = bbaa=1100b+11a.dáleplatí,že7 n a7 n,musídělitijejichsoučetarozdíl.tedy7 (n n )atéž7 (n+n ). Po úpravě máme n+n =1111(a+b), n n =1089(a b). Čísla1089,1111všaknejsoudělitelná7,tedy7musídělit a+ba a b.použijemestejnouúvahuještějednou,tedy7 (a+b)+(a b)a 7 (a+b) (a b),odkudvyplývá,že7 2aa7 b,neboli a,b {0;7}. Číslice a,bjsounavzájemrůzné,protojednaznichmusíbýt0.číslo n nebo n bypakalenebyločtyřmístné.číslo nnemůžebýttohototvaru. b) n=abab=1010a+101ban = baba=1010b+101a.podobnějako v předcházejícím případě odvodíme, že 7 n n =909(a b),7 n+n =1111(a+b) 7 a,b a,b {0;7}, tedyjednaznichopětmusíbýt0.číslo nnebo n bypakalenebylo čtyřmístné a nemůže být ani tohoto tvaru. c) n=abba=1001a+110b=n aprotože7 1001a7 110,musí 7 b b {0;7}.Vzhledemkpodmínce a {1,2,...,9}aa bje řešením17čísel1001,2002,3003,4004,5005,6006,7007,8008, 9009,1771,2772,3773,4774,5775,6776,8778,9779.

21 21 3. Klárka měla na papíru napsáno trojmístné číslo. Když ho správně vynásobila devíti, dostala čtyřmístné číslo, jež začínalo touž číslicí jako původní číslo, prostřední dvě číslice se rovnaly a poslední číslice byla součtem číslic původního čísla. Které čtyřmístné číslo mohla Klárka dostat? Hledámečíslotvaru x=abc=100a+10b+ca9x=9(100a+10b+c)= adde=1000a+100d+10d+(a+b+c),přičemž a,b,c,d,ejsoučíslice. Porovnáním posledních číslic zjistíme, že poslední číslice výrazu 9c je táž,jakovýraz a+b+c.dálevíme,že a+b+c >5a0<c<5,jinak byvýraz9ckončilčíslicínepřevyšující5;pro c=0bypakix=0. Ostatní možnosti jsou dány v tabulce. c 9c a+b+c a+b Vztah 9(100a+10b+c) = 1000a+100d+10d+(a+b+c) ještě upravíme na tvar 100(b a d)=10d+a+11b 8c. (1) Číslice a,b,c,djsounejvýšerovnydevíti,tedyhodnotapravéstranyje menšínež200aaspoň-72.jetedybuď b a d=0nebo b a d=1. Zprvníhopřípaduplyne,že d=b a,poúpravě(1)natvar8c= 3(7b 3a)vidíme,že cjenásobkemtří.ztabulkypakplyne,že c= 3,a=4 b a=b=2.tedy x=223ahledanéčtyřmístnéčísloje Druhýpřípad b a d=1jepak d=b a 1,dosadímedo(1) azjistíme,že8c+110=3(7b 3a).Výraz8c+110jetdydělitelný třemiaprotomusí cdávatzbytek2přidělenítřemi.ztabulky c=2 a b=6 adorovnice8c+110=3(7b 3a)zjistíme,že a=0,což odporuje tomu, že Klára měla na papíře napsané trojmístné číslo.

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

DOVEDNOSTI V MATEMATICE

DOVEDNOSTI V MATEMATICE Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA1ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test A Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1. 4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

I. kolo kategorie Z5

I. kolo kategorie Z5 Z5 I 1 64. ročník Matematické olympiády I. kolo kategorie Z5 Chlapcimezisebouměniliznámky,kuličkyamíčky.Za8kuličekje10známek,za 4 míčky je 15 známek. Kolik kuliček je za jeden míček? (M. Krejčová) Z5 I

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 64. ROČNÍK, 2014/2015 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Planimetrie pro studijní obory

Planimetrie pro studijní obory Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

MATEMATICKÁ OLYMPIÁDA NA STŘEDNÍCH ŠKOLÁCH

MATEMATICKÁ OLYMPIÁDA NA STŘEDNÍCH ŠKOLÁCH MATEMATICKÁ OLYMPIÁDA NA STŘEDNÍCH ŠKOLÁCH kategoriea,b,cap 57. ROČNÍK, 2007/2008 http://math.muni.cz/mo Studenti středních škol, zveme vás k účasti v matematické olympiádě, jejíž soutěžní kategorie A,B,CaPpořádámeprávěprovás.

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více