frekvence f (Hz) perioda T = 1/f (s)

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "frekvence f (Hz) perioda T = 1/f (s)"

Transkript

1 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu cyklu.) Haronický pohyb výchylka: ( ω + ) ( t) cos t ϕ Fáze Fáze (rad) (rad) 0 Aplituda Aplituda výchylky výchylky Úhlová Úhlová frekvence frekvence ω π.f π.f Poátení Poátení fáze fáze (rad) (rad)

2 Výchylka haronického pohybu: ( ω + ) ( t) cos t ϕ 0 () Rychlost haronického pohybu: d v( t) ω sin t + ϕ0 dt Aplituda Aplituda rychlosti rychlosti ( ω ) (.s -1 ) Zrychlení haronického pohybu: a t dv dt ( ω ) ( ) ω cos t + ϕ0 Aplituda Aplituda zrychlení zrychlení (.s - )

3 Dokonale Dokonale hladká hladká podložka podložka F p F p k Pohybová rovnice: a d dt d + dt k k k ω 0 Perioda: T T π ω π k Lineární Lineární (haronický) (haronický) oscilátor oscilátor

4 Torze kroucení Závsné Závsnévlákno vlákno referenní referenníryska ryska Moent síly M κ ϕ Torzní Torznítuhost Pohybová rovnice ϕ µ 0 +ϕ µ I ε κ ϕ d ϕ κ ϕ dt I T π I κ

5 Potenciální (elastická) energie: E p 1 1 k k cos t ( ω +ϕ ) 0 Kinetická energie: E E k k 1 v 1 k 1 ω sin sin ( ωt + ϕ ) ( ωt + ϕ ) k sin ( ωt + ϕ ) Celková energie: E 1 E p + Ek k t [ ] cos ( ω t + ϕ) + sin ( ω + ϕ) E 1 k sin sin α α + cos cos α α 1

6 y Projekce rovnorného kruhového pohybu na libovolnou osu v rovin kružnice je haronický pohyb ϕ (t) ( t) cosϕ ϕ ωt + ϕ 0 ( ω + ) ( t) cos t ϕ 0

7 ! " ϕ O Moent síly: M G r Pohybová rovnice: I ε G r I ε g r sinϕ r G g sinϕ d ϕ dt g I r ϕ G y T ϕ G G sinϕ ϕ Pro Pro alé aléúhly (do (do 5 ) 5 ) Využití: ení g pro geologický przku. Doba kyvu: T ω π I g r

8 # " T l ϕ I ε l d ϕ dt l Pohybová rovnice: I ε G ε d ϕ d t g l ω l g l ϕ G sinϕ g sinϕ sinϕ ϕ G G y ϕ G Doba kyvu: T π l g

9 Pokud se tleso pohybuje v bžné prostedí (voda, vzduch) psobí na n vnjší síla odporu prostedí, která tluí jeho pohyb. Brzdná síla: F b b v Pro Pro poalý poalý pohyb pohyb Výsledná síla psobící na tleso: F v souinitel souinitel útluu útluu k b v Pohybová rovnice: a k b v t d dt k b d dt - ešení: ( ω t + ) bt / ( t) e cos ϕ0 ω k b 4

10 $ Rezonanní podínka: ω ω b Frekvence Frekvence nucených nucených kit kit (budící (budícífrekvence) Frekvence Frekvence vlastních vlastních kit kit Paraetrická rezonance: pravidelná zna vnitního paraetru

11 %& Druhy vln: Mechanické - ohou se šíit jen v urité látkové prostedí Elektroagnetické (rádiové, rentgenové, svtelné) - nepotebují látkové prostedí de Broglieho (hotné) - typický projev eleentárních ástic Píná (transverzální) vlna -ástice prostedí se pohybují kolo ke sru šíení vlny (vlna na hladin, na provazu,..) Podélná (longitudální) vlna -ástice kitají rovnobžn se sre šíení vlny (zvuk, pružina,..)

12 fáze fáze vlny vlny Výchylka Výchylka vlny vlny postupující postupujícíve ve sru sru osy osy ( k t ) y(, t) y sin ω Aplituda Aplituda vlny vlny úhlový úhlový vlnoet vlnoet k π λ Vlna Vlna postupující postupující proti proti sru sru osy osy ( k + t ) y(, t) y sin ω Vlnová Vlnová délka délka y y t λ T

13 ' y c Vlna Vlna v ase ase t t 0 0 c. t λ c. T c f Vlna Vlna v ase ase t t t t Vlnová délka je vzdálenost, kterou urazí vlnní za jednu periodu. Rychlost vlny závisí na vlastnostech prostedí, ve které se šíí.

14 ( t ) y ( t ) y, t) y,, ( + 1 U pekrývajících se vln se výchylky algebraicky sítají a vytváejí jednu výslednou vlnu

15 () Mje dv sinusové vlny o stejných aplitudách a stejných frekvencích y (, t) y y 1 (, t ) + y (, t ) sin ( k ωt ) + y sin( k ωt + ϕ) ( 1 ) ( 1 y cos ϕ sin k ωt + ϕ) Jejich soute je opt vlna sinusová fázový rozdíl ϕ dráhový rozdíl Druh interference 0 0 úpln konstruktivní π λ/ úpln destruktivní π λ úpln konstruktivní jiný - ástená

16 ! vektory používané k popisu vlny y Fázorový diagra ω Interference: y y' y 1 + y y ϕ ) y' y 1 Velikost fázoru aplituda vlny úhlová rychlost úhlová frekvence vlny

17 ) t t T p T s T s T p + t

18 *" Na hranici prostedí, ve které se vlnní šíí, dochází k odrazu vlny. Pevný konec: aplituda pulzu se pevrátí (opaná výchylka) Volný konec: aplituda pulzu se není

19 + Mje dv sinusové vlny o stejné aplitud a se stejnou vlnovou délkou, které postupují opaný sre (nap. dopadající a odražená vlna). (, t ) + y (, t ) y (, t) y1 y sin ( k ωt ) + y sin( k + ωt ) ( y sink ) cos( ωt ) Aplituda Aplituda vlny vlny Interferencí takových vln vznikne stojatá vlna

20 + Pevný Pevný konec konec Volný Volný konec konec Uzly Uzly (ísta (ísta s nulovou nulovou aplitudou aplitudou výchylky) výchylky) Kitny Kitny (ísta (ísta s aiální aiální aplitudou aplitudou výchylky) výchylky)

21 %, V závislosti na délce struny, vznikne pro jisté frekvence díky interferenci stojatá vlna. Takové frekvenci íkáe rezonanní. 1 λ L Podínka Podínka rezonance rezonance pro pro dva dva pevné pevnékonce (nap. (nap. struna) struna) 3 L λ L λ 3 L c c f r n λ L Mód Mód rezonance rezonance (íslo (íslo haronického haronického kitu) kitu)

22 - Hlasitost - je dána aplitudou vlny Výška tónu - je dána frekvencí vlny (vlnovou délkou) Barva - je dána zastoupení jednotlivých haronických kit

23 "., f 0 5f 0 3f 0 výsledná vlna

23. Mechanické vlnní. Postupné vlnní:

23. Mechanické vlnní. Postupné vlnní: 3. Mechanické vlnní Mechanické vlnní je dj, pi které ástice pružného prostedí kitají kole svých rovnovážných poloh a tento kitavý pohyb se penáší postupuje) od jedné ástice k druhé vlnní že vzniknout pouze

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Kmity a mechanické vlnění. neperiodický periodický

Kmity a mechanické vlnění. neperiodický periodický rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost

Více

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí) Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 GARANT PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI) VYUUJÍCÍ PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI), CSc., Mgr. Vlastimil Kápek, Ph.D. (ÚFI) JAZYK VÝUKY:

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l : ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Izolaní materiály. Šastník Stanislav. 2. týden

Izolaní materiály. Šastník Stanislav. 2. týden Izolaní materiály 2. týden Šastník Stanislav Vysoké uení technické v Brn, Fakulta stavební, Ústav technologie stavebních hmot a dílc, Veveí 95, 602 00 Brno, Tel: +420 5 4114 7507, Fax +420 5 4114 7502,

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU

VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU Střídavý proud Vznik střídavého napětí a proudu Fyzikální veličiny popisující jevy v obvodu se střídavý proude Střídavý obvod, paraetry obvodu Střídavý

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou

Více

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Interference vlnění

Interference vlnění 8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Fyzikální podstata zvuku

Fyzikální podstata zvuku Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

Elektromagnetické kmitání

Elektromagnetické kmitání Elektroagnetické kitání ELEKTROMAGNETICKÝ OSCILÁTOR zdroje jsou nejen alternátory, ale i jiné typy oscilátoru Střídavé proudy a napětí označujee jako elektroagnetické kitání Mechanické oscilátory kitají

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas! MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

3.1.5 Složené kmitání

3.1.5 Složené kmitání 315 Složené kmitání Předpoklady: 3104 Pokus: Dvě pružiny zavěsíme vedle sebe, na obě dáme závaží Spodní konce obou pružin spojíme gumovým vláknem (velmi pružným, aby ho bylo možno prodloužit malou silou)

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

4.1 Kmitání mechanického oscilátoru

4.1 Kmitání mechanického oscilátoru 4.1 Kmitání mechanického oscilátoru 4.1 Komorní a má frekvenci 440 Hz. Určete periodu tohoto kmitání. 4.2 Časový signál v rozhlase je tvořen čtyřmi zvukovými značkami o frekvenci 1 000 Hz, z nichž první

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

8.6 Dynamika kmitavého pohybu, pružinový oscilátor

8.6 Dynamika kmitavého pohybu, pružinový oscilátor 8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 26, překlad: Vladimír Scholtz (27) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 61: RL OBVOD 2 OTÁZKA 62: LC OBVOD 2 OTÁZKA 63: LC

Více

(metalická vedení a vlastnosti) Robert Bešák

(metalická vedení a vlastnosti) Robert Bešák Penosová média (metalická vedení a vlastnosti) Robert Bešák Mezi telekom. zaízeními se signály penášejí elektromag. vlnami Elektromagnetická vlna Kmitoet f Vlnová délka λ závisí na rychlosti šíení vlny

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

1 Elektrotechnika 1. 11:00 hod. R. R = = = Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. U = 60 V. Řešení.

1 Elektrotechnika 1. 11:00 hod. R. R = = = Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. U = 60 V. Řešení. A : hod. Elektrotechnika Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. R I I 3 R 3 R = 5 Ω, R = Ω, R 3 = Ω, R 4 = Ω, R 5 = Ω, = 6 V. I R I 4 I 5 R 4 R 5 R. R R = = Ω,

Více

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1) 4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

(test version, not revised) 16. prosince 2009

(test version, not revised) 16. prosince 2009 Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika

Více

Vznik a vlastnosti střídavých proudů

Vznik a vlastnosti střídavých proudů 3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Téma: Dynamika - Úvod do stavební dynamiky

Téma: Dynamika - Úvod do stavební dynamiky Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají

Více

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá. MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

Kmitání systému s 1 stupněm volnosti, Vlastní a vynucené tlumené kmitání

Kmitání systému s 1 stupněm volnosti, Vlastní a vynucené tlumené kmitání Kitání systéu s 1 stupně volnosti, Vlastní a vynuené tluené kitání 1 Vlastní tluené kitání Pohybová rovnie wɺɺ ɺ ( t ) + w( t ) + k w( t ) = Tluíí síla F d (t) F součinitel lineárního viskózního tluení

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Základní úlohy a zkušební otázky předmětu Akustika oboru Aplikovaná fyzika

Základní úlohy a zkušební otázky předmětu Akustika oboru Aplikovaná fyzika Základní úlohy a zkušební otázky předmětu Akustika oboru Aplikovaná fyzika Úlohy pro 1. zápočtovou práci 1. Nakreslete časové rozvinutí elongace, rychlosti a zrychlení harmonického kmitavého pohybu během

Více

Kinematika pístní skupiny

Kinematika pístní skupiny Kinematika pístní skupiny Centrický mechanismus s = r( cos(α)) + l [ ( λ 2 sin 2 α) 2] Dva členy z binomické řady s = r [( cos (α)) + λ ( cos (2α))] 4 I. harmonická s I = r( cos (α)) II. harmonická s II

Více

= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20)

= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20) Tečné zrychlení získáme průmětem vektoru zrychlení a vynásobením jednotkovým vektorem ve směru rychlosti do směru rychlosti a a t v v a v v = (1.19) Podotýkáme, že vektor tečného zrychlení může být souhlasně

Více

Akustické vlnění

Akustické vlnění 1.8.3. Akustické vlnění 1. Umět vysvětlit princip vzniku akustického vlnění.. Znát základní rozdělení akustického vlnění podle frekvencí. 3. Znát charakteristické veličiny akustického vlnění a jejich jednotky:

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více