15. T e s t o v á n í h y p o t é z

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "15. T e s t o v á n í h y p o t é z"

Transkript

1 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů: Parametrické testy jsou testy o hodnotách parametrů rozdělení ze kterého je proveden náhodný výběr. Neparametrické testy jsou testy o typu rozdělení shodě rozdělení symetrii rozdělení. Testování provádíme na základě funkce náhodného výběru statistiky jejíž rozdělení je známé a rozhodnutí činíme na základě hodnot této statistiky. Strategie testování. 1. Na základě hodnot náhodného výběru a charakteru úlohy zvolíme: nulovou hypotézu H 0 a alternativní hypotézu H 1 kterou příjímáme v případě odmítnutí nulové hypotézy.. Volíme testovací kritérium. Vybereme statistiku funkci náhodného výběru jejíž rozdělení známe a která charakterizuje testovanou vlastnost rozdělení. 3. Stanovíme hladinu významnosti testu jako hodnotu α číslo α je blízké nule. Obvykle z intervalu (0 01; 0 1) nejčastěji 0 05 která bývá zadavaná ve statistických programech. 4. Na základě hodnoty hladiny stanovíme kritický obor testu kdy v případě že zvolená statistika má hodnotu z kritického oboru odmítneme nulovou hypotézu H 0 a příjmeme alternativní hypotézu H 1. Chyby testu. Je-li T testovací statistika α je hladina významnosti testu a je kritický obor testu pak při rozhodovaní nastanou následující situace. S k u t e č n o s t H 0 H 1 H 0 T / T / správně chyba. druhu β H 1 T T chyba 1. druhu α správně Stanovení kritického oboru. Požadujeme aby chyba 1. druhu kdy odmítneme nulovou hypotézu H 0 ačkoliv platí byla menší než α. K tomu stačí aby byl kritický obor doplňkem k (1 α)100% intervalu spolehlivosti pro testovaný parametr rozdělení. Chybu. druhu můžeme pouze odhadnout. Testy o parametrech rozdělení Test o střední hodnotě jednovýběrový t-test. Předpokládáme X 1 X... X n je náhodný výběr z normálního rozdělení N(µ; σ ). Jako odhad střední hodnoty µ použijeme výběrový průměr X a jako odhad rozptylu σ použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : µ = µ 0 proti alternativní hypotéze H 1 : µ µ 0. Za testovou statistiku volíme T = X µ 0 n S 78

2 o které je známo že má Studentovo t(n 1) rozdělení. Kritickým oborem je = {T ; T > t 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr µ. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Situace je znázorněná na obrázku. 0 t 1 α (n 1) Obdobně provádíme test jednostranných hypotéz: b) H 0 : µ µ 0 H 1 : µ > µ 0 pak 0 = {T ; T > t 1 α (n)}; t 1 α (n 1) c) H 0 : µ µ 0 H 1 : µ < µ 0 pak = {T ; T < t α (n)}. t α (n 1) 0 Kritické hodnoty testu. Krajní body intervalů které tvoří kritické obory se nazývají kritické hodnoty testu. Označují se symbolem t(α) ačkoliv jsou to 1 α kvantily. Při práci s tabulkami je třeba dávat pozor jak je přesně kritická hodnota definována. V záhlaví tabulky je toto vždy uvedeno. Poznamenejme že pro rozsahy výběru n 30 můžeme nahradit kvantily či kritické hodnoty Studentova t rozdělení hodnotami z normovaného normálního rozdělení. Poznámka: p-hodnota V současné době se využívá možnosti počítačů a rozhodování provádíme pomocí p hodnoty. Ta je stanovena tak že je to hladina při které se hraniční hodnotou kritického oboru stává hodnota t 0 testovací statistiky T. Je tedy p hodnota definována jako: a) p = min{p (T t 0 ); P (T t 0 )} pro oboustranný test; b) p = P (T t 0 ) pro levostranný test; c) p = P (T t 0 ) pro pravostranný test. Potom při p α hypotézu H 0 zamítáme a při p > α hypotézu H 0 nezamítáme. Lze říci že čím je p větší tím je i chyba. druhu menší Test o rozptylu normálního rozdělení. Pro náhodný výběr X 1 X... X n je náhodný výběr z normálního rozdělení N(µ; σ ) hledáme hodnotu rozptylu σ. Jako jeho odhad použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : σ = σ 0 proti alternativní hypotéze H 1 : σ σ 0. 79

3 Za testovou statistiku volíme V = (n 1)S σ0 o které je známo že má χ (n 1) rozdělení. Kritickým oborem je = {V ; V < χ α (n 1) nebo V > χ 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr σ. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Situace je znázorněná na obrázku. 0 χ α (n 1) χ 1 α (n 1) 0 Obdobně provádíme test jednostranných hypotéz: b) H 0 : σ σ 0 H 1 : σ > σ 0 pak = {V ; V > χ 1 α(n 1)}; χ 1 α (n 1) c) H 0 : σ σ 0 H 1 : σ < σ 0 pak = {V ; V < χ α(n 1)}. 0 χ α(n 1) Test pro parametr δ exponenciálního rozdělení Exp(0; δ). Pro náhodný výběr X 1 X... X n z exponenciálního rozdělení Exp(0; δ) hledáme hodnotu parametru δ. Testujeme nulovou hypotézu H 0 : δ = δ 0 proti alternativě H 1 : δ δ 0. Za testovou statistiku volíme T = nx δ 0 která má rozdělení χ (n). Kritickým oborem je = {V ; V < χ α (n 1) nebo V > χ 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr δ Test o rovnosti středních hodnot dvouvýběrový t-test. Předpokládáme že X 1 X... X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1 Y... Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme že jsou výběry nezávislé a že se rozptyly rovnají. Testujeme nulovou hypotézu H 0 : µ 1 µ = obvykle = 0 80

4 proti alternativní hypotéze H 1 : µ 1 µ. A) Dvouvýběrový t-test. Za testovou statistiku volíme X Y (µ 1 µ ) nm(n + m ) T = (n 1)SX + (m 1)S n + m Y o které je známo že má Studentovo t(n + m ) rozdělení. Kritickým oborem je = {T ; T > t 1 α (n + m )} doplněk k (1 α)100% intervalu spolehlivosti pro parametr. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Porušení normality výběru se ve výsledcích testů výrazněji neprojeví. Shodu rozptylů před výpočtem ověříme testem pro jejich rovnost. Pokud nám test pro rovnost rozptylů dá negativní výsledek použijeme Cochranův-Coxův test nebo neparametrický dvouvýběrový Wilcoxonův test. B) Cochranův-Coxův test volíme v případě že není splněn předpoklad o rovnosti rozptylů. Za testovou statistiku volíme Kritickým oborem je T = X Y S = v X + v Y v X = S X S n v Y = S Y m. = {T ; T > t } t = v Xt n 1 (α) + v Y t m 1 (α) v X + v Y kde t k (α) je kritická hodnota jednovýběrového t testu. Tento test má ještě některé jiné varianty které pro menší rozsahy výběrů dávají poněkud jiné kritické obory. Uvedeme si na ukázku dvě z nich. C) Satterthwaite (1946). Kritickým oborem je = {T ; T > t f (α)} f = kde t k (α) je kritická hodnota jednovýběrového t testu. D) Welch (1947). Kritickým oborem je = {T ; T > t h (α)} h = kde t k (α) je kritická hodnota jednovýběrového t testu. S 4 v X n 1 + v Y m 1 S 4 v X n + v Y m Test o rovnosti rozptylů F-test. Předpokládáme že X 1 X... X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1 Y... Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních 81

5 hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme že jsou náhodné výběry nezávislé. Testujeme nulovou hypotézu H 0 : σ1 = σ proti alternativní hypotéze H 1 : σ1 σ. Jako výběr X i označíme ten pro který je SX > S Y. Za testovou statistiku volíme F = S X SY o které je známo že má F n 1m 1 rozdělení. Kritickým oborem je = {F ; F > F n 1m 1 (α) } kde F n 1m 1 (α) je kritická hodnota z tabulek. Neparametrické testy V neparametrických testech má hypotéza charakter tvzení o vlastnostech rozdělení které nejsou odvozeny od hodnot parametrů. Uvedeme některé z nich Znaménkový test je testem o mediánu rozdělení. Používáme jej jako velice jednoduchou variantu testu na symetrii rozdělení kdy by se měl medián rovnat střední hodnotě. Předpokládáme že X 1 X... X n je náhodný výběr ze spojitého rozdělení jehož medián je x 05 = x. Testujeme nulovou hypotézu H 0 : x = x 0 proti alternativě H 1 : x x 0. Označme si Y i = X i x 0. Pokud je nulová hypotéza platná pak by měl být počet kladných a záporných hodnot souboru Y i stejný. Označíme-li Y počet kladných hodnot v souboru Y i je pak Y realizací náhodné veličiny která má binomické rozdělení Bi(n 1 ). Ta nabývá hodnot z množiny { n} a hodnoty blízké nule a n se vyskytují s velmi malou pravděpodobností. Kritický obor testu je = {Y ; Y k 1 nebo Y k } kde hodnoty k 1 a k nalezneme v tabulkách. Pro zvolenou hladinu testu je nalezneme tak že je k 1 největší z hodnot a k je nejmenší z hodnot pro které platí P (Y k 1 ) α P (Y k ) α jestliže má Y zmiňované binomické rozdělení Bi(n 1 ). Pokud má výběr větší rozsah n > 36 můžeme nahradit binomické rozdělení Bi(n 1 ) normálním rozdělením N( n n 4 ) která mají shodné střední hodnoty n a rozptyly n 4. Potom má náhodná veličina U = Y n n = Y n n normované normální rozdělení N(0; 1). Kritický obor je roven = {U; U u(α) } 8

6 kde u(α) je kritická hodnota pro normální rozdělení kterou nalezneme z tabulek. Poznamenejme že je tato kritická hodnota u(α) = u 1 α rovna 1 α kvantil normovaného normálního rozdělení. Snadno odvodíme i jednostranné varianty testu. Test má poměrně malou sílu a k věrohodnotnějšímu výsledku je potřeba poměrně velký rozsah náhodného výběru Jednovýběrový Wilcoxonův test je testem symetrie rozdělení. Testujeme symetrii rozdělení vzhledem k hodnotě x 0 tedy skutečnost že pro hustotu či pravděpodobnostní funkci platí f(x x 0 ) = f(x + x 0 ). Nulovou hypotézu zapisujeme ve tvaru podmínky pro medián x 05 = x : H 0 : x = x 0 proti alternativě H 1 : x x 0. Pro náhodný výběr X 1 X... X n utvoříme soubor Y i = X i x 0 ve kterém vypustíme případné nulové hodnoty. Hodnoty Y i uspořádáme podle velikosti a označíme R i + jejich pořadí. Nyní je S + = R i + S = R i +. Y i >0 Y i <0 Poznamenejme že S + + S = 1 n(n + 1). Pokud je rozdělení symetrické budou se vyskytovat kladné a záporné hodnoty souměrně kolem hodnoty x 0 tedy součty pořadí kladných a záporných hodnot se od sebe budou málo lišit. Kritický obor testu je stanoven jako : min(s + S ) < w(α) kde w(α) je kritická hodnota testu kterou nalezneme v tabulkách. Je-li splněna podmínka pro kritický obor zamítneme nulovou hypotézu že rozdělení je symetrické. Poznamenejme že pro náhodné veličiny S + a S je E(S + ) = E(S ) = 1 4 n(n + 1) a D(S+ ) = D(S ) = 1 n(n + 1)(n + 1). 4 Pro větší hodnoty rozsahu výběru nahradíme rozdělení rozdělením normálním tedy skutečností že má náhodná veličina U = S + 1 4n(n + 1) 1 4n(n + 1)(n + 1) normované normální rozdělení N(0; 1). Kritický obor testu je pak = {U; U > u(α) } kde u α je kritická hodnota testu pro normální rozdělení která je rovna u(α) = u 1 α kvantilu normovaného normálního rozdělení Dvouvýběrový Wilcoxonův test slouží k porovnání výběrů kdy testujeme hypotézu že jsou oba výběry ze stejného rozdělení. Předpokládáme že náhodný výběr {X 1 X... X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1 Y... Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti že pokud jsou obě rozdělení stejná pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. 83

7 Algoritmus testu: 1. Vytvoříme sdružený soubor {Z 1 Z... Z n+m } = {X 1 X... X n } {Y 1 Y... Y m }.. Stanovíme pořadí prvků souboru který uspořádáme podle velikosti přičemž prvkům které mají stejnou velikost přiřadíme průměr jejich pořadí. Označme T 1 je součet pořadí prvků z prvního souboru; T je součet pořadí prvků z druhého souboru. Poznamenejme že T 1 + T = 1 (n + m)(n + m + 1). 3. Položme U 1 = nm + 1 n(n + 1) T 1 a U = nm + 1 m(m + 1) T. (U 1 + U = nm.) Testovací kritérium: Kritický obor : min{u 1 U } w(α) kde kritickou hodnotu w(α) testu nalezneme v tabulkách. Poznámka: Pořadí souborů volíme tak aby n m tabulky bývají pro rozsahy m 0 5 n 30. Pro větší rozsahy výběrů využíváme skutečnosti že za platnosti hypotézy H 0 je E(U 1 ) = E(U ) = 1 nm a D(U 1) = D(U ) = 1 nm(n + m + 1). 1 Rozdělení obou veličin můžeme pak považovat za normální a tedy náhodná veličina U = U 1 1 nm 1 1nm(n + m)(n + m + 1) má normované normální rozdělení N(0; 1). Kritický obor testu je = {U; U > u(α)} kde u(α) je kritická hodnota pro normální rozdělení tedy u 1 α kvantil normálního rozdělení. Poznámka. Test je citlivý na posun tedy na situaci kdy je F (x) = G(x ). Pro situace kdy se soubory liší spíše rozptylem či tvarem je doporučen Kolmogorovův-Smirnovův test Kolmogorovův-Smirnovův test. Nejprve popíšeme empirickou distribuční funkci která se v testu používá. Je-li {X 1 X... X n } náhodný výběr z rozdělení které má distribuční funkci F pak empirickou distribuční funkcí nazýváme funkci F n která je definována předpisem: F n (x) = 1 n 0 x < Xi ξ i (x) kde ξ i (x) = n 1 x X i. Potom je lim F n(x) = F (x) x R. n Poznámka. Empirická distribuční funkce je po úsecích konstantní a má skoky velikosti 1 v bodech x = X i 1 i n. Znázorníme si průběh empirické distribuční funkce pro náhodný výběr pro který platí: X 1 < X < X 3 = X 4 < X 5. 84

8 1 4 5 y F 5 (x) X 1 X X 3 = X 4 X5 x Obr Jednovýběrový test Předpokládáme že náhodný výběr X i 1 i n je výběrem z rozdělení s distribuční funkcí F. Testujeme hypotézu: H 0 : výběr je z rozdělení s distribuční funkcí F proti alternativní hypotéze H 1 : výběr není z rozdělení s distribuční funkcí F. Algoritmus testu: 1. Vypočteme empirickou distribuční funkce F n a teoretickou dostribuční funkce F.. Určíme maximální rozdíl těchto funkcí D n = sup{ F n (x) F (x) ; x R}. Platí-li hypotéza H 0 je lim D n = 0. nm 3. Určíme testovací statistiku ndn která má rozdělení určené distribuční funkcí K(λ) kde tj. 4. Kritický obor testu je K(λ) = 1 ( 1) k+1 e k λ k=1 lim nm P ( nd n < λ ) = K(λ) λ > 0. : ndn λ α D n λ α n kde kritickou hodnotu testu D n = λα n nalezneme v tabulkách pro hodnoty n 0. Pro větší rozsahy výběrů použijeme aproximace a kritickou hodnotu λ α určíme z podmínky: P K(λ). = 1 e λ ( D n < λ α n ) = K(λ) = 1 α 1 α = 1 e λ α λ α = Pro kritický obor dostaneme : D n D n = 85 1 n ln α. 1 ln α.

9 Dvouvýběrový test Předpokládáme že náhodný výběr {X 1 X... X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1 Y... Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti že pokud jsou obě rozdělení stejná pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. Algoritmus testu: 1. Vypočteme empirické distribuční funkce F n a G m.. Určíme maximální rozdíl těchto funkcí D nm = sup{ F n (x) G m (x) ; x R}. Platí-li hypotéza H 0 je lim D nm = 0. nm 3. Určíme testovací statistiku MDnm M = nm n + m která má rozdělení určené distribuční funkcí K(λ) kde K(λ) = 1 ( 1) k+1 e k λ k=1 tj. 4. Kritický obor testu je ( ) lim P MDnm < λ = K(λ) λ > 0. nm : MDnm λ α D nm λ α M kde kritickou hodnotu testu D nm = λα M nalezneme v tabulkách pro hodnoty n 0 4 m 0 n + m 8. Pro větší rozsahy výběrů použijeme aproximace a kritickou hodnotu λ α určíme z podmínky: P ( D nm < Pro kritický obor dostaneme K(λ). = 1 e λ λ ) α = K(λ) = 1 α 1 α = 1 e λ α λ α = 1 M ln α. : D nm D nm = 1 M ln α. Poznámka: Test je odvozen za podmínky že rozdělení je normální. V případě že rozdělení se významně liší od normálního je nutné použít jiný test. Pro některá rozdělení jsou ve statistických tabulkách uvedeny kritické hodnoty tesu které jsou odlišné od dříve uvedených. Distribuční funkce K má pro jiná rozdělení odlišný charakter. 86

10 Test shody pro binomické rozdělení. Máme dány hodnoty nezávislých náhodných veličin X Bi(n p 1 ) a Y Bi(m p ). Testujeme nulovou hypotézu proti alternativě H 0 : p 1 = p H 1 : p 1 p. Algoritmus testu. 1. Vypočteme hodnoty x = X n a y = Y m které jsou odhady parametrů p 1 x a p y.. Má-li výběr dostatečně velký rozsah pak mají náhodné veličiny x a y po řadě normální rozdělení ( x N p 1 ; p ) 1(1 p 1 ) n a ( y N p ; p (1 p ) m 3. Protože jsou náhodné veličiny x a y nezávislé má náhodná veličina U = (x y) (p 1 p ) p1 (1 p 1 ) n + p (1 p ) m normované normální rozdělení N(0; 1). 4. Pokud platí nulová hypotéza H 0 je p 1 p = 0 a jestliže použijeme aproximací p 1 = x p = y má náhodná veličina ). U a = x(1 x) n x y + y(1 y) m normované normální rozdělení N(0; 1). 5. Kritický obor testu je pak = {U a ; U a u(α)} kde kritická hodnota u(α) je rovna 1 α kvantilu normálního rozdělení N(0; 1). Alternativní varianta testu je založena na skutečnosti že společnou hodnotu p 1 = p odhadujeme pomocí hodnoty z = X+Y. Potom má náhodná veličina normované normální rozdělení N(0; 1). Kritický obor testu je pak n+m = nx+my n+m x y U b = ( ) z(1 z) 1 n + 1 m = {U b ; U b u(α)}. Protože je pro n = m hodnota U b U a dává tato varianta častěji jako výsledek testu přijetí nulové hypotézy H Multinomické rozdělení. Uvažujme náhodné jevy A i 1 i k které jsou po dvou disjunktní P (A i ) = p i A 1 A... A k = U tedy p 1 + p p k = 1. Jestliže opakujeme n krát pokus který jako výsledek dává posloupnost jevů A i nebo A i a uvažujeme 87

11 kolikrát se ma i tém místě objeví jev A i pak mluvíme o multinomickém rozdělení s parametry n a p 1 p... p k. Jestliže označíme jako náhodný vektor (X 1 X... X k ) výsledek pokusu pak pro sdruženou pravděpodobnostní funkci p dostaneme p(i 1 i... i k ) = P (X 1 = i 1 X = i... X k = i k ) = = n! i 1!.i!... i k! pi 1 1 p i... p i k k kde 0 i j 1 j k i 1 + i +... i k = n. Marginální rozdělení každé z veličin X j je binomické rozdělení Bi(n p j ) a E(X j ) = np j D(X j ) = np j (1 p j ) 1 j k. Dále je koeficient korelace cov(x i X j ) = np i p j i j 1 i j k. Takové rozdělení dostaneme jestliže pro náhodný výběr provedeme diskretizaci jeho hodnot pomocí zvolené škály. Nechť je X 1 X... X n náhodný výběr z rozdělení s danou distribuční funkcí. Rozdělíme interval ve kterém se může daná náhodná veličina vyskytovat na systém k disjunktních intervalů tvaru (a 0 a 1 (a 1 a... (a k 1 a k ). Dále označme p i = P (a i 1 < X a i ) 1 i k pravděpodobnost výskytu náhodné veličiny X v i tém intervalu škály. Potom je np i teoretická četnost výskytu hodnot náhodného výběru v i tém intervalu škály. Jestliže si označíme n i 1 i k empirickou četnost výskytu t.j. počet hodnot X j z náhodného výběru které leží v i tém intervalu škály pak platí tvrzení. Věta: Náhodná veličina ( ) χ = k (n i np i ) np i má přibližně rozdělení χ (k 1). Poznámka: Hodnota χ je vlastně vážený součet čtverců odchylek empirické a teoretické četnosti kdy ja každá odchylka vážena proti své teoretické hodnotě. Tato hodnota má být co nejmenší. Uvedeme vzorec který se někdy lépe hodí k výpočtu hodnoty χ. Je totiž χ = k (n i np i ) np i = k n i n inp i + (np i ) np i = = k n k k k i n i + np i = np i n i np i n Test dobré shody test χ (chí kvadrát). Testujeme že daný náhodný výběr je výběrem ze známého rozdělení. Pokud jsou parametry rozdělení (hustoty či pravděpodobnostní funkce) známy počítáme uvedené veličiny z rozdělení které je určeno jejich hodnotami. Pokud tyto parametry neznáme použijeme pro ně odhady získané některou s metod hledání bodových odhadů (metoda maximální věrohodnosti či metoda momentů). Máme dán náhodný výběr X 1 X... X n z rozdělení se známým typem distribuční funkce (hustoty). Testujeme nulovou hypotézu H 0 : náhodný výběr je výběrem s daným rozdělením 88

12 proti alternativě H 1 : náhodný výběr je výběrem z jiného rozdělení. Algoritmus testu. 1. Definiční obor náhodné veličiny X rozdělíme pomocí dělících bodů na škálu k intervalů tvaru ( a 1 (a 1 a... (a k a k 1 (a k 1 a k = ).. Vypočteme teoretické četnosti a ověříme podmínku použitelnosti testu: p i = P (a i 1 < X a i ) 1 i k np i 5 1 i k nebo np i 5q kde q je podíl tříd pro které je np i < 5 v případech kdy k Určíme empirické četnosti n i jako počty hodnot X j z náhodného výběru které leží v intervalu (a i 1 a i 1 i k a vypočteme hodnotu statistiky χ = k (n i np i ) np i. 4. Pro zvolenou hladinu významnosti testu stanovíme kritický obor testu = {χ ; χ χ k 1(α)} kde χ k 1 (α) je kritická hodnota testu která je rovna 1 α kvantilu rozdělení χ (k 1). 5. Je-li hodnota χ zamítneme nulovou hypotézu H 0 ve prospěch alternativní hypotézy H 1. V opačném případě kdy je χ < χ k 1 (α) nulovou hypotézu H 0 přijmeme. Poznámka: Pokud použijeme místo skutečných hodnot parametrů rozdělení jejich odhadů pak místo k 1 stupňů volnosti rozdělení χ volíme rozdělení s k m 1 stupni volnosti kde m je počet parametrů rozdělení Test závislosti a nezávislosti. Pro náhodné veličiny X a Y se nejčastěji k popisu závislosti používá koeficient korelace ρ(x Y ) který je definován vztahem ρ(x Y ) = E((X E(X))(Y E(Y ))) E(XY ) E(X)E(Y ) = D(X)D(Y ) D(X)D(Y ) který je nulový pro nezávislé náhodné veličiny a je roven ±1 v případě lineární závislosti Y = ax + b. Pro normální rozdělení je úplnou charakteristikou závislosti náhodných veličin. Platí totiž: Jestliže má náhodný vektor (X Y ) normální rozdělení pak je jeho sdružená hustota dána vzorcem f(x y) = 1 πσ 1 σ 1 ρ e (x µ 1 ) σ 1 + (y µ ) σ ρ(x µ 1 )(y µ ) σ 1 σ (1 ρ ) kde náhodná veličina X má marginální rozdělení N(µ 1 ; σ1 ) a Y má marginální rozdělení N(µ 1 ; σ ) a ρ je koeficient korelace mezi X a Y. Náhodné veličiny X a Y jsou nezávislé právě když je ρ = 0. 89

13 Podmíněné náhodné veličiny X y resp.y x mají také normální rozdělení se středními hodnotami E(X y) = µ 1 + β 1 (y µ ) β 1 = ρ σ 1 σ a rozptyly E(Y x) = µ + β 1 (x µ 1 ) β 1 = ρ σ σ 1 D(X y) = σ 1(1 ρ ) resp. D(Y x) = σ (1 ρ ). Podmíněná střední hodnota je lineární funkcí y resp. x a její směrnice β 1 resp. β 1 je regresní koeficinet. Podmíněný rozptyl je konstantní. Odhad závislosti či nezávislosti pro náhodné výběry provádíme pomocí výběrového koeficientu korelace který je obdobou výběrových momentů. Výběrový koeficient korelace je definován pro dvourozměrný náhodný výběr (X i Y i ) 1 i n jako kde r(x Y ) = S XY S X S Y SX = 1 n (X i X) SY = 1 n (Y i Y ) n 1 n 1 S XY = 1 n (X i X)(Y i Y ). n 1 Vztah lze úpravami kterými jsme odvodili vyjádření pro výběrový rozptyl upravit na tvar r(x Y ) = n (X i Y i ) nxy ( n ) ( n ) Xi n(x) Yi n(y ) Test závislosti či nezávislosti je založen na tomto tvrzení: Je-li (X i Y i ) 1 i n náhodný výběr z dvourozměrného normálního rozdělení pak má náhodná veličina (statistika) r T = n t(n ) 1 r t rozdělení s n stupni volnosti. Algoritmus testu Testovaná hypotéza: H 0 : ρ = 0 nezávislost; H 1 : ρ 0 závislost. Kritický obor = {T ; T > t n (α)} kde t n (α) je kritická hodnota t testu tedy 1 α kvantil Studentova t rozdělení pro n stupňů volnosti. Existují tabulky které uvadějí kritické hodnoty r n (α) přímo pro hodnoty statistiky r. Kritický obor je pak = {r; r > r n (α)} Testy normality Uvedeme zde test normality rozdělení pro soubor dat který je náhodným výběrem {X i ; 1 i n}. Použijeme testy které jsou založeny na výběrové šikmosti a špičatosti nebo na jejich kombinaci. Připomeneme: 90

14 a M k = 1 n (X i X) k 1 k. n A 3 = M 3 (M ) 3/ výběrová šikmost; A 4 = M 4 Je pak M resp. A 4 = M 4 M 3 výběrová špičatost. E(A 3 ) = 0 D(A 3 ) = 6(n ) (n + 1)(n + 3) E(A 4 ) = 3 6 n + 1 resp. E(A 4) = 6 n + 1 D(A 4 ) = 4n(n )(n 3) (n + 1) (n + 3)(n + 5). Algoritmus testu: 1. H 0 : A 3 = 0 resp. A 4 = 0 proti H 1 : A 3 0 resp. A Kritický obor testu: = {A 34 : A 34 a(α)} kde pro menší rozsahy výběru jsou kritické hodnoty pro statistiky A 3 a A 4 uvedeny v tabulkách. Pro větší rozsahy výběrů n > 00 pro A 3 a n > 500 pro A 4 lze použít aproximace normálním rozdělením které vychází z centrální limitní věty. Počítáme s tím že náhodné veličiny U 3 = A 3 a U 4 = A 4 E(A 4 ) D(A3 D(A 4 ) mají normované normální rozdělení. Kritické hodnoty testu nalezneme pomocí kvantilů normálního rozdělení. Kritickým oborem testu je nebo = {U 3 ; U 3 > u α/ } = {U 4 ; U 4 > u α/ kde u α je α kvantil nornálního rozdělení N(0; 1). Existuje podstatné vylepšení postupu které se dá použít v případě výběrů menšího rozsahu. Test založený na šikmosti: Postupně vypočteme b = 3(n + 7n 70)(n + 1)(n + 3) (n )(n + 5)(n + 7)(n + 9) W = (b 1) 1 δ = a = W 1 Z 3 = δ ln U 3 a + (U3 ) + 1. a 1 ln W Potom má náhodná veličina Z 3 přibližně normální rozdělení N(0; 1) a hypotézu o normalitě rozdělení zamítáme v případě že Z 3 u α/. Test se dá použít pro n > 8. Test založený na špičatosti: 91

15 Postupně vypočteme B = 6(n 5n + ) 6(n + 3)(n + 5) (n + 7)(n + 9) n(n )(n 3) Z 4 = 1 9A 3 9A A = B 1 A 1+U 4 A 4. ( 1 B + + 4B ) Náhodná veličina Z 4 má přibližně normální rozdělení N(0; 1) a hypotézu o normalitě zamítáme pokud je Z 4 u α/. Aproximace je použitelná pro n 0. Testy založené současně na šikmosti a špičatosti: Pro výběry kde je rozsah n > 00 můžeme použít skutečnosti že náhodná veličina U 3 + U 4 χ má rozdělení χ o dvou stupních volnosti. Hypotézu o normalitě zamítáme pokud je U 3 + U 4 χ (α). Pro menší rozsahy kde n 0 lze použít skutečnosti že má náhodná veličina Z 3 + Z 4 χ přibližně rozdělení χ o dvou stupních volnosti. Hypotézu o normalitě zamítáme pokud je Z 3 + Z 4 χ (α). 9

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1 PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

12. prosince n pro n = n = 30 = S X

12. prosince n pro n = n = 30 = S X 11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li

Více

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013 Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Jednostranné intervaly spolehlivosti

Jednostranné intervaly spolehlivosti Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více