10 Lineární elasticita

Rozměr: px
Začít zobrazení ze stránky:

Download "10 Lineární elasticita"

Transkript

1 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí na velikosi deformace, její rychlosi a průběhu jak znázorňuje Obr Obr. 1.1: Vzah mezi napěím a deformací viskoelasické láky Z fenomenologické eorie linearní viskoelasiciy vyplývá obecné vyjádření přímé úměry mezi izochronickým napěím a deformací pro libovolně zvolený čas : = G( ) (1.1) ( ) kde: G() je časově závislý relaxační modul pružnosi ve smyku. Veličiny charakerizující viskoelasickou deformační odezvu v lineární oblasi jsou edy časově závislé: časově závislý modul G(), popř. poddajnos 1/G(), předsavující elasickou (ermodynamicky vranou) čás a časově závislá viskozia η(), kerá reprezenuje viskózní (ermodynamicky nevranou) čás deformace. 1.1 Přehled a definice viskoelasických funkcí časově závislá krípová poddajnos ve smyku:

2 J ( ) ( ) = (1.2) časově závislý krípový modul pružnosi ve smyku: ( ) = ( ) (1.3) GC časově závislý krípový modul pružnosi v ahu: ( ) = ε ( ) (1.4) EC časově závislý relaxační modul pružnosi ve smyku: ( ) ( ) = (1.5) G časově závislý relaxační modul pružnosi v ahu: E ( ) ( ) = (1.6) ε 1.2 Relaxační a readační spekra Přesný vzah mezi relaxačním modulem G() a krípovou poddajnosí vyjadřuje konvoluční inegrál. V praxi je eno vzah sanovován nejčasěji nepřímo - pomocí relaxačních a reardačních speker. Kelvinův či Maxwellův model je vhodný pro popis deformačního savu polymerních láek pro kráké přechody. Pro delší přechody (více než 3 řády) je nuno použí generalizovaný model. Generalizované modely jsou sesaveny na Bolzmanově principu superpozice Bolzmanův princip superpozice Podle Bolzmanova principu superpozice je celkový důsledek řady příčin je roven souču důsledků jednolivých příčin. Jeho fungování si vysvělíme na příkladě polymerní láky s časově závislou poddajnosí J(), kerou budeme lineárně elasicky deformova, Obr Na láku je v čase λ 1 vloženo napěí (λ 1 ), deformační odezva začne v čase = λ 1 : = ( λ ). J ( λ ) (1.7) V čase λ 2 vložíme další podně (λ 2 ), kerému bude odpovída deformační odezva:

3 ( ) = λ.j ( λ ) (1.8) 2 2 Celkovou deformaci pak vyjádříme superpozicí: 2 ( ) = ( λ ).J ( λ ) + ( λ ).J ( λ ) (1.9) j ( ) = ( λ ).J ( λ ) i 1 i i (1.1) ( ) = ( λ ).J ( λ ) dλ (1.11) Obr. 1.2: Relaxační experimen V případě, že by podněem byla naopak deformace vkládaná posupně, jak je znázorněno na Obr. 1.3, lze napěťovou odezvu vyjádři obdobně vzahem: ( ) = ( λ ).G ( λ ) dλ (1.12)

4 Obr. 1.3: Krípový experimen Generalizovaný Maxwellův a Kelvinův model Generalizovaný Maxwellův model je schémaicky znázorněn na Obr. 1.4.

5 Pro eno model plaí: Obr. 1.4: Generalizovaný Maxwellův model pro j prvků ( ) = Ge + G j i = 1 G.e i / λ i (1.13) kde: j poče Maxwellových prvků i ý prvek má paramery G i, λ i G i relaxační funkce (spekrum), G i = f(λ i ). Pro nekonečně mnoho prvků je suma nahrazena inegrálem a funkce G i předsavuje spekrum relaxačních dob (Obr 1.5).

6 Obr. 1.5: Maxwellův model pro nekonečně mnoho prvků 1.3 Superpozice eploa -čas Realizace dlouhodobých pokusů je značně časově omezená a u krákodobých esů jen sěží provedielná, přeso je důležié urči časový průběh viskoelasických veličin v co možná nejširším časovém rozmezí. Řešení poskyuje spojení časové a ep1oní závislosi modulu popř. poddajnosi. oo časově-eploní spojení je možné, jelikož křivky časové závislosi v logarimických souřadnicích mají podobný, vzájemně posunuý var, jak znázorňuje Obr Čas a eploa se při viskoelasických pokusech chovají jako ekvivalenní paramery a vhodným posunuím kerékoliv křivky v horizonálním a verikálním směru můžeme uo křivku zoožni s křivkou odpovídající předem zvolené eploě. Posup, při kerém zoožňujeme křivky sanovené při různých eploách, se nazývá superpozice eploa-čas a umožňuje nám zjisi chování láky při dané eploě v časech experimenálně nedosupných.

7 Obr. 1.6: Časově-eploní závislos viskoelasické funkce (časově závislého modulu pružnosi v ahu) Princip časově-eploní superpozice umožňuje vyjádři závislos viskoelasických funkcí na čase a eploě (kerá by bez jeho planosi byla obecnou funkcí dvou proměnných) pomocí dvou funkcí jedné proměnné. Jedna z ěcho funkcí je časová závislos viskoelasické funkce při dané eploě, druhá udává posuv viskoelasických funkcí s eploou. Z kineické eorie kaučukové elasiciy vyplývá, že viskoelasické funkce naměřené při určié eploě souvisí s hodnoami naměřenými při jiné eploě a ao souvislos se dá vyjádři vzahy: E ( ) = ρ ρ E ( a ) (1.14) nebo D ρ ( ) = ρ D ( a ) (1.15) kde: ρ husoa při eploě ρ husoa při eploě a posuvný (shif) fakor.

8 Obr. 1.7: eploní závislos posuvného fakoru na eploě pro experimenální hodnoy zobrazené na Obr. 1.6 Zpracování dílčích výsledků, keré naměříme při eploě a čase a chceme převés na eplou a čas a., provedeme posupně ve dvou krocích: hodnoy viskoelasických funkcí (E, D) redukujeme na referenční eplou ak, že vynásobíme (E) nebo vydělíme (D) fakorem: (ρ. )/(ρ.), a ím odsraníme změnu ěcho funkcí s eploou v kaučukovié oblasi. Velmi časo se při éo ransformaci zanedbává změna husoy polymeru s eploou, neboť je malá. ve druhé fázi se dané závislosi posouvají horizonálně podél časové osy, až se přivedou ke kryí s křivkou planou pro zvolenou referenční eplou. ím získáme posouvací fakor a. Je zřejmé, že operaci musíme provádě v grafu s logarimickými souřadnicemi, abychom násobené a. převedli na souče log + log a. Na základě ohoo posupu získáme dvě křivky: závislos posouvacího fakoru a na eploě (Obr. 1.7) generalizovanou křivku dané funkce na čase (Obr. 1.8). yo dvě funkce nám nyní popisují celé relaxační chování polymeru v oblasi lineární viskoelasiciy v přechodové a kaučukovié oblasi, a o v širokém rozmezí eplo a časů.

9 Obr. 1.8: Generalizovaná křivka sesrojená na základě experimenálních da z Obr Pro závislos posouvacího fakoru a na eploě odvodili Williams, Landel a Ferry vzah (WLF rovnice viz Kapiola 3.1), kerým lze uo závislos popsa: log a C ( ) 1 = (1.16) C2 + Určením konsan C 1 a C 2 získáme edy maemaický vzah pro posouvací fakor dané viskoelasické funkce pro referenční eplou. log a 8,86 ( = (1.17) 11,6 + ) když: referenční eploa o = g + 45 C. Williams, Landel a Ferry ak vyjádřili myšlenku, že pro viskoelasické maeriály jsou čas a eploa naolik podobné fakory, že je možné pomocí experimenálních hodno viskoelasické funkce pro jednu eplou, sanovi jejich hodnoy při jiné eploě prosým horizonálním posuvem po časové ose. Superpozice eploa-čas se obvykle používá jako čisě empirický vzah, a proo je řeba brá v úvahu i její limiy. Pro semikrysalické polymery eno vzah plaí pro eploní oblas nad eploou ání, zaímco pro amorfní polymery byly odchylky zaznamenány kolem eploy skelného přechodu. Vysoce rozvěvené polyeylény dávají jen přibližnou superpozici da. Při aplikaci superpozice pro polymery se širokou disribucí molekulárních hmonosí bylo zjišěno, že není možno dosáhnou jednoné křivky v celé časové škále. Přeso, jak dokazují výsledky pečlivých experimenů pro širokou časovou oblas, základní hypoéza časověeploní superpozice je správná.

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Převáření a porušování maeriálů Převáření a porušování maeriálů Přednášející: Prof. Milan Jirásek, B322, el. 224 354 481, Milan.Jirasek@fsv.cvu.cz konzulace úerý 14:30-16:30, případně kdykoliv jindy dle

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Převáření a porušování maeriálů Přednášející: Prof. Milan Jirásek, B322, el. 224 354 481, Milan.Jirasek@fsv.cvu.cz konzulace úerý 14:00-15:30, případně kdykoliv jindy dle dohody Sudijní podklady: skripum

Více

Dynamická mechanická spektroskopie

Dynamická mechanická spektroskopie Dynamická mechanická spekroskopie Experimenální meody fyziky kondenzovaných sousav II NFPL146 Bohlin C-VOR 2 roaional rheomeer Triec 2 dynamic mechanical analyser viskozia, modul pružnosi v ahu a ve smyku

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

Reologické modely měkkých tkání

Reologické modely měkkých tkání Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce REKČNÍ KINETIK - zabývá se ryhlosí hemikýh reakí ZÁKLDNÍ POJMY Definie reakční ryhlosi v - pro reake probíhajíí za konsanního objemu v dξ di v V d ν d i [] moldm 3 s Ryhlosní rovnie obeně vyjadřuje vzah

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

2 Tokové chování polymerních tavenin reologické modely

2 Tokové chování polymerních tavenin reologické modely 2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

10. KAPITOLA STATICKÉ ZKOUŠKY DLOUHODOBÉ. Krípové zkoušky. l = l. ε 1, ε 2 hodnoty formace v definovaných časech

10. KAPITOLA STATICKÉ ZKOUŠKY DLOUHODOBÉ. Krípové zkoušky. l = l. ε 1, ε 2 hodnoty formace v definovaných časech 1. KAPITOLA STATICKÉ ZKOUŠKY DLOUHODOBÉ Vedle výrobků určenýc k jednorázové či krákodobé spořebě, exisuje celá řada aplikací, při kerýc jsou polymerní maeriály vysaveny namáání (napěí či deformaci) v delším

Více

Úloha č. 3 MĚŘENÍ VISKOZITY

Úloha č. 3 MĚŘENÍ VISKOZITY Úloha č. 3 MĚŘENÍ VISKOZITY ÚKOL MĚŘENÍ:. Zjisěe dynamickou viskoziu vzorku (směs glycerin - voda) v Höpplerově viskozimeru při eploách 0 C, 30 C, 40 C, 50 C a 60 C.. Z daných měření sesroje graf funkční

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Technický list. Trubky z polypropylenu EKOPLASTIK PPR PN10 EKOPLASTIK PPR PN16 EKOPLASTIK EVO EKOPLASTIK PPR PN20 EKOPLASTIK FIBER BASALT CLIMA

Technický list. Trubky z polypropylenu EKOPLASTIK PPR PN10 EKOPLASTIK PPR PN16 EKOPLASTIK EVO EKOPLASTIK PPR PN20 EKOPLASTIK FIBER BASALT CLIMA Technický lis Trubky z polypropylenu PPR PN10 Ø 20-125 mm PPR PN16 Ø 16-125 mm PPR PN20 Ø 16-125 mm EVO Ø 16-125 mm STABI PLUS Ø 16-110 mm FIBER BASALT PLUS Ø 20-125 mm FIBER BASALT CLIMA Ø 20-125 mm max.

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

čím později je betonový prvek zatížen, tím méně bude dotvarovat,

čím později je betonový prvek zatížen, tím méně bude dotvarovat, POROVNÁNÍ MATEMATICKÝCH MODELŮ PRO VÝPOČET SMRŠŤOVÁNÍ A DOTVAROVÁNÍ BETONU COMPARISON OF THE MATHEMATICAL MODELS FOR PREDICTION OF CREEP AND SHRINKAGE OF CONCRETE Jan Soška, Lukáš Vráblík Příspěvek se

Více

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny... XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová

Více

TERMOFYZIKÁLNÍ VLASTNOSTI VYBRANÝCH LÁTEK (doporučeno pro výuku předmětu Procesní inženýrství studijního programu Procesní inženýrství )

TERMOFYZIKÁLNÍ VLASTNOSTI VYBRANÝCH LÁTEK (doporučeno pro výuku předmětu Procesní inženýrství studijního programu Procesní inženýrství ) U n i v e r z i a T o m á š e B a i v e Z l í n ě Fakula aplikované informaiky TEROFYZIKÁLNÍ VLASTNOSTI VYBRANÝCH LÁTEK (doporučeno pro výuku předměu Procesní inženýrsví sudijního programu Procesní inženýrsví

Více

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie Zákony bilance Bilance hmonosi Bilance hybnosi Bilance momenu hybnosi Bilance mechanické energie Koninuum ermodynamický sysém Pené ěleso = ěšinou uzařený sysém Konsanní hmonos - nezáisí na čase ochází

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt

= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt Měření ěrného skupenského epla ání ledu a varu vody Měření ěrného skupenského epla ání ledu a varu vody Úkol č : Zěře ěrné skupenské eplo ání ledu Poůcky Sěšovací kalorier s íchačkou, laboraorní váhy,

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS = 11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Analýza citlivosti NPV projektu na bázi ukazatele EVA

Analýza citlivosti NPV projektu na bázi ukazatele EVA 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová

Více

2.6.4 Kapalnění, sublimace, desublimace

2.6.4 Kapalnění, sublimace, desublimace 264 Kapalnění, sublimace, desublimace Předpoklady: 2603 Kapalnění (kondenzace) Snižování eploy páry pára se mění v kapalinu Kde dochází ke kondenzaci? na povrchu kapaliny, na povrchu pevné láky (orosení

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Schöck Isokorb typ KST

Schöck Isokorb typ KST Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs. MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem

Více

Aplikace analýzy citlivosti při finačním rozhodování

Aplikace analýzy citlivosti při finačním rozhodování 7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Mendelova zemědělská a lesnická univerzia v Brně Agronomická fakula Úsav echniky a auomobilové dopravy Vliv zrání na deformační vlasnosi sýrů Diplomová práce Vedoucí diplomové práce: Vypracoval: prof.

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu)

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu) 100+1 příklad z echniky osředí 12.1 Energeická náročnos věracích sysémů. Klasifikace ENB Úloha 12.1.1 Vypočěe spořebu energie o věrání zadané budovy (edy energii o zvlhčování, odvlhčování a doavu vzduchu

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Laboratorní práce č. 1: Pozorování tepelné výměny

Laboratorní práce č. 1: Pozorování tepelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy 7. Měření kmioču a fázového rozdílu; Měření kmioču osciloskopem Měření kmioču číačem Měření fázového rozdílu osciloskopem Měření fázového rozdílu elekronickým fázoměrem 8. Analogové osciloskopy Blokové

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

Jakost, spolehlivost a teorie obnovy

Jakost, spolehlivost a teorie obnovy Jakos, spolehlivos a eorie obnovy opimální inerval obnovy, seskupování obnov, zráy z nedodržení normaivu Jakos, spolehlivos a obnova srojů Jakos vyjadřuje supeň splnění požadavků souborem inherenních znaků.

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

Řešený příklad: Parametrická křivka teplotní křivka

Řešený příklad: Parametrická křivka teplotní křivka Dokumen: SX04a-CZ-EU Srana 1 z 5 Řešený příklad: Paramerická křivka eploní křivka Eurokód EN 1991-1-:00 Vypracoval Z Sokol Daum Leden 006 Konroloval F Wald Daum Leden 006 Řešený příklad: Paramerická křivka

Více

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z

Více

Pozitronium. schéma kanálů pro anihilaci pozitronu v pevné látce. W. Brandt 1983

Pozitronium. schéma kanálů pro anihilaci pozitronu v pevné látce. W. Brandt 1983 Pozironium schéma kanálů pro anihilaci pozironu v pevné láce W. Brand 1983 Pozironium Pozironium (Ps) - vodíku-podobný vázaný sav pozironu a elekronu singlení sav 1 S, para-pozironium (p-ps), opačně orienované

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Zhodnocení historie predikcí MF ČR

Zhodnocení historie predikcí MF ČR E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ

Více