Jak oslabit PC, aby algoritmus: neměl paměťové nároky PC, povede k vyřazení hodnoty z domény proměnné! e f. e f. a b. a b. byl silnější než AC?

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak oslabit PC, aby algoritmus: neměl paměťové nároky PC, povede k vyřazení hodnoty z domény proměnné! e f. e f. a b. a b. byl silnější než AC?"

Transkript

1 N půli esty od AC k PC Progrmování s omezujíími podmínkmi Jk oslit PC, y lgoritmus: neměl pměťové nároky PC, neměnil grf podmínek, yl silnější než AC? Testujeme PC jen v přípdě, když je šne, že to povede k vyřzení hodnoty z domény proměnné! Příkld: Romn Brták Ktedr teoretiké informtiky mtemtiké logiky e f d e f d d Omezená konzistene po estě PC hrny se testuje pouze tehdy, pokud vyřzení dvojie může vést k vyřzení některého z prvků z domény příslušné proměnné. Jk to poznáme? Jedná se o jedinou vzájemnou podporu. Vrhol i je omezeně konzistentní po estě (restrited pth onsistent) právě když: kždá hrn vedouí z i je hrnově konzistentní (AC) pro kždé D i pltí: je-li jediná podpor ve vrholu j, potom v kždém vrholu k (spojeném s i j) existuje hodnot tk, že (,) (,) jsou komptiilní s příslušnými podmínkmi (PC). i k j Zloženo n AC-4: počítání podpor + seznm est pro PC Algoritmus RPC iniilize proedure INITIALIZE(G) Q AC {}, Q PC {}, S {} % vyprázdnění dtovýh struktur for eh (i,j) rs(g) do for eh D i do totl 0 for eh D j do if (,) is onsistent ording to the onstrint C i,j then totl totl + 1, S j, S j, {i,>} ounter[(i,j),] totl if ounter[(i,j),] = 0 then Q AC Q AC {i,>}, delete from D i else if ounter[(i,j),] = 1 then for eh k suh tht (i,k) rs(g) & (k,j) rs(g) do end dif return (Q AC, Q PC ) end INITIALIZE Q PC Q PC {(i,>,j,k)}

2 Algoritmus RPC kontrol AC proedure PRUNE(Q AC, Q PC ) while Q AC non empty do selet nd delete ny pir j,> from Q AC for eh i,> from S j, do ounter[(i,j),] ounter[(i,j),] - 1 if ounter[(i,j),] = 0&"" is still in D i then delete "" from D i Q AC Q AC {i,>} else if ounter[(i,j),] = 1 then for eh k suh tht (i,k) rs(g) & (k,j) rs(g) do Q PC Q PC {(i,>,j,k)} else for eh k suh tht (i,k) rs(g) & (k,j) rs(g) do if ounter[(i,k),] = 1 then Q PC Q PC {(i,>,k,j)} end while return Q PC end PRUNE Algoritmus RPC Nejprve uděláme AC potom testuje vyrné PC, přípdně ě se vríme k AC. proedure RPC(G) (Q AC, Q PC ) INITIALIZE(G) Q PC PRUNE(Q AC,Q PC ) %prvníěh AC while Q PC non empty do selet nd delete ny triple (i,>,j,k) from Q PC if D i then {j,>} {j,x> S i x D j } % jediná podpor pro if {k,> S i S j D k }= then ounter[(i,j),] 0 delete "" from D i Q PC PRUNE({i,>}, Q PC ) % opkujeme AC end while end RPC Mjí AC PC něo ě společného? č k-konzistenekonzistene AC: rozšiřujeme jednu hodnotu do druhé proměnné PC: rozšiřujeme dvojii hodnot do třetí proměnné můžeme pokrčovt CSP je k-konzistentní,,právě když liovolné konzistentní ohodnoení (k-1) různýh proměnnýh můžeme rozšířit do liovolné k-té proměnné. 4 4-konzistentní t grf 12 1,2 = 12 1,2 = 123 Silná k-konzistene konzistene 3-konzistentní grf není 2-konzistentní grf! = CSP je silně k-konzistentní, právě když je j-konzistentní pro kždé j k. Vlstnosti: Zřejmě: silná k-konzistene k-konzistene Dokone: silná k-konzistene j-konzistene j k Oeně nepltí: k-konzistene konzistene silná k-konzistene konzistene Pojmenování: NC = silná 1-konzistene = 1-konzistene AC = (silná) 2-konzistene PC = (silná) 3-konzistene někdy se říká silná konzistene po estě, pokud NC+AC+PC

3 Jk velké k potřeujeme? Máme-li grf s n vrholy, jk silnou konzisteni potřeujeme yhom přímo nšli řešení? Pro grf s n vrholy potřeujeme silnou n-konzisteni! n-konzistene nestčí - viz předhozí příkld silná k-konzistene pro kn tké nestčí A o tento grf? 1,2 =,, grf s n vrholy domény 1..(n-1) 1) silně k-konzistentní pro kždé kn přesto nemá řešení Stčí nám pouze (D)AC! Protože se jedná o strom. Řešení ez nvrení CSP prolém vyřešíme ez nvrení, pokud při nějkém uspořádání proměnnýh můžeme pro kždou proměnnou vždy njít hodnotu komptiilní s již ohodnoenými proměnnými. 1, 2 = 1, 2 1, 2, 3 1, 2, Jk zjistit úroveň konzistene potřenou pro dný grf? Pozorování: proměnná musí ýt komptiilní s již ohodnoenými proměnnými tj. s tolik proměnnými, kolik má zpětnýh hrn pro k zpětnýh hrn potřeujeme (k+1)-konzisteni je-li m mximum počtu zpětnýh hrn pro všehny vrholy, stčí nám silná (m+1)-konzistene při různém uspořádání vrholů je počet zpětnýh hrn různý smozřejmě hledáme uspořádání s nejmenším m Uspořádný grf je grf s lineárním uspořádáním vrholů. Šířk grfu Šířk vrholu v uspořádném grfu je počet hrn vedouíh z tohoto vrholu do předhozíh vrholů. Šířk uspořádného grfu je mximum z šířek jeho vrholů. Šířk grfu je minimum z šířek všeh jeho uspořádnýh grfů. Šířk grfu je proedure MinWidthOrdering((V,E)) Q {} while V not empty do N selet nd delete node with the smllest #edges from (V,E) enqueue N to Q return Q end MinWidthOrdering Šířk grfu stupeň konzistene Tvrzení: Pokud je grf podmínek silně k-konzistentní k>w, kde w je šířk grfu podmínek, potom existuje uspořádání proměnnýh pro vyřešení CSP ez nvrení. Důkz: grf má šířku w, tj. existuje uspořádný grf s touto šířkou speiálně, počet zpětnýh hrn pro kždou proměnnou je mx. w proměnné ohodnoujeme v pořdí uspořádání grfu nyní, pokud ohodnoujeme proměnnou: musíme njít hodnotu komptiilní se všemi již ohodnoenými proměnnými, které jsou s proměnnou spojené podmínkou (hrnou) nehť tkovýh proměnnýh je m, potom m w grf je (m+1)-konzistentní, tedy tková hodnot musí existovt 1 i j l mximálně w

4 Oená směrová konzistene AC (silná 2-konzistene) stčí n stromové grfy (šířk 1). Jk je to s PC vyššími typy konzistene? PC mění strukturu grfu - přidává nové hrny! Tedy, pokud vezmeme grf šířky 2 provedeme PC, můžeme zvětšit šířku grfu! Co s tím? Nově přidná hrn po PC Pozorování 1: n stromy nám stčí DAC (děláme ve směru ke kořenu) CSP je směrově k-konzistentní při nějkém uspořádání proměnnýh, právě když liovolné konzistentní ohodnoení (k-1) různýh proměnnýh můžeme rozšířit do liovolné k-té proměnné, která je v uspořádání z touto (k-1)-tií. Pozorování 2: Adptivní konzistene v elém grfu nepotřeujeme všude stejnou konzisteni Stčí AC Stčí PC Stčí AC Adptivní konzistene zjišťuje směrovou i-konzisteni, kde i se mění podle šířky zprovávného vrholu vrholy jsou zprovávány ve směru proti uspořádání grfu nové hrny přiývjí pouze v dosud nezprovné části výslednou topologii (šířku) grfu lze zjistit před spuštěním lgoritmu (i,j)-konzistene Při k-konzisteni kkonzisteni rozšiřujeme (k-1) proměnnýh o dlší proměnnou, tj. vyřzujeme (k-1)-tie, které nelze rozšířit n dlší proměnnou. Můžeme ještě zoenit! CSP je (i,j)-konzistentní, právě když liovolné konzistentní ohodnoení i různýh proměnnýh můžeme rozšířit do liovolné množiny j neo méně než j dlšíh proměnnýh. CSP je silně (i,j)-konzistentní, právě když je (k,j)-konzistentní pro kždé k i. k-konzistene AC PC = (k-1,1)-konzistene = (1,1)-konzistene = (2,1)-konzistene Inverzní konzistene Je-li v (i,j)-konzisteni i i i větší než 1, musíme provt s i-tiemi, i ož znmená velké pměťové nároky (viz PC). Co to zkusit nopk, tj. i neháme 1 zvětšujeme j? První náznk jsme již měli: RPC je (1,1)-konzistene očs (1,2)-konzistene (1,k)-konzisteni nzýváme inverzní konzistení. Pro dnou hodnotu hledáme podporu v dlšíh k proměnnýh. Pokud tková podpor hyí, vyřdíme hodnotu z domény. inverzní hrnová konzistene = hrnová konzistene inverzní konzistene po estě (PIC) = (1,2)-konzistene Nelze rozšířit do zylýh dvou proměnnýh.

5 (Neighourhood Inverse Consisteny) NIC Pozorování: Zjišťování inverzní konzistene má smysl, pokud je lespoň ň jedn testoví t proměnná svázná s dnou proměnnou. Můžeme zjišťovt konzisteni právě jen v okolí kždé proměnné. CSP je inverzně konzistentní pro okolí (NIC), právě když pro liovolnou hodnotu h liovolné proměnné X existuje řešení prolému vzniklého z okolí X, které [řešení] je konzistentní s h. proedure NIC((V,E)) Q V while Q not empty do V selet nd delete vrile from Q deleted flse for eh H in D V do if no solution for Neighourhood(X) omptile with H then remove H from D V deleted d true if D V empty then return fil if deleted then Q Q Neighourhood(X) return true end NIC Bodová konzistene Můžeme liovolnou lokální konzistenční tehniku dále posílit? ANO! Zkusíme, zd pro kždou hodnotu je zylý prolém konzistentní. CSP je odově A-konzistentní (singleton A-onsisteny), kde A je liovolná konzistenční tehnik, právě když pro liovolnou hodnotu h liovolné proměnné X je prolém omezený n X=h A-konzistentní. Vlstnosti: + podoně jkonicrpcodstrňuje odstrňuje jen hodnoty z domény proměnnýh + sndná implemente - může ýt čsově náročnější (používt optrně) 1) odová A-konzistene A-konzistene 2) A-konzistene B-konzistene odová A-konzistene odová B-konzistene 3) odová (i,j) j)-konzistene > (i,j+1) j+1)-konzistene (SAC>PIC) 4) silná (i+1,j)-konzistene > odová (i,j)-konzistene (PC>SAC) NC = 1-konzistene Přehled konzistenčníh tehnik AC = 2-konzistene = (1,1)-konzistene PC = 3-konzistene = (2,1)-konzistene PIC = (1,2)-konzistene NIC SRPC strong PC SAC PIC RPC AC silnější tehnik neporovntelné tehniky

Programování. s omezujícími podmínkami. Roman Barták. rová hranová konzistence

Programování. s omezujícími podmínkami. Roman Barták.   rová hranová konzistence Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Směrov rová hranová konzistence Definice:

Více

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Plánováníá a rozvrhování

Plánováníá a rozvrhování Plánováníá rozvrhování Romn Brták, KTIML romn.rtk@mff.uni.z z http://ktiml.mff.uni.z/~rtk N úvod Plánoví prolém P je trojie (Σ,s 0,g) Σ je plánoví domén popisujíí stvy ke (přehody ř mezi stvy) s 0 je počáteční

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Programování. s omezujícími podmínkami. Roman Barták. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak

Programování. s omezujícími podmínkami. Roman Barták. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Konzistenční techniky Dosud jsme podmínky

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31 Minimlizce utomtů M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 28. řezn 2007 1/ 31 Ekvivlence utomtů 1 2 3 1 2 3 1 2 Všechny 3 utomty přijímjí jzyk všech slov se sudým počtem -ček Nejvýhodnějšíjepronásposledníznich-mánejméněstvů

Více

Konstrukce na základě výpočtu II

Konstrukce na základě výpočtu II 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

10. Suffixové stromy 1 2014-01-23

10. Suffixové stromy 1 2014-01-23 10. Suffixové stromy V této kpitole popíšeme jednu pozoruhodnou dtovou strukturu, pomocí níž dokážeme prolémy týkjící se řetězců převádět n grfové prolémy řešit je tk v lineárním čse. Řetězce, trie suffixové

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Automaty a gramatiky

Automaty a gramatiky Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

1.7.4 Výšky v trojúhelníku II

1.7.4 Výšky v trojúhelníku II 1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník

Více

Masarykova univerzita Fakulta informatiky. Detekce cyklů v dynamických grafech. Jaroslav Bendík

Masarykova univerzita Fakulta informatiky. Detekce cyklů v dynamických grafech. Jaroslav Bendík Msrykov univerzit Fkult informtiky Deteke yklů v dynmikýh grfeh Bklářská práe Jroslv Bendík Brno, 204 Prohlášení Prohlšuji, že tto práe je mým původním utorským dílem, které jsem vyprovl smosttně. Všehny

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Optimalizace & soft omezení: algoritmy

Optimalizace & soft omezení: algoritmy Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Reprezentovatelnost částek ve dvoumincových systémech

Reprezentovatelnost částek ve dvoumincových systémech Reprezentovtelnost částek ve dvoumincových systémech Jn Hmáček, Prh Astrkt Máme-li neomezené množství mincí o předepsných hodnotách, může se stát, že pomocí nich nelze složit některé částky Pro jednoduchost

Více

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48 Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46 Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor

Více

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n, Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

Mocnina částečně uspořádané množiny

Mocnina částečně uspořádané množiny Monin částečně uspořáné množiny Ing. Emilie Šeptáková Kter informtiky, FEI, VŠB Tehniká Univerzit Ostrv, 7. listopu 5, 708, Ostrv Poru Emilie.Septkov @vs.z Astrkt. V příspěvku popisuji novou metou pro

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

Heuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002

Heuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002 Heuristické řešení problémů Seminář APS Tomáš Müller 6. 7. 00 Heuristické řešení problémů Popis několika základních metod lokální prohledávání branch and bound simulated annealing, TABU evoluční algoritmy

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Stereometrie metrické vlastnosti 01

Stereometrie metrické vlastnosti 01 Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu. Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

return n; 3/29 Ing. Miroslav Balík, Ph.D. - BI-PA1-05 if (n<1) { printf("%d neni prirozene cislo\n", n); exit(0); }

return n; 3/29 Ing. Miroslav Balík, Ph.D. - BI-PA1-05 if (n<1) { printf(%d neni prirozene cislo\n, n); exit(0); } 1 Příprv studijního prormu Informtik je podporován projektem finncovným z Evropského sociálního fondu rozpočtu hlvního měst Prhy. Prh & EU: Investujeme do vší budoucnosti Funkce, intuitivní chápání složitosti

Více

2.7.7 Obsah rovnoběžníku

2.7.7 Obsah rovnoběžníku 77 Osh rovnoěžníku Předpokldy: 00707 Osh (znčk S): kolik míst útvr zujímá, počet čtverečků 1 x 1, které se do něj vejdou, kolik koerce udeme muset koupit, ychom pokryli podlhu, Př 1: Urči osh čtverce o

Více

VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS

VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS Ročník., Číslo IV., listopad VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS Denisa Moková Anotae: Článek se zabývá využitím Floydova algoritmu pro výpočet vzdáleností na síti,

Více

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z Grfy V této kpitole e enámíme e ákldními pojmy teorie grfů, ukážeme i možnoti jejih použití tké e enámíme některými lgoritmy, které řeší úlohy teorie grfů. Grfy louží čto jko protředek k lepšímu poroumění

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,

Více

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ?

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ? Přijímí řízení kemiký rok 07/08 B. stuium Kompletní znění testovýh otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 6 6? 6 86 8. Které

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny. 4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel

Více

Automaty a gramatiky

Automaty a gramatiky 5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více