Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1"

Transkript

1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci uvažujmeteelněizolovanýíst,kterýjeórovitouřeážkourozdělennadvěčásti,levouoobjemu V 1 aravouo objemu V 2.Stlačujeme-lilynzlevéstrany vizobr.1,jenucenrocházetřeážkoudoravéčásti.dochází tedykezměněobjemuvlevéčástiístuo V 1,roravoučástlzeanalogickysátrozměnuobjemu V 2. Obrázek1:Nevratnáexanzelynuřesoréznířeážkudooblastisnižšímtlakem 2 < 1 Vzhledem k teelné izolaci ístu je možné na základě rvní termodynamické věty sát: E 2 E 1 = 1 V 1 2 V 2, 1) kde 1 V 1 odovídáráci,kteroujsmevykonalistlačovánímístuzlevéstranya 2 V 2 ráci,kteroulynvykonal ři osouvání ravého ístu. Úravou rovnice1) lze získat: resektive E V 2 = E V 1, H 2 = H 1, cožznamená,žeřitomtojevuzůstáváentalie 1 lynukonstantní.takovéjevyoznačujemejakoizoentalické. Změna teloty U J-T jevu je obzvlášť zajímavé sledovat změnu teloty lynu. Závislost teloty lynu na tlaku lze určit ze vztahu: ) dt= d=µ JT d, 2) H ) kde definujezávislosttelotylynunatlakuzakonstatníentalie, µ JT značíjouleův-thomsonův H koeficient.vyjádřenímkoeficientuze2)avyužitímvztahuroteelnoukaacituřikonstatnímtlaku 2 lze získat vztah: µ JT = T ) V V = V αt 1), ) C C kde α 1 V definuje telotní součinitel objemové roztažnosti lynu ři konstatním tlaku. 1 Vztah H= E+V jeodvozennazákladělegendrovýchtransformací vizřednáškyztermodynamikyastatistickéfyziky. ) ) 2 H Teelnákaacitařikonstantnímtlaku C = = T S. 4) 1

2 Jelikožobjem V ateelnákaacita C jsoukladné,závisíznaménkokoeficientu µ JT nahodnotě αt:ro αt <1 je µ JT <0ařioklesutlakusetelotalynuzvýší.Naoakro αt >1je µ JT >0ařioklesutlakuse telotalynusníží viz2)a). Chování ideálního lynu ři J-T jevu Pro ideální lyn o n molech latí stavová rovnice: V = nrt, odkud ro objem lynu dostáváme: V = nrt. 5) Prokoeficient αze4)odosazeníz5)vříaděideálníholynulatí: α= 1 V = 1 nr V = 1 T, zčehožlyne αt=1atedy µ JT =0.Toznamená,žeideálnílynřiJ-Texanzineměnítelotu. Chování reálného lynu ři J-T jevu ReálnýlynlzenaříkladaroximovatvanderWaalsovýmlynem,rojedenmol 4 takovéholynulatí: + a ) V 2 V b)=rt, odkud získáváme ro tlak: Svyužitímderivaceimlicitnífunkce 5 a6)můžemesát: ) ) V = ) V = = RT V b a V2. 6) V T RV b)v RTV 2aV b), z čehož dostaneme rozdíl vystuující ve): T V = RTV b+2avv b) 2 RTV 2aV b) 2. Zaředokladu,žeuvažujemeřídkýlyn,rokterýlatí b V aokud a RTV rotlak a/v 2 ): T V b+ 2a RT atedy kdeθznačítelotuinverzealatíroni: µ JT 1 b+ 2a ) = b ) Θ C RT C T 1, 7) Θ= 2a br. Vsouladuse7)ab>0 řitelotáchnadtelotouinverzejej-tkoeficientzáornýařioklesutlaku se telota lynu zvětšuje viz2). Při telotách od telotou inverze je J-T koeficient kladný a ři exanzi lynu telota klesá. JednazodlišnostíreálnéhoavanderWaalsovalynusočívávtom,žeuskutečnéholynuzávisítelotainverzenatlaku. ) 4 Pro nmolůvanderwaalsovalynulatírovnice: +n 2 a V V nb)=nrt. 2 5 Derivaciimlicitnífunkce Fx,y)rovádímeodleobecnéhoředisu y x )F = x ) y F F y )x viz matematická analýza). 2

3 Využití v raxi J-T jev se ulatňuje ři zkaalňování lynů, kdy je zaotřebí dosahovat zvláště nízkých telot. Aby telota ři exanzi klesala, je zaotřebí začít ři telotě od telotou inverze, tedy některé lyny na očátku ochlazovat exanzí jiného lynu o vyšší telotě inverze. NaříkladroheliumlatíΘ He =40K,neonΘ Ne =21K,vodíkΘ H2 =202K,dusíkΘ N2 =621K,kyslík Θ O2 =764KaoxiduhličitýΘ CO2 =1500K. Kontrolní otázky Charakterizujte Joule-Thomsonův jev. Je tento jev izoentalický? Jak se změní telota ideálního lynu ři Joule-Thomsonově jevu? Lze reálný lyn vždy bezečně nahradit van der Waalsovým lynem? Jak se změní telota exandujících lynů ři okojové telotě, uvažujeme-li vzduch nebo oxid uhličitý? Jak se změní telota exandujících lynů ři okojové telotě, uvažujeme-li vodík nebo hélium? K čemu se v raxi využívá Joule-Thomsonův jev? Vyhledejte více informací o raktickém využití. Postu měření Joule-Thomsonův jev lze vhodným zůsobem demonstrovat v laboratoři s využitím aaratury PHYWE. Zařízení sestává ze skleněné trubice s órovitou řeážkou, která je hadicí roojena s tlakovou nádobou. Teloměry v oboučástechtrubicelzeměřitzávislosttelotníhorozdílunatlakuaurčittakjoule-thomsonůvkoeficinet µ JT. Pomůcky AaraturaroJ-Tjev,tlakovéláhveN 2,CO 2 )sříslušenstvím,roojovacíhadiceskoncovkou,dvavichovací teloměry, modul PHYWE ro měření telot, roojovací kabely, stoky a barometrická stanice ro určení očátečních odmínek. Obrázek 2: Sestavení aaratury ro měření Joule-Thomsonova koeficientu 1 hlavníuzávěrtlakovéláhve,2 manometrrotlakovouláhev, redukčníventil,4 manometrrovýstuní tlak, 5 roojovací trubice, 6 řiojení roojovací trubice, 7 ohřívač lynu, 8 manometr na aaratuře, 9 skleněnátrubicesórovitouzátkou,10 místorozasunutívichovacíhoteloměrut 2 ),11 místoro zasunutívichovacíhoteloměrut 1 ),12 modulphyweroměřenítelot.

4 UrčeníJoule-Thomsonovakoeficientu µ JT zgrafu T) Před začátkem měření je nutné, aby celá aaratura byla v místnosti alesoň jednu hodinu. Dále je nutné zamezit telotním výkyvům během měření. Zaojímecelouaaraturuodleobr.2.VyužijemenejrvetlakovouláhevsN 2.Prozamezeníúnikulynu do okolí je zaotřebí roojovací ventily dostatečně utěsnit utahovacím klíčem. ZanememodulPHYWEroměřenítelotyanastavímejej.TelotuT 1 červenádioda)měřímevevstuní částitrubice,telotut 2 zelenádioda)vevýstuníčástitrubice.pronastavenívyužijemetlačítkot 1..4 u říslušné telotydisleje) v závislosti na zaojených konektorech. Dále nastavíme měření telotního rozdílu T na druhém disleji aktivujeme tlačíko T, na disleji se rozsvítídalšízelenádioda,oětovnýmvyužitímtlačítkat 1..4 udruhéhodislejeřenemenatelotut 1, tzn.ut 1 svítíobědiody,ut 2 ouzejedna zelená.měřenítelotníhorozdílujeřesnénasetinykelvinu. ObzvlášťvříaděN 2 jenutnéměřitsvelkouečlivostí,jelikožtelotnírozdíljeřibližně0,k. Obrázek : Modul PHYWE ro měření teloty Jakmile je telotní rozdíl T na druhém disleji nulový, otevřeme hlavní ventil tlakové láhve1). Manometr 2) ukáže očáteční tlak v láhvi. Poté je nutné zcela otevřít malý boční ventil, výstuní tlak již bude nadále regulovat ouze redukční ventil), jehož utahováním dochází ke zvyšování tlaku na manometru4). Poté sledujeme zvýšení tlaku na manometru8). Je nutné vždy dbát na to, aby tlak na manometru 8) byl nejvýše 1 bar. Výstuní otvor skleněné trubice nikdy neutěsňujeme! Nastavujeme ostuně tlak na manometru8) o 0, 1 bar. Po nastavení necháme roudit lyn trubicí o dobu1,5minutyvyužijemestoky),otézaznamenámetřihodnoty Trodanýtlak aznichvyočteme aritmetický růměr. Všechna data řehledně zaíšeme do tabulky: i T 1 i T 2 i T i T i = 1 T 1 1 T 2 1 T 1 T 1 = 2 T 1 2 T 2 2 T 2 T 2 = T j i T j 1 T j 2 µ JTi T i i i = µ JTi µ JT 2 i=µ JTi µ JT ) 2 µ JT1 T = µ JT1 µ JT 2 1 =µ JT1 µ JT ) 2 µ JT2 T = µ JT2 µ JT 2 2 =µ JT2 µ JT ) µ JT =...K Pa 1 4

5 Určíme nejistotu tyu A odle vztahu: n µ JTi µ JT ) 2 i=1 u A µ JT )= nn 1) n 2 i i=1 = nn 1) a zaíšeme výsledek měření: µ JT =...±...K Pa 1. Sestrojímebodovýgraf T)roN 2.Grafroložímelineárníaroximací,znaměřenýchdaturčímesměrnici, jejížhodnotaodovídáj-tkoeficientu µ JT. Nazákladěvztahu7)vyočtemeteoretickouhodnotu 6 µ JT vrámciaroximacenavanderwaalsůvlyn) a orovnáme ji s naměřenou hodnotou. StejnýostuměřenírovedemeroCO 2. Provedeme diskuzi naměřených výsledků. Určení teloty inverze UrčímetelotuinverzeΘroobalynynazákladěznalostikoeficinetů aabzvanderwaalsovyrovnice. Provedeme diskuzi výsledků. Použitá literatura a zdroje Mikulčák, Jiří. Matematické fyzikální a chemické tabulky ro střední školy.. vyd., dotisk. Praha: Prometheus, , 206 s. ISBN Mlčoch, Jiří. Úvod do fyzikálního měření. 2., ur. vyd. Olomouc: Univerzita Palackého, Přírodovědecká fakulta, 2001, 147 s. ISBN Holubová, Renata. Termodynamika a molekulová fyzika řednášky. Olomouc, Dostuné z: htt://afyz.uol.cz/ucebnice/down/termo.df. Oatrný, Tomáš. Kaitoly z termodynamiky a statistické fyziky. Olomouc, Dostuné z: htt:// Joule-Thomson effect. PHYWE Physics[online]. Dostuné z: htt:// Konstanty van der Waalsovy rovnice. Vysoká škola chemicko-technologická v Praze[online]. Dostuné z: htt:// 6 KonstantyvanderWaalsovyrovnicelzenaříkladnaléztna:htt:// waals.html, ostatní otřebné hodnoty v MFCh tabulkách. 5

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE Záadočeská univerzita v Plzni Fakulta edagogická Dilomová ráce SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE COMPARISON OF SELECTED EFFECTS IN REAL GAS - MODELS, ANIMATIONS Jiří Prušák Plzeň

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá.

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá. 21 Entroie AnonymnÌ n is na zdi v jednè kav rniëce na Pecan Street v Austinu v Texasu n m sdïluje: Ñ»as je z sob, jak B h zajistil, aby se vöechno nestalo najednouì.»as m takè smïr: nïkterè dïje se odehr

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

Měření vlhkosti vzduchu Úkol měření:

Měření vlhkosti vzduchu Úkol měření: Měření vlhkosti vzduchu Úkol měření: ) Orientačně změřte hodnoty vlhkosti vzduchu, kterou měníte zvlhčovačem omocí rofesionálního měřiče vzduchu, omocí vlasového vlhkoměru a omocí nerofesionálního měřiče

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

ř ž ř š ř ů ř ž ř ř ž ž ř Č Ú Č Ř Ě Ř É Á ř ř ž ř ř ř ř ž Č ú ž Č ř š ř Č ž ř ň ř ž ř ů Ů ř ž ž ú ř š ř úř ř ř ň ř ů ů ř ř ž ů Č ž ř š ř ň ů ú ů ž ů ů š ž ř ů ů š ó š ů ů ř š ů ů ř ů ř ž š ř ú ůč Ú š ú

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová čerpadla série 100 50 Hz

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová čerpadla série 100 50 Hz TECNICKÝ KATALOG GRUNDFOS Série Oběhová čeradla série z Obsah Všeobecné údaje Výkonový rozsah Výrobní rogram, x V, z Tyové klíče 6 GRUNDFOS ALPA 6 GRUNDFOS ALPA+ 6 UP, UPS 6 GRUNDFOS COMFORT 6 Použití

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovoúvodem... 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovoúvodem... 3 Obsah Fyzika je kolem nás(molekulová fyzika a termika) Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová Slovoúvodem 3 1 Jakvelkéjsou malé částice? 5 11 Hmotnostčástic

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Izotermický děj Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3 Technická měření v MS Excel Pracovní list 8 Měření na ventilátoru - graf Ing. Jiří Chobot VY_32_INOVACE_323_8

Více

5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4.

5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4. FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #4 Poissonova konstanta a měření dutých objemů Datum měření: 6.12.2013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace:

Více

Ě Ý Ř úř ř ý Á Ř Á É Ř Á Ř É Á š Ž Á Ř Ž ú ř úř úř úř ř š ý ú ř Š ř ů ú ř ř š ř ů ř ř ú Ř ú ř ř ž ř ú ú ý ů ý ř ú ř ř ů ř ú ř ř Ž ů úř úř ř ř ř š ť ř š Ž ý ř ř ů ř úř ň ů ř Ž Ž ř ř ů ů ý ý Ž řň š ř š ý

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

H δ+ A z- K z+ Obr. E1

H δ+ A z- K z+ Obr. E1 ELEKTROCHEMIE Elektrochemie je část fyzikální chemie studující roztoky elektrolytů a děje na elektrodách do těchto roztoků onořených. Studuje tedy roztoky obsahující nabité částice - ionty. Pojmy elektroda,

Více

š š ř š ř š ží ř ý úř ř š ř š ř ř š ř Ž Ž ý ý ú ú š ř ř Ž š ý ř ř ý ř š ř ř ž ý ý ř ř ú ý ř Ó ř ý ř š ř ý ží ř ř š ž ř ý ý ř Ž Ž ř ří ý ý ž ř ý ř Ž ý Ž ř š ú ř ř ý ř ú ř Ž š ř Ž ý ž ř ú Ž ř ř ř ž ř š Ž

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Silové poměry na šroubu,

Více

ř úř úř ř Č ř Ž ř ř Č ú ú ú ú Ž ř Č ř ó ř úř ř ř ř ř ř ř ú ř ř ú ř ř ř ř ú ú ř Č ř ř ř Č ú ř ú ř ú ú ú ú ř ú ř ř ř ř ř ó ř ř ř ř Ř ř ř úř ř ř ř ř ř Ž Ý Š Š ř ř ř ř ú ř ř ř ř Ý ř ř ř ú Ú Š ř É Ú ú ť ř úř

Více

Ů Á Ť ť ť Á š ř ř Š ů ř š ř ů ú š Š ř ř ř ř Ý ů Č ř ů ř ř ř úř ď š Ť ř ř úř š ř Č ť š Ž š ř ú ú Ž š ř ř ř š š ř Á ř É ť Á ú š ř ř ř š š ř ú ř š Á ř ř ř ó š Ž š ř ú ú Ž Ž ú ř ř ř ř Žš š Č š Á ř Č Č Č Á

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta elektrotechnická. Katedra měření BAKALÁŘSKÁ PRÁCE. Aerometrický systém pro malá letadla

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta elektrotechnická. Katedra měření BAKALÁŘSKÁ PRÁCE. Aerometrický systém pro malá letadla ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra měření BAKALÁŘSKÁ PRÁCE Aerometrický systém ro malá letadla Praha, červen 006 Zadání (vložit) Prohlášení Prohlašuji, že jsem svou bakalářskou

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3 Technická měření v MS Excel Pracovní list 6 Graf teplot Ing. Jiří Chobot VY_32_INOVACE_323_6 Anotace

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Č ř ě ě ř ď ú ů ů ř ř ř ěř ř ěř ř ď é ř é úř ř ř é ř ř ř ř ú úř é Č Í Č ř ě ř ř ě ř ď ú é ř ď ě ě ů ř ě ř ř ú ů ě ř ů ě ú ř é ř ř ď ř é ú ú ř ď ř ž é ě ě ř ě ů ě ú Ž é é ú ů ě ř ď ř ě é ě úř ř é ú ě ř

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Fakulta chemicko-technologická

Fakulta chemicko-technologická Fakulta chemicko-technologická Katedra analytické chemie Katedra anorganické technologie

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA. Praktické pro každý den. www.unipro-alpha.

KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA. Praktické pro každý den. www.unipro-alpha. » KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO «VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA www.unipro-alpha.com Praktické pro každý den. RYCHLÁ PŘÍPRAVA VE 3 KROCÍCH NAPLNĚNÍ Velký užitečný objem

Více

VÝUKA CHEMIE. Clausiovo kritérium a extenzivní podmínky termodynamické rovnováhy

VÝUKA CHEMIE. Clausiovo kritérium a extenzivní podmínky termodynamické rovnováhy VÝUKA CHEMIE Chemické listy, v souladu s celosvětovým trendem v oblasti informatiky, budou postupně stále více přecházet na elektronickou formu publikování. V současnosti si lze na internetové adrese http://staff.vscht.cz/chem_listy

Více

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů 1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

Aussenaufstellung 2.1. Silný výkon s tepelnými čerpadly. LW 310 (L) a LW 310 A. Tepelné čerpadlo vzduch/voda. Technické změny vyhrazeny Alpha-InnoTec

Aussenaufstellung 2.1. Silný výkon s tepelnými čerpadly. LW 310 (L) a LW 310 A. Tepelné čerpadlo vzduch/voda. Technické změny vyhrazeny Alpha-InnoTec Aussenaufstellung Silný výkon s tepelnými čerpadly LW 1 (L) a LW 1 A Technické změny vyhrazeny Alpha-InnoTec Tepené čerpadlo vzduch/voda Datový přehled parametrů: tepelná čerpadla vzduch/voda pro vnitřní

Více

ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

úř Ú é Ú Í Á ř ř ř ř ř ř é ř ř ř ř ř ř ř ř ú é ň ř ú ř ř ř ř ř ú ř ú ř éú ú ů š ř Ů ř ů Ů Ž ř ů Ž ž ů é ú ž Ž ř Ů ú ů ř ů Ú ř ř š ř Ú ř ů ů ů ů ů ů š ř ř ř Ú ř Ž řú ň ř ú ů ů ř ř š ř ů Ů ř ř ř ú ú éú ř

Více

Popis stavového chování plynů

Popis stavového chování plynů ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Popis stavového chování plynů BAKALÁŘSKÁ PRÁCE Martin Řehák Studijní obor: Chemie se zaměřením na vzdělávání Vedoucí práce: Mgr. Jitka

Více

ý úř Č ý ř ř ř ř ř é ř ř ř ú ý ů ý ů ř ř ř š ř ř ý ř ř ř ř úó ř ř ř ř ř ú é ř ř ř ř ř ř ý ý ů ý ý ř ř ř ý ú ů ř ů ý ú Č ú Ý ř ř ř Í ř š ý š é ř ř ý ř é ř ř ř ř é ř ř é ř é ř ý Ů ý ý Ú ý ý ř ř Ů ý ů š ý

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Mgr. Libor Lepík Student a konkurenceschopnost

www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Mgr. Libor Lepík Student a konkurenceschopnost www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075 Teorie Anuloid

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3, pracovní list 1 Technická měření v MS Excel Základy práce s tabulkou Ing. Jiří Chobot VY_32_INOVACE_323_1

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ

Více

SOCIÁLNĚ PRÁVNÍ MINIMUM

SOCIÁLNĚ PRÁVNÍ MINIMUM SOCIÁLNĚ PRÁVNÍ MINIMUM Vážení rodiče, rarodiče, blízcí našich acientů, nabízíme řehled dávek, výhod a kontaktů, který by Vám omohl lée zvládnout situaci, která vznikla v souvislosti s onemocněním Vašeho

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

X-kříž. Návod k instalaci a použití

X-kříž. Návod k instalaci a použití X-kříž Návod k instalaci a použití 1 Obsah Název kapitoly strana 1. Měřicí princip X-kříže 2 2. Konstrukce 2 3. Využití 2 4. Umístění 3 5. Provedení 3 6. Instalace 4 7. Kompletace systému 7 8. Převod výstupu

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

š ě ě ů ú ě ě š ř ů ú Ř ú Á Ě ÉÚ úč Č ú ř ě ó ů ř ů ě ě ó ž š ů ů ě ú ě ž ú ě Ý ú ř ú ř ř ú ž Á ú Ý Í Í Ú ž ú š š ň ň ř ě ž ř ř Ě Á Ě ů ř Ě Á Á ů Á Á Ý Ř ČÍ Ů Á Ů ú ě ú ř ú Ů ě ě ů ů ž ň ě ě Ň ú Ý Á Ř

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více