M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK"

Transkript

1 M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Kuželosečky Kuželosečky Kuželosečky jsou rovinné křivky, které vzniknou průnikem rotační kuželové plochy s rovinou, která neprochází jejím vrcholem. Vzájemnou polohou roviny a plochy vzniknou: A. Kuželosečky středové (mají střed souměrnosti) B. Kuželosečka nestředová (nemá střed souměrnosti) 1 z 41

3 ± Kružnice Kružnice Kružnice k se středem S[0; 0] (v počátku souřadné soustavy) a poloměrem r > 0 je množina všech bodů roviny, které mají od středu S stejnou vzdálenost r. Rovnice kružnice se středem v počátku souřadné soustavy je určena rovnicí x + y = r Tuto rovnici lze odvodit na základě určení vzdálenosti dvou bodů - konkrétně středu S a libovolného bodu X ležícího na kružnici: Středový tvar rovnice kružnice Nechť je dána kružnice k se středem S[m; n] a poloměrem r > 0 a libovolný bod X[x; y], který leží na kružnici k. z 41

4 Obecný tvar rovnice kružnice Při odvozování obecného tvaru rovnice kružnice se vychází ze středového tvaru rovnice kružnice: Příklad 1: Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3; ]. Kružnice se středem S[0; 0] má rovnici x + y = r. Poloměr r zjistíme dosazením souřadnic bodu A ležícího 3 z 41

5 na kružnici do této rovnice: (-3) + = r r = 13 Daná kružnice má rovnici x + y = 13; její poloměr je r = Ö13. Příklad : Rozhodněte o vzájemné poloze bodů A[4; 3], B[1; 1], C[; 0] a kružnice dané rovnicí x + y = 4. Zjistíme, zda hodnota výrazu x + y pro souřadnice bodů A, B, C je buď rovna 4 (bod leží na kružnici), nebo je menší než 4 (bod vnitřní oblasti kružnice), nebo je větší než 4 (bod vnější oblasti kružnice). Pro souřadnice bodu A platí: = 5 Protože 5 > 4, je bod A bodem vnější oblasti kružnice. Pro souřadnice bodu B platí: = Protože < 4, je bod B bodem vnitřní oblasti kružnice. Pro souřadnice bodu C platí: + 0 = 4 Protože 4 = 4, je bod C tedy leží na kružnici. Příklad 3: Napište středový i obecný tvar rovnice kružnice se středem S[1; -] a poloměrem r = 3. Dosadíme zadané hodnoty do rovnice (x - 1) + (y + ) = 9... dostali jsme rovnici kružnice ve středovém tvaru. Provedeme-li naznačené úpravy, dostaneme obecný tvar rovnice kružnice: x - x y + 4y + 4 = 9 x + y - x + 4y - 4 = 0 Příklad 4: Napište rovnici kružnice, která má střed S[-3; 5] a prochází bodem A[-7; 8]. Kružnice, která má střed v bodě S[-3; 5], má rovnici: (x + 3) + (y - 5) = r Poloměr r zjistíme dosazením souřadnic bodu A do této rovnice: (-7 + 3) + (8-5) = r r = 5 Daná kružnice má tedy rovnici (x + 3) + (y - 5) = 5. Příklad 5: Rovnice x + y + 8x -10y - 75 = 0 je rovnicí kružnice k. Upravte ji na středový tvar; zjistěte poloměr a souřadnice středu kružnice. 4 z 41

6 Pomocí "doplnění na čtverec" upravíme rovnici: x + 8x y - 10y = 0 (x + 8x + 16) (y - 10y + 5) = 0 (x + 4) + (y - 5) = 116 Kružnice k má středovou rovnici (x + 4) + (y - 5) = 116, poloměr r = Ö9; její střed S má souřadnice [-4; 5]. Příklad 6: Upravte rovnici x + y - x + 4y + 7 = 0 na středový tvar rovnice kružnice. x + y - x + 4y + 7 = 0 (x - x + 1) (y + 4y + 4) = 0 (x - 1) + (y + ) = - Množina bodů vyhovujících této rovnici je prázdná. Rovnice x + y - x + 4y + 7 = 0 není tedy rovnicí kružnice. Příklad 7: Napište rovnici kružnice k, která prochází body A[5; 1], B[0; 6], C[4; -]. Nejprve zjistíme, zda body A, B, C neleží v jedné přímce. Směrový vektor přímky AB je B - A = (-5; 5), směrový vektor přímky BC je C - B = (4; -8). Vektory B - A, C - B jsou různoběžné; jsou tedy různoběžné i přímky AB a BC. Body A, B, C tedy neleží v jedné přímce; určují kružnici opsanou trojúhelníku ABC. Daná kružnice k má rovnici x + y + ax + by + c = 0 Bod A[5; 1] leží na kružnici k; proto jeho souřadnice této rovnici vyhovují: a + b + c = 0 Obdobně z toho, že bod B[0; 6] leží na kružnici k, dostaneme: a + 6.b + c = 0 A obdobně pro bod C[4; -] ležící na kružnici k platí: a - b + c = 0 Řešením soustavy tří rovnic o třech neznámých a, b, c 5a + b + c = -6 6b + c = -36 4a - b + c = dostaneme a = 0, b = -, c = -4. Rovnice kružnice v obecném tvaru je x + y - y - 4 = 0 Upravíme-li tuto rovnici na středový tvar, dostaneme (x + 0) + (y - 1) = 5 Ze středového tvaru zjistíme, že poloměr kružnice je r = 5 a souřadnice středu S jsou [0; 1]. 5 z 41

7 ± Kružnice - procvičovací příklady z 41

8 Ne ± Vzájemná poloha přímky a kružnice Vzájemná poloha přímky a kružnice Vzájemná poloha bodu a kružnice a) Bod je vnitřním bodem kružnice (leží uvnitř kružnice k a jeho vzdálenost od středu kružnice je menší než poloměr) 7 z 41

9 Všechny vnitřní body kružnice tvoří vnitřní oblast kružnice a platí pro ně vztah: b) Bod je vnějším bodem kružnice (leží vně kružnice k a jeho vzdálenost od středu kružnice je větší než poloměr) Všechny vnější body kružnice tvoří vnější oblast kružnice a platí pro ně vztah: 8 z 41

10 c) Bod je bodem kružnice (leží na kružnici k a jeho vzdálenost od středu kružnice je rovna poloměru) Všechny body ležící na kružnici tvoří kružnici k a platí pro ně vztah: Vzájemná poloha přímky a kružnice 9 z 41

11 Vzájemná poloha přímky a kružnice se početně určí tak, že do rovnice kružnice se dosadí rovnice přímky. Vznikne tak kvadratická rovnice o jedné neznámé. a) p je vnější přímkou kružnice k - kružnice a přímka nemají žádný společný bod - kvadratická rovnice nemá řešení b) p je tečnou ke kružnici k - kružnice a přímka mají právě jeden společný bod - kvadratická rovnice má právě jedno řešení c) p je sečna ke kružnici k - kružnice a přímka mají společné body A, B, jejichž vzdálenost určuje tzv. tětivu - kvadratická rovnice má dvě řešení Příklad 1: Zjistěte vzájemnou polohu přímky p: 4x - 3y - 0 = 0 a kružnice dané rovnicí x + y = 5. Vzájemnou polohu přímky a kružnice zjistíme řešením soustavy rovnic: 10 z 41

12 4x - 3y - 0 = 0 x + y = Z první rovnice vyjádříme např. y: y = (4/3)x - (0/3) Dosadíme do druhé rovnice: x æ 4 0 ö + ç x - è 3 3 ø = 5 Dostaneme kvadratickou rovnici 5x - 3x + 35 = 0 Ta má diskriminant D = (-3) = 34 Protože D > 0, má kvadratická rovnice dva reálné různé kořeny: x 1 = 5, x = 7/5. Dosazením za x 1 do rovnice přímky dostaneme y 1 = 0, dosazením za x do rovnice přímky dostaneme y = -4/5. Přímka je sečnou kružnice k. Průsečíky P, Q přímky s kružnicí mají souřadnice [5; 0], [7/5; -4/5]. Příklad : Stanovte číslo c tak, aby přímka p: x + y + c = 0 byla tečnou kružnice o rovnici x + y = 4. Z rovnice přímky dostaneme x = -y - c. Dosadíme do rovnice kružnice: (-y - c) + y = 4 5y + 4cy + c - 4 = 0 Aby přímka byla tečnou kružnice, musí být diskriminant D kvadratické rovnice roven nule. D = 16c (c - 4) D = c - 0. (c - 4) = 0 c = 0 c 1 = Ö5 nebo c = -Ö5 Přímka je tedy tečnou dané kružnice, je-li buď c 1 = Ö5 nebo c = -Ö5. Příklad 3: Zjistěte vzájemnou polohu kružnice o rovnici (x - ) + (y - 3) = 1 a přímky p: x = 4 + t, y = 1 + t. Dosadíme za x, y z rovnice přímky do rovnice kružnice: (4 + t - ) + (1 + t - 3) = 1 (t + ) + (t - ) = 1 5t + 4t + 7 = 0 Diskriminant kvadratické rovnice D = -14 je záporný, rovnice tedy nemá řešení v oboru reálných čísel. Přímka p je tedy vnější přímkou dané kružnice. Příklad 4: Napište rovnici tečny kružnice o rovnici (x - ) + (y - 1) = 5 v jejím bodě T[6; ]. 11 z 41

13 Tečna p kružnice je kolmá k poloměru ST, kde S[; -1], T[6; ]. Vektor T - S = (4; 3) je tedy její normálový vektor. Směrový vektor přímky p je vektor (3; -4). Tečna p je dána bodem T[6; ] a směrovým vektorem (3; -4); její parametrické vyjádření je p: x = 6 + 3t, y = - 4t. Vyloučením parametru t dostaneme obecný tvar rovnice přímky: 4x + 3y - 30 = 0. Příklad 5: Napište rovnici kružnice, jejíž střed leží na přímce p: x - 3y - = 0 a která se dotýká přímky q: 4x - 3y + 17 = 0 v bodě T[-; 3]. Střed S kružnice k leží na přímce p a na přímce t, která prochází bodem T a je kolmá k přímce q. Normálový vektor u přímky q má souřadnice (4; -3), normálový vektor přímky t má tedy souřadnice (3; 4). Konstantu c v rovnici přímky t: 3x + 4y + c = 0 zjistíme dosazením souřadnic bodu T, který leží na přímce t, do této rovnice. Přímka t má rovnici 3x + 4y - 6 = 0 Souřadnice středu S dostaneme řešením soustavy dvou rovnic: x - 3y - = 0 3x + 4y - 6 = Řešením této soustavy dvou rovnic o dvou neznámých dostaneme x =, y = 0. Střed S kružnice má souřadnice [; 0]. Zbývá ještě určit poloměr r kružnice. r = ST ST = (- - ) + ( 3-0) = 5 Kružnice má rovnici (x - ) + y = 5, střed je S[; 0], poloměr je r = 5. ± Vzájemná poloha přímky a kružnice - procvičovací příklady Sečna 1 z 41

14 Tečna , Sečna 13 z 41

15 Přímka kružnici neprotíná ± Mocniny a odmocniny Obor přirozených čísel: Def.: Mocninou a b nazýváme přirozené číslo, které je součinem b činitelů rovných číslu a. Zapisujeme: a b = a. a. a..... a b-krát Pro čísla a, b, r, s platí: a r. a s = a r+s (a.b) r = a r. b r (a:b) r = a r : b r (a r ) s = a rs a r : a s = a r-s Obor celých čísel: Pro čísla a, n platí: a -n = 1/a n Obor racionálních čísel: Sčítat a odčítat můžeme pouze stejné mocniny, tj. musí mít stejný základ i stejný exponent. Př.: x + 3x... sečíst lze 3x 4 - x 3... odečíst nelze Násobit můžeme mocniny se stejným základem. Př.: a 4. a 5 = a 9... obecně a r. a s = a r+s Násobit můžeme také mocniny se stejným exponentem a různým základem. Př.: = obecně a n. b n = (ab) n Pozn.: Analogická pravidla jako pro násobení platí i pro dělení. Obor reálných čísel: Odmocnina z nezáporného reálného čísla je definována opět jako nezáporné číslo. Druhou odmocninou nezáporného reálného čísla a nazýváme to nezáporné reálné x, pro které platí x = a Symbolicky zapisujeme Öa. Index odmocniny u druhé odmocniny vynecháváme. Pro odmocniny platí obdobná pravidla jako pro mocniny. 14 z 41

16 Sudé odmocniny lze počítat pouze z nezáporných čísel. Pokud se nám tedy ve výpočtu vyskytují sudé mocniny, musíme opět provádět podmínky řešitelnosti. Sčítání a odčítání odmocnin: x + 3 x = 4 x u odmocnin nehraje roli koeficient před proměnnou - ten může být odlišný, protože ho lze vždy dostat před odmocninu Příklad 1: 3 ( 3 ) x + 3x =. x + 3. x = + x Pozn.: Nelze ale sčítat nebo odčítat např. druhou odmocninu s odmocninou třetí! Obdobná pravidla platí i pro násobení, resp. dělení, odmocnin. Odmocniny můžeme násobit (resp. dělit) tehdy, pokud mají stejný základ. Pak musíme ale nejprve všechny činitele převést na stejnou odmocninu. Příklad : a = a. a = a. a a. = a 1 7 Pokud mají činitelé stejnou odmocninu, pak můžeme násobit odmocniny, které mají odlišný základ. Příklad 3: 8. 5 = 40 (1) Každou odmocninu můžeme převést na mocninu podle následujícího pravidla: a b x = x b a ± Mocniny ve tvaru c.10^n Mocniny ve tvaru c.10 n Často při výpočtech používáme zápis čísla ve tvaru c.10 n, kde číslo c je větší nebo rovno jedné a menší než 10. Pak platí následující pravidla: 1. Násobení čísel ve tvaru c.10 n Př.: (a.10 m ).(b.10 n )=(ab).10 m+n 3, , = (3,4.,1) = 7, = 7, (po zaokrouhlení), , = (,6.7,3) = 18, = 1, = 1, (zaokr.). Dělení čísel ve tvaru c.10 n Př.: (a.10 m ):(b.10 n )=(a/b).10 m-n 3, :, = (3,4:,1) = 1, (po zaokrouhlení), : 7, = (,6:7,3) = 0, = 3,6.10 (po zaokrouhlení) 3. Umocňování čísel ve tvaru c.10 n Př.: (c.10 n ) m = c m.10 mn (5, ) 4 = 5, = 983, = 9, (po zaokrouhlení) 4. Sčítání nebo odečítání čísel ve tvaru c.10 n V tomto případě postupujeme tak, že z jednotlivých členů výrazu vytkneme nejnižší použitou mocninu čísla 10. Vzniklou závorku sloučíme a výsledek upravíme. Př.:, , , = 10 5.(, , ,4.10 ) = = 10 5.( , ) = ,6 = 3, (po zaokrouhlení) Pozn.: Jak převést snadno číslo ve tvaru c.10 n na číslo klasické: a) kladné číslo v exponentu: př.:, znamená posunout desetinnou čárku o 8 míst vpravo b) záporné číslo v exponentu: př.:, znamená posunout desetinnou čárku o 8 míst vlevo 15 z 41

17 ± Mocniny ve tvaru c.10^n - procvičovací příklady 1. Vypočti: 7, , , , Vypočti: (4, ) - 1, , Vypočti:, , , (7, ) 1 5, Vypočti: 104 (, ) -5 8, Vypočti:, , , Vypočti:, : (3, ) 7, Vypočti: 6, : (1, ) 4, Vypočti:, , , , ,5.10-4, Vypočti: 6, , , Vypočti: 6, : (, ) 3, z 41

18 1. Vypočti: 1, : (3, ) 5, Vypočti:, , , Vypočti: 3, (4, ) 6 8, Vypočti: 7, , , Vypočti:, , , ,5.10 4, ± Usměrňování odmocnin Usměrňování odmocnin - provádí se tehdy, pokud se odmocnina vyskytuje ve jmenovateli. Je-li ve jmenovateli jednočlen, provádíme jednoduché rozšíření zlomku členem, který se vyskytuje ve jmenovateli. Je-li ve jmenovateli dvojčlen, provádíme usměrnění tak, že rozšíříme zlomek tak, abychom ve jmenovateli mohli použít vzorec pro rozdíl čtverců. Vzniklý výraz pak zpravidla ještě dále zjednodušíme. Příklad 1: ( 3 + ) = = Příklad : 3 + = 3 - ( 3 + )(. 3 + ) ( 3 - )(. 3 + ) = = ± Usměrňování odmocnin - procvičovací příklady 17 z 41

19 z 41

20 z 41

21 ± Zjednodušování odmocnin Zjednodušování odmocnin Příklad 1: 0 z 41

22 Příklad : Při zjednodušování součinu (resp. podílu) odmocnin se snažíme nejprve vše převést na stejnou odmocninu. Výsledek pak často musíme převést do základního tvaru, případně i částečně odmocnit. Převedení odmocniny do základního tvaru - provádí se tehdy, jestliže exponent pod odmocninou a index u odmocnítka jsou čísla soudělná (tj. mají kromě jedničky společného dělitele). Postupujeme obdobně jako při krácení zlomků. Příklad 3: = Příklad 4: 40 0 = Částečné odmocnění - provádí se tehdy, jestliže exponent pod odmocninou je větší než index odmocnítka. Částečně odmocníme tak, že číslo pod odmocninou nejprve převedeme na součin, kde první činitel bude mít v exponentu nejbližší nižší násobek indexu odmocnítka k exponentu původní mocniny. Pak použijeme vzorec (1) a prvního činitele převedeme do základního tvaru. Příklad 5: = 3.3 = 3. 3 = Příklad 6: = =. =. =. 6 3 Pokud potřebujeme zjednodušit součet nebo rozdíl odmocnin, snažíme se převést výpočet pomocí částečného odmocnění na odmocniny se stejným základem i stejným indexem. Příklad 7: = = ± Zjednodušování odmocnin - procvičovací příklady 1. Zjednodušte a určete podmínky, při kterých má výraz smysl: 109 7a b c. 8a b. ab a b 11 c 10. 3abc. a 3, a ³ 0, b ³ 0, c ³ 0 1 z 41

23 . Zjednodušte: /3 3. Proveďte: : 3 - ( ) ( ) Vyjádři jedinou odmocninou a urči podmínky řešitelnosti: 1037 x. y 3 3 x y 9 x y 4 4, y ¹ 0 5. Zjednodušte: Zjednodušte a určete podmínky, při kterých má výraz smysl: a. 3b. a. ab ab. 6a, a ³ 0, b ³ Vyjádři jedinou odmocninou: Proveďte: ( ) : Vyjádřete jako jedinou odmocninu: , Zjednodušte a určete podmínky, při kterých má výraz smysl: ab : 3c 3 9cd 5a b 5 a b. 3 3c d, a > 0, b > 0, c > 0, d > 0 z 41

24 ± Iracionální rovnice Iracionální rovnice Iracionální rovnicí nazýváme takovou rovnici, která má neznámou pod odmocninou. Při řešení iracionálních rovnic používáme zpravidla neekvivalentní úpravy (tj. takové úpravy, po jejichž provedení se může změnit řešení rovnice), proto musíme vždy provést zkoušku. Mezi neekvivalentní úpravy, které budeme u těchto typů příkladů používat, patří nejčastěji umocnění rovnice na druhou. Umocnění rovnice provedeme tak, že umocníme levou i pravou stranu rovnice. Pozn.: Umocněním obou stran rovnice na druhou dostaneme rovnici, pro kterou platí: Každý kořen původní rovnice je i kořenem této nové rovnice. Obráceně to ale neplatí! Ukázkové příklady: Příklad 1: Řešte rovnici: x - x + 10 = x -10 Umocněním rovnice na druhou dostaneme: x - x + 10 = (x - 10) x - x + 10 = x - 0x po úpravě: x = 5 Zkouška: L = = 5 P = 5-10 = -5 L ¹ P Daná rovnice tedy nemá řešení. Příklad : Řešte rovnici: x + 7 = x - 5 Umocněním dostaneme rovnici: x + 7 = (x - 5) Po úpravě x + 7 = x - 10x + 5 Dostali jsme kvadratickou rovnici, u níž zjistíme, že má kořeny a 9. Zkouška: 3 z 41

25 L() = + 7 = P() = - 5 = -3 L() ¹ P() 9 = 3 Kořen tedy není řešením. L(9) = P(9) = 9-5 = 4 L(9) = P(9) = 16 = 4 Kořen 9 tedy je řešením zadané iracionální rovnice. Příklad 3: Řešte rovnici: 5-5x = 3x -11 Umocněním dostaneme rovnici: (5-5x) = (3x - 11) Po úpravě: x = Zkouška: L = 5-5. = - 5 Dále řešit nemusíme, protože v oboru reálných čísel neexistuje druhá odmocnina ze záporného čísla. Závěr tedy je, že iracionální rovnice nemá řešení. Příklad 4: Řešte rovnici: x x = 7 Umocněním rovnice na druhou dostaneme: x x x x = 49 Po ekvivalentních úpravách: 3 x x + 9 = 0-5x Umocníme ještě jednou a dostaneme: 9x + 81x = x + 5x Po úpravě: 16x - 81x = 0 Kořeny této rovnice jsou čísla 16 a 5/16 Zkouškou se přesvědčíme, že kořenem zadané iracionální rovnice je pouze číslo 5/16. 4 z 41

26 Příklad 5: Řešte rovnici: x + 9 = 5 Kromě běžného, už uvedeného, postupu můžeme zde použít i následující úvahu: Výraz na levé straně rovnice je definován pro libovolné reálné číslo a je pro libovolné reálné číslo nezáporný, proto rovnice x + 9 = 5 je ekvivalentní s rovnicí původní. Rovnice x + 9 = 5 má dvě řešení, a to x 1 = 4 a x = -4. Tato řešení jsou tedy i řešeními rovnice původní. S ohledem na to, že jsme provedli pouze ekvivalentní úpravy, nemusíme v podstatě ani dělat zkoušku. Pro nezáporná čísla u, v je totiž u = v právě tehdy, když platí u = v. ± Iracionální rovnice - procvičovací příklady , /3 3. Řešte rovnici: ± P = {8; 4} P = {9; -1/3} Řešte rovnici: 1617 P = {0; 3} 5 z 41

27 Nemá řešení P = {0; } Řešte rovnici: x + 3. x -1 - x. 1- x = ( )( ) ( ) Řešte rovnici: x + 1. x x = ( )( ) Nemá řešení ,5 ± Komplexní čísla Komplexní čísla Obor komplexních čísel je nejvyšším číselným oborem, s nímž se při studiu na střední škole seznámíme. Je vlastně jakousi nadmnožinou oboru reálných čísel. Znamená to tedy, že reálná čísla jsou zvláštním případem 6 z 41

28 čísel komplexních. Komplexní čísla označujeme C. Na rozdíl od reálných čísel, která můžeme znázornit na číselné ose, čísla komplexní můžeme znázornit pouze tehdy, pokud máme osy svě (na sebe kolmé). Komplexní čísla tedy znázorňujeme uspořádanou dvojicí, podobně jako body v kartézské soustavě souřadnic. Pozn.: Uspořádaná dvojice je dvojice čísel, kde záleží na jejich pořadí. Tuto dvojici čísel zapisujeme do hranaté závorky. Rovina, v níž zobrazujeme komplexní čísla, se nazývá rovina komplexních čísel nebo také Gaussova rovina. Osa x se v Gaussově rovině nazývá osa reálných čísel (reálná osa) a nanášíse na ni reálná část komplexního čísla (tj. první složka uspořádané dvojice, která komplexní číslo představuje), osa y se nazývá osa ryze imaginárních čísel (imaginární osa) a nanáší se na ni imaginární část komplexního čísla (tj. druhá složka uspořádané dvojice, která komplexní číslo představuje). Komplexní číslo z znázorněné na obrázku tedy můžeme znázornit buď [a 1; a ] nebo způsobem uvedeným v obrázku, a to z = a 1 + a i. Tento zápis nazýváme algebraickým zápisem komplexního čísla. Číslo i se nazývá imaginární jednotka a platí: i = [0; 1]. Pro imaginární jednotku platí: i = -1 i 3 = -i i 4 = +1 i 5 = i i 6 = -1 atd... Algebraický tvar komplexního čísla 7 z 41

29 Nechť je dáno komplexní číslo a = [a 1; a ]. Jeho vyjádření ve tvaru z = a 1 + a i se říká algebraický tvar komplexního čísla. Číslo a 1 představuje reálnou část komplexního čísla, číslo a představuje imaginární část komplexního čísla. Výhodou tohoto vyjádření komplexního čísla je to, základní početní operace s komplexními čísly v algebraickém tvaru je možné provádět stejným způsobem jako kdyby šlo o reálné dvojčleny. Absolutní hodnota komplexního čísla Absolutní hodnota komplexního čísla představuje jeho vzdálenost od počátku souřadného systému (průsečíku reálné a imaginární osy). K jejímu určení tedy stačí znalost Pythagorovy věty. Platí vzorec: z = a 1 + a Komplexní jednotka Komplexní jednotka je komplexní číslo z, jehož absolutní hodnota je rovna 1. Platí tedy z = 1 Čísla komplexně sdružená Čísla komplexně sdružená označujeme. [čteme zet s pruhem] Velikost komplexního čísla z a velikost čísla k němu komplexně sdruženého se sobě rovnají. Součet komplexního čísla a čísla k němu komplexně sdruženého je číslo reálné. Součin komplexního čísla a čísla komplexně sdruženého je opět číslo reálné. Rovnost komplexních čísel 8 z 41

30 Komplexní čísla z 1 = a 1 + b 1i a z = a + b i jsou si rovna, jestliže jsou si rovny jejich reálné a imaginární části, tj. platí a 1 = a a zároveň b 1 = b Součet komplexních čísel Pro komplexní čísla a = [a 1; a ] a b = [b 1; b ] ve tvaru a = a 1 + a i, b = b 1 + b i se definuje jejich součet tak, že se sčítají zvlášť reálné a zvlášť imaginární části obou komplexních čísel. Výsledný součet (např. komplexní číslo z) má potom následující souřadnice v Gaussově rovině Rozdíl komplexních čísel 9 z 41

31 Pro komplexní čísla a = [a 1; a ] a b = [b 1; b ] ve tvaru a = a 1 + a i, b = b 1 + b i se definuje jejich rozdíl tak, že se odčítají zvlášť reálné a zvlášť imaginární části obou komplexních čísel. Výsledný rozdíl (např. komplexní číslo z) má potom následující souřadnice v Gaussově rovině Součin komplexních čísel Pro komplexní čísla a = [a 1; a ] a b = [b 1; b ] ve tvaru a = a 1 + a i, b = b 1 + b i se definuje jejich součin tak, že se roznásobí reálné a imaginární části obou komplexních čísel (každý člen každým členem). Výsledný součin má potom následující souřadnice v Gaussově rovině Podíl komplexních čísel Pro komplexní čísla a = [a 1; a ] a b = [b 1; b ] ve tvaru a = a 1 + a i, b = b 1 + b i se definuje jejich podíl takto: Výsledný podíl (např. komplexní číslo z) má potom následující souřadnice v Gaussově rovině 30 z 41

32 Je patrné, že podíl dvou komplexních čísel ve tvaru zlomku se vypočte tak, že se zlomek rozšíří číslem komplexně sdruženým ke jmenovateli (děliteli). Goniometrický tvar komplexního čísla 31 z 41

33 Moivreova věta Moivreova věta říká, že součin dvou komplexních jednotek je opět komplexní jednotka, jejíž argument je roven součtu argumentů obou činitelů. Z této věty plyne vztah pro n-tou mocninu komplexní jednotky: a vztah pro n-tou mocninu komplexního čísla: Příklad 1: 3 z 41

34 Příklad : Příklad 3: Příklad 4: Příklad 5: 33 z 41

35 Příklad 6: Příklad 7: Příklad 8: Vypočtěte i 148 Příklad 9: 34 z 41

36 Příklad 10: Příklad 11: ± Komplexní čísla - procvičovací příklady , z 41

37 i , z 41

38 i i i z 41

39 i i x = 3; y = z 41

40 , ± Řešení kvadratických rovnic v oboru komplexních čísel Řešení kvadratických rovnic v oboru komplexních čísel Do této kapitoly spadají kvadratické rovnice, při jejichž řešení vychází diskriminant záporný. Pozn.: Už dříve jsme řešili kvadratické rovnice a rozlišovali jsme situace, kdy diskriminant byl větší než nula - pak kvadratická rovnice měla dva reálné různé kořeny; pak jsme poznali situaci, kdy diskriminant vyšel roven nule - v tom případě měla kvadratická rovnice jeden dvojnásobný kořen a v případě, že diskriminant vyšel záporný, uváděli jsme dosud, že kvadratická rovnice nemá v oboru reálných čísel řešení. V oboru komplexních čísel však řešení má. Řešení kvadratických rovnic v oboru komplexních čísel je založeno na poznatku, že v oboru komplexních čísel umíme odmocnit i zápornou odmocninu. Platí totiž, že např. Ö(-4) = i Kvadratická rovnice x = -4 pak má tedy dvě různá řešení, a to x 1 = i a x = -i V oboru komplexních čísel má tedy každá kvadratická rovnice s reálnými koeficienty řešení. Příklad 1: V oboru komplexních čísel řešte rovnici 7x + 5 = 0 7x + 5 = 0 7. (x + 5/7) = 0 x + 5/7 = 0 [x + i.ö(5/7)]. [x - i. Ö(5/7)] = 0 x 1 = - i. Ö(5/7) x = i. Ö(5/7) Příklad : V oboru komplexních čísel řešte rovnici 3x - 4x + = 0 D = b - 4ac D = (-4) = z 41

41 x x x x x x 1, 1, 1, 1, 1, 1, - b ± D = a - (-4) ± -8 =.3 4 ± i. 8 = 6 4 ± i. = 6.( ± i. ) = 6 ± = 3 Do této kapitoly můžeme zahrnout i rozklady trojčlenů na součin v oboru komplexních čísel. K jejich určení totiž využíváme s výhodou řešení pomocné kvadratické rovnice. Příklad 3: Rozložte v součin lineárních činitelů trojčlen 4x - 1x + 5 Protože kořeny rovnice 4x - 1x + 5 = 0 jsou čísla 1 ± i x1, = = ± i 8 dostáváme: 4x = æ -1x + 5 = 4. ç x - è 3 ( x - 3-4i)(. x i) ö æ - i. ç x - ø è 3 ö + i = ø ± Řešení kvadratických rovnic v oboru C - procvičovací příklady z 41

42 z 41

43 Obsah Kuželosečky 1 Kružnice Kružnice - procvičovací příklady 6 Vzájemná poloha přímky a kružnice 7 Vzájemná poloha přímky a kružnice - procvičovací příklady 1 Mocniny a odmocniny 14 Mocniny ve tvaru c.10^n 15 Mocniny ve tvaru c.10^n - procvičovací příklady 16 Usměrňování odmocnin 17 Usměrňování odmocnin - procvičovací příklady 17 Zjednodušování odmocnin 0 Zjednodušování odmocnin - procvičovací příklady 1 Iracionální rovnice 3 Iracionální rovnice - procvičovací příklady 5 Komplexní čísla 6 Komplexní čísla - procvičovací příklady 35 Řešení kvadratických rovnic v oboru komplexních čísel 39 Řešení kvadratických rovnic v oboru C - procvičovací příklady :10:4 Vytištěno v programu dosystem - EduBase (

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

M - Analytická geometrie pro třídu 4ODK

M - Analytická geometrie pro třídu 4ODK M - Analytická geometrie pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

M - Algebraické výrazy

M - Algebraické výrazy M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Variace. Kvadratická funkce

Variace. Kvadratická funkce Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

M - Příprava na 2. čtvrtletku pro třídu 1MO

M - Příprava na 2. čtvrtletku pro třídu 1MO M - Příprava na 2. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a

Více

Soustavy rovnic pro učební obory

Soustavy rovnic pro učební obory Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic

Více

M - Příprava na 1. čtvrtletku - třída 3ODK

M - Příprava na 1. čtvrtletku - třída 3ODK M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Soustavy rovnic pro učební obor Kadeřník

Soustavy rovnic pro učební obor Kadeřník Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Algebraické výrazy-ii

Algebraické výrazy-ii Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

M - Matematika - třída 2DOP celý ročník

M - Matematika - třída 2DOP celý ročník M - Matematika - třída DOP celý ročník Učebnice obsahující učivo celého. ročníku. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek.

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. Algebraické výrazy Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. 1. Upravte výrazy: a) 6a + 3b + 2a + c b b) 3m + s

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Nerovnice, grafy, monotonie a spojitost

Nerovnice, grafy, monotonie a spojitost Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni

Více