Test studijních předpokladů Varianta D4 FEM UO, Brno

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Test studijních předpokladů Varianta D4 FEM UO, Brno 2013. 1"

Transkript

1 Test studijních předpokladů Varianta D4 FEM UO, Brno Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Nebudu chodit do kina nebo začnu sportovat. A: Budu chodit do kina a nezačnu sportovat. B: Nebudu chodit do kina a nezačnu sportovat. C: Jestliže budu chodit do kina, začnu sportovat. D: Jestliže nebudu chodit do kina, nezačnu sportovat. E: Nebudu chodit do kina nebo nezačnu sportovat. Příklad. V každém podlaží pětipodlažní budovy sídlí právě jedna z firem A, B, C, D, E. Podlaží, ve kterých sídlí firmy A a C se nachází mezi podlažími firem D a E. Firma B sídlí výše než firma A a ta zase výše než firma E. Vyberte pravdivé tvrzení, které vyplývá z uvedených informací: A: Firma A sídlí ve druhém podlaží. D: Firma D sídlí v nejvyšším podlaží. B: Firma B sídlí v nejvyšším podlaží. E: Firma E sídlí nejníže. C: Firma C nesídlí ve třetím podlaží. Příklad 3. Pohádkový Honza došel na křižovatku čtyř cest, z nichž pouze jedna vede k cíli. Na začátku každé z nich je cedule s nápisem (nápis na ceduli u 1. cesty vystihuje níže uvedená 1. věta, nápis na ceduli u. cesty vystihuje níže uvedená. věta,...): 1: Správná cesta je první nebo druhá. : Správná cesta není ani třetí, ani čtvrtá. 3: Jestliže tato cesta není správná, pak je správná první cesta. 4: Správná cesta je třetí. Z nápisů na cedulích je nejvýše jeden pravdivý. Která z cest vede k cíli? A: První. D: Čtvrtá. B: Druhá. E: Nelze určit. C: Třetí. Příklad 4. Jsou dány věty: Všichni tygři jsou obětaví. Všichni tygři jsou masožravci. Vyberte tvrzení, které z výše uvedených vět logicky vyplývá: A: Všichni masožravci jsou obětaví. B: Někteří masožravci jsou obětaví. C: Někteří masožravci nejsou obětaví. D: Pouze mlád ata tygrů jsou obětavá. E: Žádní masožravci nejsou obětaví. Příklad 5. Pravidlo: Aby zájemce získal pracovní místo, musí absolvovat rekvalifikační kurzy A, B. Vyberte logicky správný výklad tohoto pravidla: A: Za jistých okolností může zájemce získat pracovní místo i bez absolvování rekvalifikačních kurzů A a B. B: Zájemce, který neabsolvoval rekvalifikační kurzy A a B, nemůže pracovní místo získat. C: Zájemce, který absolvoval rekvalifikační kurzy A a B, nemůže pracovní místo získat. D: Zájemce, který absolvoval aspoň jeden rekvalifikační kurz, může pracovní místo získat. E: Jestliže zájemce získal pracovní místo, znamená to, že absolvoval některý z rekvalifikačních kurzů A, B.

2 Test studijních předpokladů Varianta D4 FEM UO, Brno 013. Příklad 6. V níže uvedené tabulce jsou zobrazeny vzájemné výsledky týmů, které se zúčastnily jistého sportovního turnaje. Kritéria pro umístění jsou podle významu v tomto pořadí: počet bodů (za výhru tři body, za remízu jeden bod, za prohru nula bodů), výsledek vzájemného zápasu, vyšší počet vstřelených branek v celém turnaji. Kdo se umístil na třetím místě? Polsko Slovensko Rusko Česko Norsko Polsko xxx 3:0 0:1 0: 1:0 Slovensko 0:3 xxx 3:3 0:0 :1 Rusko 1:0 3:3 xxx : 0:3 Česko :0 0:0 : xxx 4:4 Norsko 0:1 1: 3:0 4:4 xxx A: Česko D: Slovensko B: Polsko E: Rusko C: Norsko Příklad 7. Určete 5 3 z 0,03 a 3 % z 4 3? A: 0,04 a 0,04 D: 0,06 a 0,05 B: 0,05 a 0,04 E: 0,05 a 0,07 C: 0,04 a 0,06 Příklad 8. Které číslo patří na místo otazníku? A: 8 D: 9 B: 6 E: 5 C: 11 Příklad 9. Na letním jazykovém táboře je 30 dětí. Španělsky jich umí o čtyři méně než anglicky. Jeden nebo žádný z těchto dvou jazyků ovládá 5 dětí. Alespoň jeden z těchto dvou jazyků ovládá 1 dětí. Kolik dětí umí pouze španělsky? A: 3 D: 10 B: 6 E: 11 C: 9 Příklad 10. Doplňte číslo na místo otazníku. A: 5 D: 4,5 B: 3,5 E: 5,5 C: 1

3 Test studijních předpokladů Varianta D4 FEM UO, Brno Příklad 11. Na kterém z provazů zůstane uzel, zatáhnete-li za jeho konce? A: B: C: D: E: Příklad 1. Která z uvedených sítí není sítí krychle? Příklad 13. Kterým bludištěm vede nejkratší cesta? Příklad 14. Standardní hrací kostka (tj. součet ok na protilehlých stěnách je roven 7) se kutálí po vyznačené dráze. Která stěna bude vespod, až kostka dorazí na pole označené křížkem? Příklad 15. Bílé dílky skládačky jsou upevněny černými šroubky, v nichž se mohou otáčet. Jaký digitální kód lze vhodným otočením bílých dílků získat?

4 Test studijních předpokladů Varianta D4 FEM UO, Brno Příklad 16. Doplňte obrázek, který logicky následuje. Příklad 17. Doplňte chybějící řádek do schématu: A: B: C: D: E: Příklad 18. Doplňte řadu: Příklad 19. Kolik čtverců bude v obrazci na pozici β? α β A: 31 B: 3 C: 1 D: 34 E: 35 Příklad 0. Který kód nepatří mezi ostatní? A: EZKPBGNXL B: NKGTJMOYW C: FTEOJGMIN D: INVRGDYHK E: NHFJORVMZ

5 Test studijních předpokladů Varianta D4 FEM UO, Brno Příklad 1. Definičním oborem funkce y = x (x 3)(x+1) jsou všechna x R, pro která platí A: x (, 1) (3, ) D: x (, 1), 3) B: x ( 1, (3, ) E: x ( 1, 3) C: x Příklad. Výraz (x+y) x y + (x y) x+y x +3y x y je pro přípustná x, y roven A: 4 D: B: 1 3x(x+y) C: x b 7 3 xy x y E: x+y x y Příklad 3. Výraz a 1 3 b 3 ab : a 3 3 ab je pro přípustné hodnoty a, b roven 3 1 A: 3 D: b a a b B: ab E: C: b 6 a Příklad 4. Nerovnici x 6 + 3x 3 x vyhovují všechna x R, pro která platí A: x (, 3 6, ) D: x 1 B: x 1, ) E: x 3, 6 C: x 1, 6 Příklad 5. Rovnici přímky procházející body A = [, 3] a B = [5, 7] lze vyjádřit ve tvaru A: 4x 3y + 1 = 0 D: x = + 3t, y = 3 + 3t, t R B: y = x + 1 E: y = x+9 C: x y + = 0 Příklad 6. Průsečíky funkcí y = x 5x + a y = 8 6x jsou: A: P = [ 1, 14] D: P 1 = [1, ], P = [, 4] B: P 1 = [ 1, 8], P = [3, 10] E: P 1 = [0, ], P = [1, ] C: P 1 = [ 3, 6], P = [, 4] 3 b a Příklad 7. DVD přehrávač byl po uvedení na trh nejdříve slevněn o 10 procent a poté zdražen o 5 procent. Konečná cena činila Kč. Jaká byla původní cena DVD přehrávače? A: Kč D: 5 00 Kč B: Kč E: Kč C: Kč Příklad 8. Změnou výrobní technologie se podařilo navýšit výrobu o 1/4, takže nyní se za 1 hodinu vyrobí 45 výrobků. Kolik výrobků se vyprodukovalo za 1 hodinu před technologickou změnou? A: 8 D: 39 B: 36 E: 40 C: 33 Příklad 9. Do soutěže se přihlásilo 5 družstev. Kolik zápasů bude sehráno, utkají-li se všechna družstva systémem každý s každým právě jednou? A: 10 D: 10 B: 48 E: 5 C: 4 Příklad 30. Zimní dovolené se zůčastnilo 50 lidí. Jedna pětina z nich si přivezla běžky. Sjezdovky i běžky mělo 0 lidí. 108 si s sebou nevzalo sjezdovky. Kolik lidí si přivezlo pouze sjezdovky? A: 15 D: 1 B: 14 E: 30 C: 138

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1

Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1 Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1 Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): V týmu není Pavel nebo není Václav. A:

Více

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. A: Koupím-li byt, nekoupím nové auto. B: Koupím byt nebo nekoupím nové auto.

Více

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jestliže v sootu neude pěkně, koncert se

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

DOVEDNOSTI V MATEMATICE

DOVEDNOSTI V MATEMATICE Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA1ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test A Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

neděle 4.11.2007 od 8:30 hodin

neděle 4.11.2007 od 8:30 hodin Sportovní klub vozíčkářů Praha pořádá 4. Benefiční florbalový turnaj firem 2007 ROZPIS UTKÁNÍ Kdy: neděle 4.11.2007 od 8:30 hodin Kde: hala Sokol Královské Vinohrady - Polská 1, Praha 2 Kontaktní osoba:

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Pohár města Česká Lípa

Pohár města Česká Lípa HOKEJOVÝ CLUB ČESKÁ LÍPA O.S. www.hcceskalipa.cz Hokejový turnaj 2015 Pohár města Česká Lípa 10. 12. 4. 2015 3 - denní turnaj pro děti narozené r. 2004 a mladší Hokejový turnaj 2015 - Česká Lípa - r. 2004

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut.

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut. Krok za krokem k nové maturitě Maturita nanečisto 005 MA MATEMATIKA společná část maturitní zkoušk Testový sešit obsahuje 0 úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu. Poznámk

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

Výuka angličtiny na FEL

Výuka angličtiny na FEL Výuka angličtiny na FEL Nová koncepce 5.12.2014 Vypracovala: Katedra jazyků Východiska: Studenti FEL ČVUT by měli nejpozději na konci bakalářské etapy složit zkoušku na úrovni B2 Společného evropského

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024. Stereometrické hry

Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024. Stereometrické hry Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Stereometrické hry Příklad 1. Klasickou hrací kostku umístěme do rohu o dvanácti

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

10. 12. dubna 2015, Zimní stadion HC Slavia Praha

10. 12. dubna 2015, Zimní stadion HC Slavia Praha 10. 12. dubna 2015, Zimní stadion HC Slavia Praha Propozice : Pořádající oddíl : HC Slavia Praha Datum konání : 10 12. dubna 2015 Čas : Zahájení a zakončení turnaje dle rozlosování viz.rozpis utkání. Pořadatel

Více

Mistrovství České republiky v logických úlohách

Mistrovství České republiky v logických úlohách Mistrovství České republiky v logických úlohách Blok 1 - Logický mixer 10:00-11:40 Řešitel 1 Praha 013 Mrakodrapy 3 Heywake 4 Rybáři 5 Dvojblok Pentomina 7 Nádraží 8 Slalom 9 Plot 10 Kriskros 11 Cesta

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Test studijních předpokladů 2

Test studijních předpokladů 2 Test studijních předpokladů 2 event. číslo Správná je vždy jenom jedna odpověď- zakroužkujte ji, nebo doplňte požadovaný údaj. 1. Které slovo nejlépe vystihuje opak slova MIMOŘÁDNÝ? a) klidný b) nezajímavý

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA

Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA Vážení sportovní přátelé, Tímto si Vás oficielně dovolujeme pozvat na jubilejní 40. ročník Kropáčkova Memoriálu, turnaj mladších žáků v ledním

Více

Město Jihlava Město Pelhřimov Město Žďár nad Sázavou. Ve spolupráci s KVV ČSLH Kraje Vysočina

Město Jihlava Město Pelhřimov Město Žďár nad Sázavou. Ve spolupráci s KVV ČSLH Kraje Vysočina V. ROČNÍK TRADIČNÍHO TURNAJE O POHÁR HEJTMANA KRAJE VYSOČINA Město Jihlava Město Pelhřimov Město Žďár nad Sázavou Ve spolupráci s KVV ČSLH Kraje Vysočina V. ROČNÍK TRADIČNÍHO TURNAJE O POHÁR HEJTMANA KRAJE

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

STONOŽKA 2008/2009-5. TŘÍDY

STONOŽKA 2008/2009-5. TŘÍDY Škola: Název: Obec: BCST Základní škola, Školní Řevnice BCST Základní škola, Školní Řevnice STONOŽKA 8/9-5. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou nadprůměrné. Patříte mezi úspěšné

Více

STONOŽKA 2008/2009-9. TŘÍDY

STONOŽKA 2008/2009-9. TŘÍDY Škola: Název: Obec: ACFU ACFU ZŠ a MŠ s polským jazykem vyučovacím, ZŠ a MŠ s polským Dr. Olszaka jazykem 156 vyučovacím, Dr. Olszaka 156 Karviná - Fryštát Karviná - Fryštát STONOŽKA 28/29-9. TŘÍDY ČESKÝ

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

STONOŽKA 2008/2009-9. TŘÍDY

STONOŽKA 2008/2009-9. TŘÍDY Škola: Název: Obec: BCDE BCDE Základní škola, Dambořice č.p. Základní 466 škola, Dambořice č.p. 466 Dambořice Dambořice STONOŽKA 28/29-9. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou špičkové.

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

HRY IV. ZIMNÍ OLYMPIÁDY DĚTÍ A MLÁDEŽE ČR LEDNÍ HOKEJ LIBEREC 1.2.- 5.2.2010

HRY IV. ZIMNÍ OLYMPIÁDY DĚTÍ A MLÁDEŽE ČR LEDNÍ HOKEJ LIBEREC 1.2.- 5.2.2010 HRY IV. ZIMNÍ OLYMPIÁDY DĚTÍ A MLÁDEŽE ČR LEDNÍ HOKEJ LIBEREC 1.2.- 5.2.2010 Pořadatel: Organizátor: Liberecký KVV ČSLH Libereckého e Z pověření Libereckého e a Českého svazu ledního hokeje Ředitel turnaje:

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

TEST LOGIKY. Využitelný pro měření kompetence: řešení problémů, orientace v informacích

TEST LOGIKY. Využitelný pro měření kompetence: řešení problémů, orientace v informacích TEST LOGIKY Využitelný pro měření kompetence: řešení problémů, orientace v informacích Forma: papír - tužka Čas na administraci: max. 25 min. Časový limit: ano Vyhodnocení: ručně cca 10 minut jeden testovaný

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

STONOŽKA 2008/2009-9. TŘÍDY

STONOŽKA 2008/2009-9. TŘÍDY Škola: Název: Obec: FIMN FIMN Základní škola, Komenského Základní 828/9 škola, Komenského 828/9 Týniště nad Orlicí Týniště nad Orlicí STONOŽKA 28/29-9. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ

PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ PRO UCHAZEČE Z 9. ROČNÍKU ZŠ OBČANSKÉ SDRUŽENÍ MATT A HURRY, O. S. Střelničná 5 8 00 PRAHA 8 KOBYLISY Občanské sdružení MATT a HURRY, o.s., 0 ODDÍL : VERBÁLNÍ

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

Finále SOUBOR OTÁZEK. ročník

Finále SOUBOR OTÁZEK. ročník Finále SOUBOR OTÁZEK 6. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotllivé kontinenty na naší planetě ještě rozdělené,

Více

Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016

Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016 Středočeský krajský volejbalový svaz http://stc.cvf.cz e-mail: stc-vol@seznam.cz Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016 modrý, červený a žlutý volejbal chlapců, dívek a

Více

O pohár starosty města Modřice

O pohár starosty města Modřice Pozvánka na XIV. ročník mezinárodního turnaje mladších žáků (roč. 2002) O pohár starosty města Modřice srpna 2014 na hřišti v Modřicích www.turnaj-modrice.cz POZVÁNKA Organizační výbor zve všechny hráče,

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Kajot Casino Ltd. Popis hry Joker 27

Kajot Casino Ltd. Popis hry Joker 27 Joker 27 Joker 27 Popis a pravidla Joker 27 je hra se třemi kotouči. Zobrazený výsledek se skládá ze tří řad po třech symbolech (každý kotouč zobrazuje tři symboly). Náhledy Uvedený obrázek představuje

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

Zápas o 3. místo na turnaji: Poraženi v semifinále Finále: i semifinále

Zápas o 3. místo na turnaji: Poraženi v semifinále Finále: i semifinále - 2 - PROPOZICE TURNAJE: Turnaje se z 4 8 skupin po 5 týmech Utkání ve skupinách budou hrána systémem každý s každým Z každé skupiny postupují 2 nejlepší týmy a 8 Lucky Loser do mezikola (24 tým ). V mezikole

Více

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. m_1_vyrok_priklady 6.5.011 1/9 m_1_vyrok_priklady 6.5.011 /9 Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. A: Číslo 6 je dělitelné 5-ti. (nepravda)

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více