1. Nejkratší cesta v grafu

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Nejkratší cesta v grafu"

Transkript

1 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost vrcholů a hran doucí po sobě př průchodu grafem - cesta e sled bez cyklů - nstance: orentovaný graf G, váhy c : E(G) R a dva vrcholy s, t V(G) - pokud nekratší sled neobsahue cyklus záporné délky, e zároveň nekratší cestou - pokud graf obsahue cyklus se zápornou délkou, pak de o NP-obtížný problém Troúhelníková nerovnost - estlže graf neobsahue cyklus se zápornou délkou, pak pro všechny troce vrcholů,, k platí: l(,) l(,k) + l(k,)... l(,) e délka nekratší cesty z do Bellmanova rovnce - estlže graf neobsahue cyklus se zápornou délkou, pak pro všechny troce vrcholů,, k platí: l(,) mn{l(,k) + c(k,)} Podobné úlohy - hledání nedelších cest se řeší obrácením znamének u délek všech hran. Tím sme převedl hledání maxma na hledání mnma. - pokud sou ohodnocené en vrcholy a ne hrany, lze převést na hledání v grafu s ohodnoceným hranam: každý vrchol v původního grafu nahradíme dvocí vrcholů v1 a v2, spoíme e hranou o délce rovné původní hodnotě vrcholu v hrany, které končly ve vrcholu v přesměrueme do v1, hrany, které vycházely z vrcholu v budou vycházet z vrcholu v2 Dkstrův algortmus - vždy vyberu nelevněší uzel, který není closed, z tohoto uzlu zkouším pnkat do všech OPEN sousedů a zkoušíme, estl se do nch dostaneme přes tento uzel levně. Pokud ano, nastaví se nová cena a zapíše se předek na cestě do pole. - omezení: neumí grafy se záporným ohodnocením hran - mplementace pomocí prortní haldy, která rychle vrací mnmum -1-

2 - nekratší cesta se skládá z nekratších cest - pokud nás zaímá nekratší cesta pouze do ednoho cílového vrcholu c, lze skončt, akmle odebereme vrchol z množny R - časová náročnost algortmu e O(n2), respektve s využtím prortní fronty O(m + nlogn) Bellman-Fordův algortmus - dokáže detekovat cykly záporné délky - časová náročnost algortmu e O(nm) - umí s poradt se záporným hranam Floydův algortmus - časová náročnost algortmu e O(n 3 ) - nade nekratší cestu mez všem dvocem uzlů - graf obsahue cyklus záporné délky právě když exstue takové, že l < 0 - modfkací Floydova algortmu (l 0 = ) lze nalézt (nezáporný) cyklus o mnmální délce -2-

3 2. Úloha obchodního cestuícího - cíl: Rozhodnout, zda v grafu G exstue Hamltonovská kružnce (uzavřená cesta procházeící každým vrcholem právě ednou), eíž váha e mnmální - Hamltonovská kružnce e NP-úplný problém - důkaz, že TSP e slně NP-obtížný problém: 1. Polynomální redukcí vytvoříme nstanc TSP tak, že každému vrcholu grafu G odpovídá 1 vrchol v úplném neorentovaném grafu Kn. 2. váha hrany {.} v Kn e: 1 pokud {,} E(G) 3. váha hrany {.} v Kn e: 2 pokud {,} E(G) - ednoduše (v polyn. čase) lze ověřt, že G má Hamltonovskou kružnc právě když optmální řešení TSP má hodnotu n. Nebol TSP e NP-obtížný. -pro důkaz, že TSP e slně NP-obtížný musíme dokázat, že neexstue pseudo-polynomální algortmus Metrcký TSP - pokud v grafu platí troúhelníková nerovnost, pak metrcký TSP e NP-obtížný Heurstka Neblžší soused Vstup: Instance (Kn, c) Metrckého TSP Výstup: Hamltonovská kružnce H - v každém kroku e vybráno neblžší doposud nenavštívené město - není to aproxmační algortmus - časová náročnost algortmu e O(n 2 ) 2-aproxmační algortmus Dvotá mnmální kostra - Eulerovská cesta prode každou hranou právě ednou A / OPT( I(Kn, c) ) <= 2 - časová náročnost algortmu e O(n 2 ) 3/2-aproxmační Chrstofdesův algortmus - časová náročnost algortmu e O(n 3 ) Lokální prohledávání k-opt 1. použeme lbovolnou Hamltonovskou kružnc nalezenou např. heurstkou 2. toto řešení zkoušíme vylepšovat pomocí lokálních změn (např. vymazáním dvou hran rozdělíme kružnc na dvě část, které spoíme pomocí ných hran) -3-

4 - dovolené sou en modfkace, které vylepšuí řešení 3. Problém batohu Obrázek 1 - k OPT - nstance: n e počet předmětů, c sou ceny předmětů, w sou hmotnost předmětů a W e nosnost batohu. Cíl: Nalézt podmnožnu S {1,..., n} takovou, že w < W a c maxmální S - de o NP obtížný problém - složtost ( C n) O, kde C e suma všech cen, C ovlvňue počet sloupců tabulky - algortmus pro knapsack e pseudo-polynomální, protože eho složtost e závslá na C (může být až exponencálně velké) - eden z mála problémů, pro něž exstue aproxmační algortmus s lbovolně malou poměrnou odchylkou od optma - postup: 1. začínáme na pozc [0,0], což znamená, že v batohu e nula klo za nula korun 2. procházíme strom všech možných řešení a ořezáváme ty, které ž přerostly stanovenou nosnost batohu 3. pohyb o ednu pozc dolů znamená, že předmět do batohu nedáváme 4. pohyb o ednu pozc dolů a o w pozc doprava znamená, že předmět o váze w do batohu přdáme 5. nakonec se prode poslední řádek a nade se poslední nevětší cena 6. průchodem stromu doleva vzhůru lze zstt seznam předmětů, které se do batohu vešly S -4-

5 Fractonal knapsack problem = nstance úlohy taková, že předměty lze dělt na část, čl x 0<=x <=1 S c e mnmální, - řešení: seřadt předměty sestupně podle relatvní ceny nevede a doplnt zbytek částí něakého předmětu c, zaplnt batoh, až už se nc w 2-aproxmační algortmus pro Knapsack - předměty sou seřazené sestupně podle relatvní ceny h = mn{ {1,..., n} : = 1 w > w } - výběr lepšího ze dvou řešení {1,..., h-1} a {h} e 2-aproxmační algortmus - časová náročnost e O(n) c w -5-

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +

Více

Problémy třídy Pa N P, převody problémů

Problémy třídy Pa N P, převody problémů Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.

Více

Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování

Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

Aproximativní algoritmy UIN009 Efektivní algoritmy 1

Aproximativní algoritmy UIN009 Efektivní algoritmy 1 Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data

Více

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

Dynamické programování

Dynamické programování ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit

Více

LINEÁRNÍ PROGRAMOVÁNÍ

LINEÁRNÍ PROGRAMOVÁNÍ LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

Hledáme efektivní řešení úloh na grafu

Hledáme efektivní řešení úloh na grafu Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

07 Základní pojmy teorie grafů

07 Základní pojmy teorie grafů 07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Použití dalších heuristik

Použití dalších heuristik Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Dynamické programování

Dynamické programování ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,

Více

Paralelní grafové algoritmy

Paralelní grafové algoritmy Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u

Více

8 Přednáška z

8 Přednáška z 8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší

Více

Problém batohu. Zdeněk Hanzálek hanzalek@fel.cvut.cz. ČVUT FEL Katedra řídicí techniky. 5. dubna 2011

Problém batohu. Zdeněk Hanzálek hanzalek@fel.cvut.cz. ČVUT FEL Katedra řídicí techniky. 5. dubna 2011 Problém batohu Zdeněk Hanzálek hanzalek@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 5. dubna 2011 Z. Hanzálek (ČVUT FEL) Problém batohu 5. dubna 2011 1/ 15 1 Obsah přednášky 2 Úvod Formulace problému

Více

Segmentace. Ilona Janáková. Rozvrh přednášky:

Segmentace. Ilona Janáková. Rozvrh přednášky: 1 / 31 Segmentace Ilona Janáková Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace. 2 / 31 Segmentace Ilona

Více

4. NP-úplné (NPC) a NP-těžké (NPH) problémy

4. NP-úplné (NPC) a NP-těžké (NPH) problémy Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i)

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i) DSM2 C 8 Problém neratší cesty Ohodnocený orientoaný graf: - Definice: Ohodnoceným orientoaným grafem na množině rcholů V = { 1, 2,, n} nazýáme obet G = V, w, de zobrazení w : V V R { } se nazýá áhoá funce

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66 Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný

Více

"Agent Hledač" (3. přednáška)

Agent Hledač (3. přednáška) "Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"

Více

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node

State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem

Více

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého

Více

II. Úlohy na vložené cykly a podprogramy

II. Úlohy na vložené cykly a podprogramy II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Vkládání pomocí Viterbiho algoritmu

Vkládání pomocí Viterbiho algoritmu Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme

Více

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019 Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013 2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

Problém obchodního cestujícího

Problém obchodního cestujícího Problém obchodního cestujícího Zdeněk Hanzálek hanzalek@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 9. května 2011 Z. Hanzálek (ČVUT FEL) Problém obchodního cestujícího 9. května 2011 1/ 21 1 Obsah přednášky

Více

opakování reprezentace grafů, dijkstra, bellman-ford, johnson

opakování reprezentace grafů, dijkstra, bellman-ford, johnson opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 19. září 2016 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

Jan Březina. 7. března 2017

Jan Březina. 7. března 2017 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

12. Aproximační algoritmy

12. Aproximační algoritmy 12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat

Více

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?

Více

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Matice sousednosti NG

Matice sousednosti NG Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných

Více

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase -stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

popel, glum & nepil 16/28

popel, glum & nepil 16/28 Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna

Více

TEORIE GRAFŮ TEORIE GRAFŮ 1

TEORIE GRAFŮ TEORIE GRAFŮ 1 TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Dynamické programování

Dynamické programování Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D ZS 2014 1 Základní princip Dynamické programování Princip dynamického programování je založen na podobné myšlence jako rozděl a panuj. Vstupní

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Automatická klasifikace dokumentů do tříd za použití metody Itemsets

Automatická klasifikace dokumentů do tříd za použití metody Itemsets Automatcká klasfkace dokumentů do tříd za použtí metody Itemsets Jří HYNEK 1, Karel JEŽEK 2 1 nsite, s.r.o., Knowledge Management Integrator Rubešova 29, 326 00 Plzeň r.hynek@nste.cz 2 Katedra nformatky

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

TGH08 - Optimální kostry

TGH08 - Optimální kostry TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

Cvičení 5 - Průchod stromem a grafem

Cvičení 5 - Průchod stromem a grafem Cvičení 5 - Průchod stromem a grafem Radek Mařík Marko Genyk-Berezovskyj ČVUT FEL, K13133 14. března 2013 Cvičení 5 - Průchod stromem a grafem 14. března 2013 1 / 18 Outline 1 Průchod stromem 2 Cvičení

Více