Lineární klasifikátory

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární klasifikátory"

Transkript

1 Lineární klasifikátory

2 Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje

3 Lineární klasifikátor navrhnout lineární klasifikátor bez ohledu na rozdělení dat výhoda jednoduché typicky výpočetně nenáročné předpoklad trénovací data jsou lineárně klasifikovatelná omezení klasifikace do dvou tříd ω a ω v d-dimenzionálním prostoru lineární klasifikátor... nadrovina g(x) T x kde d... dimenze vstupního prostoru (,..., d )... váhový vektor... práh 3

4 Lineární klasifikátor navrhnout lineární klasifikátor bez ohledu na rozdělení dat výhoda jednoduché typicky výpočetně nenáročné předpoklad trénovací data jsou lineárně klasifikovatelná omezení klasifikace do dvou tříd ω a ω v d-dimenzionálním prostoru lineární klasifikátor... nadrovina g(x) T x kde d... dimenze vstupního prostoru (,..., d )... váhový vektor... práh 4

5 Lineární klasifikátor nadrovina g(x) T x vzdálenost z bodu x od nadroviny z g( x) rozdělení prostoru na dvě části jedna strana... g(x) > druhá strana... g(x) < 5

6 Perceptronový algoritmus cíl nalezení parametrů a dělící nadroviny lineárně separabilní množiny existuje nadrovina *T x *T x > pro každý x z ω *T x < pro každý x z ω vztah platí i pro nadroviny neprocházející počátkem *T x * zavede se rozšířený (d)-dimenzionální prostor ( *, ) x (x,) a pak *T x * T x 6

7 Perceptronový algoritmus cíl nalezení parametrů a dělící nadroviny lineárně separabilní množiny existuje nadrovina *T x *T x > pro každý x z ω *T x < pro každý x z ω vztah platí i pro nadroviny neprocházející počátkem *T x * zavede se rozšířený (d)-dimenzionální prostor ( *, ) x (x,) a pak *T x * T x 7

8 Perceptronový algoritmus ztrátová funkce perceptronový algoritmus příklad optimalizačního problému ztrátová funkce ztrátová funkce J T ( ) ( δx x) x Y chybně klasifikované trénovací vzory parametr δ x -... pro bod x z ω... pro bod x z ω J() nezáporná J()... Y Ø J() >... (x je z ω & x klasifikován chybně) OR (x je z ω & x klasifikován chybně) J() spojitá po částech lineární funkce body, kde se mění počet chybně klasif. vzorů gradient není definován 8

9 Perceptronový algoritmus odvození iterativní algoritmus pro minimalizaci ztrátové funkce metoda snižování gradientu ( t ) ( t) ( ) J ρt (t)... odhad váhového vektoru v t-té iteraci ρ t... posloupnost reálných čísel... parametr učení () t derivace ztrátové funkce (tam, kde je definována) ( ) J x Y δ x x po dosazení ( t ) ( t) ρ t δ x Y x x 9

10 Perceptronový algoritmus odvození perceptronový algoritmus ( t ) ( t) ρ t δ x Y x x ()... libovolně inicializován δ x x... vektor opravy z nesprávně klasifikovaných vzorů x Y proces učení opakován, dokud nejsou všechny trénovací vzory klasifikovány správně

11 Perceptronový algoritmus geometrická interpretace geometrická interpretace

12 Perceptronový algoritmus konvergence podmínky konvergence... ρ t lim t k lim t t t k ρ ρ k k < např. ρ t c / t, kde c je konstanta volba ρ t... rychlost konvergence rychlost algoritmu perceptronový algoritmus zkonverguje k řešení v konečném počtu kroků důkaz v literatuře nalezená řešení nejednoznačná existuje více než jedna dělicí nadrovina

13 Perceptronový algoritmus konvergence podmínky konvergence... ρ t lim t k lim t t t k ρ ρ k k < např. ρ t c / t, kde c je konstanta volba ρ t... rychlost konvergence rychlost algoritmu perceptronový algoritmus zkonverguje k řešení v konečném počtu kroků důkaz v literatuře nalezená řešení nejednoznačná existuje více než jedna dělicí nadrovina 3

14 Perceptronový algoritmus příklad aktuální dělicí přímka (čárkovaná) x x.5 (t) (,,-.5) chybně klasifikované vzory (-.,.75) (.4,.5) ω ω aktualizace váhového vektoru (ρ t ρ.7) nová dělicí přímka.4x.5x.5 správná klasifikace všech trénovacích vzorů algoritmus končí 4

15 Perceptronový algoritmus příklad aktuální dělicí přímka (čárkovaná) x x.5 (t) (,,-.5) chybně klasifikované vzory (-.,.75) (.4,.5) ω ω aktualizace váhového vektoru (ρ t ρ.7).5 ( t ).7( ).5.7( ) nová dělicí přímka.4x.5x.5 správná klasifikace všech trénovacích vzorů algoritmus končí 5

16 6 Varianta perceptronového algoritmu modifikace trénovací vzory... cyklicky předkládány váhový vektor... změna po každém vzoru opakované předkládání trénovací množiny algoritmus aktualizace váhového vektoru konvergence v konečném počtu iterací ( ) ( ) ( ) ( ) () () ( ) ( ) jinak t t t a ω když ρ t t t a ω když ρ t t t t t t t t K K K x x x x x x vzor x t klasifikován správně

17 Perceptron klasifikace klasifikace neznámých vzorů předpoklad: konvergence k váhovému vektoru a prahu klasifikace T x > x do ω T x < x do ω perceptron f... nelineární skoková funkce f(ξ)... ξ f(ξ) -... ξ < 7

18 Přihrádkový algoritmus perceptronový algoritmus učení lineární separabilita tříd předpoklad není splněn není zaručena konvergence přihrádkový algoritmus učení konvergence k optimálnímu řešení i když množiny nejsou lineárně separabilní 8

19 Přihrádkový algoritmus Krok náhodná inicializace () přihrádkový vektor S čítač historie h S Krok aktualizace (t) podle perceptronového algoritmu h... počet správně klasifikovaných trénovacích vzorů pomocí (t) h > h S : S (t) h S h konvergence algoritmus s pravděpodobností konverguje k optimálnímu řešení řešení s nejmenším počtem chybně klasifikovaných trénovacích vzorů 9

20 Přihrádkový algoritmus Krok náhodná inicializace () přihrádkový vektor S čítač historie h S Krok aktualizace (t) podle perceptronového algoritmu h... počet správně klasifikovaných trénovacích vzorů pomocí (t) h > h S S (t) h S h konvergence algoritmus s pravděpodobností konverguje k optimálnímu řešení řešení s nejmenším počtem chybně klasifikovaných trénovacích vzorů

21 Podpůrné vektorové stroje (SVM) support vector machine (SVM) vstup lineárně separabilní třídy ω a ω trénovací vzory x,...,x n výstup klasifikační nadrovina g(x) g(x) T x správně klasifikuje trénovací vzory

22 SVM idea klasifikační nadrovina g(x) není určena jednoznačně kterou klasifikační nadrovinu zvolit? spolehlivá práce i s neznámými vzory... generalizace klasifikace trénovacích dat & největší okolí na obou stranách nadroviny

23 SVM idea klasifikační nadrovina g(x) není určena jednoznačně kterou klasifikační nadrovinu zvolit? spolehlivá práce i s neznámými vzory... generalizace klasifikace trénovacích dat & největší okolí na obou stranách nadroviny 3

24 SVM okolí umístění klasifikační nadroviny g(x) žádná třída nemá být zvýhodněná stejná vzdálenost (okolí) od nejbližších vzorů v třídách ω a ω umístit nadrovinu, aby okolí bylo maximální možné 4

25 SVM okolí umístění klasifikační nadroviny g(x) žádná třída nemá být zvýhodněná stejná vzdálenost (okolí) od nejbližších vzorů v třídách ω a ω umístit nadrovinu, aby okolí bylo maximální možné 5

26 SVM okolí nadrovina škálovací koeficient stejný škálovací koeficient jediná rovnice roviny volba a x nejbližší bod tříd ω g(x) x nejbližší bod tříd ω g(x) - 6

27 SVM zápis podmínek hledaná klasifikační nadrovina g(x) T x. velikost okolí ( ) g( x ) g x ω ω. správná klasifikace trénovacích vzorů T x... pro trénovací vzor z ω T x -... pro trénovací vzor z ω nejbližší bod: g(x) 7

28 SVM zápis podmínek indikátor třídy vzoru y i... x i z ω -... x i z ω problém parametry a nadroviny J() / minimální (*) za podmínky y i ( T x ) pro i,...,n (**) poznámky minimalizace normálového vektoru maximální okolí problém kvadratické optimalizace za podmínek lineárních nerovností 8

29 SVM řešení problém splňuje Karush-Kuhn-Truckerovy podmínky L(,,)... Lagrangeova funkce L existuje vektor Lagrangeových multiplikátorů po vyřešení n T T (,, ) i( yi( x ) ) () L(,, ) ( ) L(,, ) ( 3) i pro i,...,n T ( 4) ( y ( x ) ) pro i,..., n i i i 9

30 SVM řešení problém splňuje Karush-Kuhn-Truckerovy podmínky L(,,)... Lagrangeova funkce L n T T (,, ) i( yi( x ) ) existuje vektor Lagrangeových multiplikátorů () L(,, ) ( ) L(,, ) ( 3) i pro i,...,n T ( 4) ( y ( x ) ) pro i,..., n i i i po vyřešení n i yix i a iyi i n i 3

31 SVM vlastnosti (a) optimální řešení lineární kombinace n s (n s <n) trénovacích vzorů, které odpovídají i n s y x i i i i podpůrné vektory optimální klasifikační nadrovina... podpůrný vektorový stroj podpůrné vektory (4) i podpůrné vektory leží na jedné z nadrovin T x ± podpůrné vektory trénovací vzory nejbližší klasifikátoru kritické prvky trénovací množiny 3

32 SVM vlastnosti (b) trénovací vzory s i typicky vně oblasti definované T x ± degenerované případy na nadrovinách T x ± výsledná klasifikační nadrovina není citlivá na počet a umístění trénovacích vzorů, které nejsou podpůrnými vektory 3

33 SVM vlastnosti () vlastnosti problému funkce J() striktně konvexní funkce omezující podmínky (**) jsou lineární optimální klasifikační nadrovina jednoznačně určena 33

34 SVM vlastnosti (3) dopočtení parametrů z rovnic n i yix i a iyi i n i není snadné různé algoritmy malé soustavy... lze dopočítat přímo složitější soustavy... např. konvexní programování a Lagrangeova dualita typicky více řešení pro i stejná optimální klasifikační nadrovina 34

35 SVM příklad podpůrný vektorový stroj pro body ω ω : : a a optimální klasifikátor přímka g(x) x obecně rovnice klasifikační nadroviny g(x) x x výsledná optimální nadrovina g(x) x,, všechny body podpůrné vektory velikost okolí 35

36 SVM příklad podpůrný vektorový stroj pro body ω ω : : a a optimální klasifikátor přímka g(x) x obecně rovnice klasifikační nadroviny g(x) x x výsledná optimální nadrovina g(x) x,, všechny body podpůrné vektory velikost okolí 36

37 37 SVM příklad analytické řešení,, J() / minimální za podmínek y i ( T x ) pro i,...,4 dosazení do podmínek 4 3 K K K K x x x x

38 38 SVM příklad Lagrangeova funkce ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) y,, L 4 3 n i T i i T x

39 39 SVM příklad Karush-Kuhn-Truckerovy podmínky 7 rovnic pro 7 neznámých () ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4,...,4 pro i 3 L L L je L 4 3 i K K K

40 SVM příklad řešení 7 rovnic o 7 neznámých není snadné dá více řešení všechny vedou ke stejné optimální klasifikační nadrovině: 4

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

OPTIMALIZACE. (přehled metod)

OPTIMALIZACE. (přehled metod) OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

Interpolace pomocí splajnu

Interpolace pomocí splajnu Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Čebyševovy aproximace

Čebyševovy aproximace Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn]

Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn] Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn] Michal Houdek, Tomáš Svoboda, Tomáš Procházka 6. června 2001 1 Obsah 1 Úvod 3 2 Definice a postup klasifikace 3 3 Příklady

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová

Více

Preceptron přednáška ze dne

Preceptron přednáška ze dne Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

4EK201 Matematické modelování. 2. Lineární programování

4EK201 Matematické modelování. 2. Lineární programování 4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených

Více

LDA, logistická regrese

LDA, logistická regrese Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Algoritmy a struktury neuropočítačů ASN P3

Algoritmy a struktury neuropočítačů ASN P3 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností

Více

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta 12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:

Více

Faster Gradient Descent Methods

Faster Gradient Descent Methods Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Úvod do optimalizace Matematické metody pro ITS (11MAMY)

Úvod do optimalizace Matematické metody pro ITS (11MAMY) Úvod do optimalizace Matematické metody pro ITS (11MAMY) Jan Přikryl (volně dle M.T. Heathe) 10. přednáška 11MAMY úterý 22. března 2016 verze: 2016-04-01 16:10 Obsah Optimalizační problém 1 Definice 1

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Numerické metody a programování. Lekce 4

Numerické metody a programování. Lekce 4 Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Rozdělování dat do trénovacích a testovacích množin

Rozdělování dat do trénovacích a testovacích množin Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více

13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.

13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m. 13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

KMA Písemná část přijímací zkoušky - MFS 2o16

KMA Písemná část přijímací zkoušky - MFS 2o16 JMÉNO a PŘÍJMENÍ KMA Písemná část přijímací zkoušky - MFS 2o16 verze 1 / 28. 6. 2016 Pokyny k vypracování: Za každý správně vyřešený příklad lze získat 2 body. U zaškrtávacích otázek, je vždy správná právě

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Matematika V. Dynamická optimalizace

Matematika V. Dynamická optimalizace Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

f ( x) = 5x 1 + 8x 2 MAX, 3x x , 4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R

Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt

Více