Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
|
|
- Božena Kovářová
- před 9 lety
- Počet zobrazení:
Transkript
1 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F Diatomické plynné prvky Cl H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe
2 Plyn Velká část chemických a fyzikálních teorií byla rozvinuta v souvislosti s experimenty s plyny. Jsou různé druhy "vzduchu první studium plynů Pojem plyn Gas sylvestre = divoký plyn = CO 2 Hoření dřeveného uhlí s KNO 3 (salpetr) Kvašení piva, vína Působení octa na vápenec Grotto del Cane Johann Baptista van Helmon ( ) 2
3 p = F A Tlak Pa 760 mm Hg 760 torr (Torricelli) 1 atm Evangelista Torricelli ( ) barometr
4 F = m g g = m s 2 Atmosferický tlak Sloupec vzduchu 1 m 2, od země po stratosféru m = 10 4 kg Atmosferický tlak 1 atm 4
5 p = h ρ g Hydrostatický tlak 5
6 1662 Boyleův zákon Součin tlaku a objemu je konstantní pro dané množství plynu a teplotu p V = konst. Nezávisí na druhu plynu, nebo více plynů ve směsi Robert Boyle ( ) Výjimka např. NO 2 6
7 Stlačení plynu za konstantní teploty 7
8 Boyleův zákon V = konst. / p 8
9 1/V = konst. p 9
10 Izotermy p = konst. / V T = konst. 10
11 Aplikace Vzduch na 60 min. Vzduch na? min. 11
12 Kinetická teorie plynů p V = konst. Molekuly plynu narazí na stěny nádoby, odrazí se a předají impulz. Tím se vytváří tlak plynu, který vyrovnává vnější tlak. Pokud snížíme objem na polovinu, nárazy na stěnu jsou dvakrát častější a tlak je dvojnásobný. 12
13 Charlesův zákon 1787 Různé plyny se roztahují o stejný zlomek objemu při stejném zvýšení teploty Jacques A. C. Charles ( ) první solo let balonem první H 2 balon 13
14 Charlesův zákon V, cm 3 V = a t + b 14
15 Charlesův zákon V = a t + b V = a (t + b/a) b/a = 273 C absolutní stupnice teploty V = k T T = absolutní teplota [K] 15
16 V, cm 3 Charlesův zákon V = k T 16
17 Izobary V = a t + b p = konst. 17
18 Charlesův-Gay-Lussakův zákon V = V 0 (1 + α t) α = 1/273 koeficient tepelné roztažnosti t = teplota ve C V 1 /T 1 = V 0 /T 0 za konst. n and p Joseph Louis Gay-Lussac ( ) 18
19 Amontonův zákon p = p 0 (1 + α t) α = 1/273 koeficient tepelné roztažnosti p 1 /T 1 = p 0 /T 0 za konst. n and V izochora 19
20 Avogadrův zákon 1811 Stejné objemy plynů obsahují stejný počet molekul (za stejných podmínek p, T) Nepřijato až do 1858, Cannizzaro Voda do té doby OH, M(O) = 8 po 1858 H 2 O, M(O) = 16 V = n konst. V/n = konst. Tedy tlak závisí na počtu molekul, teplotě, objemu p V = f (N, T) 20
21 Ideální plyn Je složen z malých částic (atomů, molekul), které jsou v neustálém pohybu po přímých drahách v náhodných směrech vysokými rychlostmni. Rozměry částic jsou velmi malé ve srovnání s jejich vzdálenostmi a nepůsobí na sebe přitažlivými nebo odpudovými silami. Vzájemné srážky jsou elastické, bez ztráty energie. Kinetická energie částice je závislá na teplotě. KE = ½ m v 2 21
22 V = n konst. V/n = konst. 1 mol plynu V m = l mol 1 Za standardní teploty a tlaku (STP) p = kpa = 1 atm = 760 torr t = 0 C 22
23 Rovnice ideálního plynu Ideální plyn Objem molekul nulový (zanedbatelný oproti objemu plynu) Žádné mezimolekulové síly pv = nrt V = (n R T) / p p= (nrt)/v n/v = p / RT n = počet molů R = plynová konstanta R = J K 1 mol 1 23
24 Rovnice ideálního plynu p V = n R T 24
25 Výpočet M r plynu p V = n R T = (m/m) R T ρ = m/v = p M / R T hustota M = ρ RT / p 25
26 Molární zlomek Parciální tlak x i = n i / Σ n i Σ x i = 1 Tlak plynu uzavřeného nad kapalinou p = p(plynu) + tenze par 26
27 Daltonův zákon Tlak komponenty ve směsi, kdyby byla v daném objemu sama. p celk = p 1 + p 2 + p p n = Σ p i p(vzduch) = p(o 2 ) + p(n 2 ) + p(ar) + p(co 2 ) + p(ost.) Parciální tlak P He = x He P celk P Ne = x Ne P celk P celk = P He + P Ne 27
28 Neideální (reálný) plyn Chování neideálního plynu se blíží ideálnímu za vysoké teploty a nízkého tlaku Za nízké teploty a vysokého tlaku se uplatňují mezimolekulové síly a vlastní objem molekul 28
29 Van der Waalsova stavová rovnice reálného plynu (p + a 2 /V) (V b) = RT b = vlastní objem molekul plynu (odečíst) a = mezimolekulová přitažlivost (zvětšit p) J. D. van der Waal ( ) 29
30 Van der Waalsova stavová rovnice reálného plynu 2 an P + )( V nb) = V ( 2 nrt P = nrt ( V nb) an ( V 2 2 ) Plyn a (l 2 bar mol -2 ) b (l mol -1 ) Helium Vodík Dusík Kyslík Benzen
31 Zkapalňování plynů Kondenzace je podmíněna působením vdw sil Nízká T, vysoký p, snížení E kin, přiblížení molekul Kritická teplota plynu = nad ní nelze plyn zkapalnit libovolně vysokým tlakem Joule-Thompsonův efekt Expanze stlačeného plynu tryskou, ochlazení způsobené trháním vdw vazeb, potřebná energie se bere z E kin, klesá T. 31
32 Zkapalňování plynů 32
33 Kinetická teorie plynů 1738 Daniel Bernoulli ( ) Atomy a molekuly jsou v neustálém pohybu, teplota je mírou intenzity tohoto pohybu Statistická mechanika, Clausius, Maxwell, Boltzmann střední rychlost molekuly H 2 při 0 C <v> = m s 1 = 6624 km h 1 33
34 Kinetická teorie plynů Střední kinetická energie molekuly plynu E kin = 1 / 2 m<v> 2 m = hmotnost molekuly plynu <v> = střední rychlost molekuly plynu Střední kinetická energie všech plynů při dané teplotě je stejná. E kin = 3/2 k T 34
35 Maxwell-Boltzmannovo rozdělení rychlostí dn = 4πN (m / 2 π kt) 3 /2 exp( ½mv 2 /kt) v 2 dv Nejpravděpodobnější rychlost Průměrná rychlost Střední kvadratická rychlost v mp = (2kT / m) ½ v av = (8kT / π m) ½ v rms = (3kT / m) ½ kt Rychlost ~ m = RT M 35
36 Maxwell-Boltzmannovo rozdělení rychlostí kt Rychlost ~ m = RT M 36
37 Kinetická teorie plynů Počet molekul Plocha pod křivkami je stejná, protože celkový počet molekul se nemění Rychlost, m s 1 Žádná molekula nemá nulovou rychlost Maximální rychlost Čím vyšší rychlost, tím méně molekul 37
38 38
39 Maxwell-Boltzmannovo rozdělení rychlostí kt Rychlost ~ m = RT M 39
40 pv = R T = N A k T E kin = 1 / 2 m<v> 2 = 3 / 2 kt Celková energie na jednotkový objem U = 3 / 2 N A kt/v [Jm 3 ] Pak p = 2 / 3 U 40
41 Střední volná dráha, l, průměrná vzdálenost mezi dvěma srážkami Závisí na p a T l = k T/ p l = Å Za laboratorních podmínek p,t Viskozita, tepelná vodivost Difuze 41
42 Efuze Grahamův zákon v 1 /v 2 = (ρ 2 /ρ 1 ) ½ = (M 2 /M 1 ) ½ 42
43 43
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
VícePlyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
Více6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
VíceTepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
VíceIII. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
VíceChemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
Více9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
VíceFyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
VíceIDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
VíceZákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
VíceIdeální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
VíceKapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
VícePLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
VíceLOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
VíceTermodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
VíceKapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
VíceSkupenské stavy látek
Skupenské stavy Skupenské stavy látek Všechny látky jsou tvořeny atomy, molekulami nebo ionty, které jsou v neustálém pohybu a které na sebe působí soudržnými silami, závislými na vnějších podmínkách.
VíceMolekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
VíceTERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
VíceSTRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
VíceZákladem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
VíceMol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
VíceVybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
VíceVÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
VíceIII. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
VíceKinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
VíceFyzikální principy uplatňované v anesteziologii a IM
Fyzikální principy uplatňované v anesteziologii a IM doc. Ing. Karel Roubík, Ph.D. ČVUT v Praze, Fakulta biomedicínského inženýrství e mail: roubik@fbmi.cvut.cz, tel.: 603 479 901 Tekutiny: plyny a kapaliny
VíceZáklady vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
VíceMechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
VíceIDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. IDEÁLNÍ PLYN - Ideální plyn je plyn, který má na rozdíl od skutečného plynu tyto ideální vlastnosti:
VíceSkupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
VíceStavové chování kapalin a plynů. 4. března 2010
Stavové chování kapalin a plynů 4. března 2010 Studium plynů Plyn JE tekutina Studium plynů Studium plynů Létání v balónu aneb... Jak se vzepřít gravitaci? Studium plynů Studium plynů Létání v balónu aneb...
VíceKapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
VíceKapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
VíceLátkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
Více3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
VíceTeplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
VíceTermodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
VíceStavové chování kapalin a plynů II. 12. března 2010
Stavové chování kapalin a plynů II. 12. března 2010 Stavové rovnice - obecně Van der Waalsova rovnice V čem je ukryta síla van der Waalse... A b=4n A V mol. Van der Waalsova rovnice (r. 1873) - první úspěšná
Více2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
VíceTeorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
VíceMolekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
VíceIng. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního
VíceStavové chování plynů a kapalin
Stavové chování plynů a kapalin Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 Stav a velikost systému stav systému je definován intenzivními veličinami:
VíceVÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VíceFázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
VíceTERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Více4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
VíceDo známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
VíceRovnováha Tepelná - T všude stejná
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
VícePříklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
VícePřednáší a cvičí : Josef Šandera, UMEL
Doporučená literatura: Doporučená literatura Přednáší a cvičí : Josef Šandera, UMEL http://www.umel.feec.vutbr.cz/~sandera/ Fikes L.: Fyzika nízkých tlaků, SNTL, Praha 1991, učebnice pro SPŠ elektrotechnické
VíceTeplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
VíceChemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
VíceFázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials
Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free
VícePROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
VíceMECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
VíceKontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
VíceHydrochemie koncentrace látek (výpočty)
1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve
VíceZákladní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
VíceNekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
VíceNekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
VíceDigitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePopis stavového chování plynů
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Popis stavového chování plynů BAKALÁŘSKÁ PRÁCE Martin Řehák Studijní obor: Chemie se zaměřením na vzdělávání Vedoucí práce: Mgr. Jitka
VíceMECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
VíceTERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
VíceSkupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
VíceHydrochemie koncentrace látek (výpočty)
Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve 2
VícePřednáška 2. Martin Kormunda
Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré
VíceHmotnost atomu, molární množství. Atomová hmotnost
Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní
Více5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
VícePočet atomů a molekul v monomolekulární vrstvě
Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν
VíceKinetická teorie plynů
Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota
VíceN A = 6,023 10 23 mol -1
Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,
VíceFyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013
Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního
VícePROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceTeoretické základy vakuové techniky
Vakuová technika Teoretické základy vakuové techniky tlak plynu tepeln! pohyb molekul st"ední volná dráha molekul proud#ní plynu vakuová vodivost $erpání plyn% ze systém% S klesajícím tlakem se chování
VíceCvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].
Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314
VíceEnergie, její formy a měření
Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce
VíceTEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
VíceVýpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
VíceMolekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
VícePŘEVODY JEDNOTEK. jednotky " 1. základní
PŘEVODY JEDNOTEK jednotky 1. základní Fyzikální veličina Jednotka Značka Délka l metr m Hmotnost m kilogram kg Čas t sekunda s Termodynamická teplota T kelvin K Látkové množství n mol mol Elektrický proud
VíceVoda, pára, vypařování,
Voda, pára, vypařování, rovnovážná vlhkost MaK 3/2011 Molekula vody a její vlastnosti Základní charakteristiky: Malá(průměr asi 2,8 Å), relativně lehká (M r =18, 015) Polární(vytváří relativně silný dipól),
VíceÚloha 1 Stavová rovnice ideálního plynu. p V = n R T. Látkové množství [mol]
TEORETICKÁ ČÁST (60 BODŮ) Úloha 1 Stavová rovnice ideálního plynu 1 bodů 1. Objem [m ] Univerzální plynová konstanta 8,145 J K 1 mol 1 p V n R T Tlak [Pa] Látkové množství [mol] Termodynamická teplota
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
VíceMechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku
Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je
VíceStanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
VíceZáklady molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
VíceDomácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
VíceTransportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
VíceFyzika v anesteziologii a intenzivní péči
Fyzika v anesteziologii a intenzivní péči MUDr. Vladimír Kameník strana 1 Plyny Df.: Plyn (plynná látka) je jedním ze skupenství, ve kterém jsou částice relativně daleko od sebe, pohybují se v celém objemu
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v
VíceOsnova pro předmět Fyzikální chemie II magisterský kurz
Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie
VíceNultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
VíceLÁTKOVÉ MNOŽSTVÍ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý
Autor: Mgr. Stanislava Bubíková LÁTKOVÉ MNOŽSTVÍ Datum (období) tvorby: 28. 11. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci
VíceKDE VZÍT PLYNY? Václav Piskač, Brno 2014
KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném
Více