Doly Nástup Tušimice

Rozměr: px
Začít zobrazení ze stránky:

Download "Doly Nástup Tušimice"

Transkript

1 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO-GEOLOGICKÁ FAKULTA Katedra geodézie a důlního měřictví Polohové a výškové zaměření stavebního objektu pro doplnění Základní mapy závodu SD a.s., Doly Nástup Tušimice BAKALÁŘSKÁ PRÁCE Autor: Vedoucí bakalářské práce: Tereza Strejcová doc. Ing. Dana Vrublová, Ph.D. Ostrava

2

3

4

5 Poděkování Touto cestou bych ráda poděkovala všem, kteří významnou měrou přispěli ke vzniku této bakalářské práce. Děkuji především vedoucí bakalářské práce doc. Ing. Daně Vrublové, Ph.D. za cenné připomínky, rady a ochotu poskytované při vedení bakalářské práce. Dále bych ráda poděkovala zaměstnancům společnosti Severočeské doly a. s., bez kterých by tato práce nemohla být zrealizována. Především panu Ing. Pavlovi Miltnerovi za ochotu a rady při provádění bakalářské práce.

6 Anotace Předmětem této bakalářské práce je polohové a výškové zaměření stavebního objektu pro doplnění Základní mapy závodu SD a.s., Doly Nástup Tušimice. Pro měření byla použita technologie GNSS měření totální stanicí. V první části bakalářské je popsána oblast Dolů Nástup Tušimice a přesná charakteristika zaměřovaného území. V dalších kapitolách je popsáno samotné měření, zpracování dat geodetickým softwarem a tvorba základní mapy závodu. Klíčová slova: Doly Nástup Tušimice, totální stanice, GNSS, základní mapa závodu, tachymetrie Summary The subject of this bachelor thesis is horizontal and vertical measurements of the construction object for addition to basic map of the plant SD a.s., Doly Nástup Tušimice. The GNSS technology and total station were used for measurement. In the first part of this bachelor thesis the Tušimice mines and exact characteristic of measured area are described. It the following chapters the measurment itself is described, as well as the processing of the data using the geodetic software and making the basic map of the plant. Key words: Doly Nástup Tušimice, total station, GNSS, basic map of the plant, measure sketch, tachymetry

7 Obsah 1 ÚVOD POPIS LOKALITY Charakteristika zaměřovaného objektu PŘÍPRAVNÉ PRÁCE Rekognoskace terénu METODY MĚŘENÍ Měření totální stanicí Tachymetrie Technologie GNSS Struktura GNSS Chyby měření Metody určování polohy Síť permanentních referenčních stanic PŘÍSTROJOVÁ TECHNIKA Trimble R8 GNSS Totální stanice Trimble S MĚŘICKÉ PRÁCE Příprava totální stanice Příprava GNSS přístroje Stabilizace pevných bodů (orientace) stanoviska Měření bodového pole GNSS Měření bodového pole totální stanicí Měření podrobných bodů Měřický náčrt Pomocný měřický náčrt... 17

8 6.7.2 Skutečný měřický náčrt Připojení podrobných bodů do systému ZPRACOVÁNÍ NAMĚŘENÝCH DAT Export dat Transformace Zpracování naměřených hodnot MAPOVÉ DÍLO Klad mapových listů Vyhotovení ZMZ ZÁVĚR SEZNAM POUŽITÉ LITERATURY A ZDROJŮ SEZNAM OBRÁZKŮ SEZNAM TABULEK SEZNAM PŘÍLOH

9 Seznam použitých zkratek České zkratky Bpv CZEPOS ČSN S-JTSK SD DNT ZMZ Balt po vyrovnání Síť permanentních stanic GNSS České republiky Česká technická norma Systém jednotné trigonometrické sítě katastrální Severočeské doly Doly Nástup Tušimice Základní mapa závodu Anglické zkratky ETRS89 European Terrestrial Reference System 1989 GLONASS GNSS GPS NAVSTAR PPM RTK VRS ГЛОбальная НАвигационная Спутниковая Система Global Navigation Satellite System Global positioning system Navigation Signal Timing and Ranging Global Position System Parts per milion Real Time Kinematic Virtual Reference Station WGS84 World Geodetic System 1984

10 1 ÚVOD Náplní této bakalářské práce je zaměření nově vybudovaného chodníku a doplnění základní mapy závodu. Zaměřen byl jak samotný chodník, tak i plot, lampy a dopravní značky, což bylo nutné z důvodu provedených změn. Měřeno bylo v souřadnicovém systému jednotné trigonometrické sítě katastrální (S-JTSK) a výškovém systému Balt po vyrovnání (Bpv). Tato práce obsahuje v první části vymezení zaměřovaného území, zobrazení jeho lokalizace v České republice a je popsán blíže jeho charakter. Dále následuje popis přípravných prací, rekognoskace terénu, použité metody měření polohopisu a výškopisu, použitá přístrojová technika a popis samotného měření. Na konci je podrobně rozebráno zpracování dat s grafickým zpracováním. Bakalářská práce obsahuje také všechny podklady pro výpočet a zaměření, které jsou součástí příloh. 1

11 2 POPIS LOKALITY Tušimice je malá vesnice, která je částí města Kadaň. Poloha této vesnice je asi 4,5 km (vzdušnou čarou) na východ od Kadaně a náleží okresu Chomutov. Poloha Tušimic na mapě České republiky je znázorněna na Obrázku č. 1. Tušimice je také název katastrálního území, které má kód a rozlohu 2088,1909 ha (20,88 km 2 ). [1] Na území můžeme nalézt dvě nebližší zvláště chráněná území. Jedním z nich je přírodní rezervace Běšický a Čachovický vrch a druhým je přírodní památka Želinský meandr. U Tušimic proběhl v roce 1963 archeologický průzkum, který odkryl desítky pravěkých šachet, ve kterých se před šesti tisíci lety těžil křemenec. V 1. polovině 19. století fungovaly u Tušimic čtyři malé doly - Antonín Florián, Ferdinand, Karel Josef a Michal Prokop - ve kterých se těžilo uhlí. Na konci 60. let se otevřel důl Josef Oswald a v době největšího rozkvětu zde pracovalo až 50 horníků. Právě v důsledku těžby uhlí tato lokalita zanikla. [2] Obrázek č. 1: Lokalizace Tušimic na mapě ČR, zdroj [3] 2.1 Charakteristika zaměřovaného objektu Nově vybudovaný chodník se nachází u vnitřního parkoviště, které leží u správní budovy Doly Nástup Tušimice (DNT). Chodník byl vybudovaný z důvodu lepší přístupnosti pro chodce, čemuž předešlý stav úplně nevyhovoval a je vytvořený ze zámkové dlažby. 2

12 Tento chodník je velmi dobře přístupný a nikde nepřekáží značně hustý porost stromů, což přispělo k jeho dobrému zaměření. Chodník využívají převážně zaměstnanci z této zájmové oblasti, kde se nachází Hasičský záchranný sbor DNT a který dále navazuje na stávající chodník u šaten a koupelen. Situace zaměřovaného objektu je vyfocena na Obrázku č. 2 a Obrázku č. 3. Obrázek č. 2: Zaměřovaný chodník, vlastní zdroj Obrázek č. 3: Zaměřovaný chodník, vlastní zdroj 3

13 Na následujícím Obrázku č. 4 je vyznačené zájmové území na ortofotomapě, kde byla práce prováděna a poskytnuta z Geoportálu Českého úřadu zeměměřického a katastrálního. 3 PŘÍPRAVNÉ PRÁCE 3.1 Rekognoskace terénu Obrázek č. 4: Zájmové území, zdroj [4] Pro zdárný průběh geodetických prací je důležité provést před samotným měřením rekognoskaci terénu, což je zjišťování skutečností přímo na místě. Seznámení s konkrétním místem proběhlo nejdříve v kanceláři na aktuální Základní mapě závodu (ZMZ), která je v Příloze č. 1, dále na posledním aktuálním snímku z letecké fotogrammetrie a projektové dokumentaci stavby. Potom následoval výjezd do terénu, zjistit, kudy nově vybudovaný chodník vede. Dalším důležitým faktorem bylo zjištění hustoty vzrostlých stromů, kvůli možnosti zaměření globálním navigačním satelitním systémem (Global Navigation Satellite System GNSS). Nedílnou součástí rekognoskace terénu byla vhodná volba stanoviska pro měření totální stanicí tak, aby bylo vidět na všechny oblasti zájmu měření. 4

14 4 METODY MĚŘENÍ V této kapitole jsou zmiňovány geodetické metody, které byly použity pro zaměření všech bodů k vytvoření základní mapy závodu. 4.1 Měření totální stanicí Totální stanice je zeměměřický přístroj, který měří současně vzdálenosti, vodorovné směry a výškové úhly. Jedná se o měřický přístroj s dálkoměrem a je řízený jednoúčelovým počítačem s vestavěným softwarem. Software obsahuje praktické měřické úlohy, například okamžitý přepočet polárních souřadnic do pravoúhlých souřadnic X, Y, Z. V současné době se mohou měřit vzdálenosti i bez použití odrazného hranolu. Využití totální stanice je především pro geodetické měření a vytyčování. [5] Tachymetrie Abych mohla být vyhotovena mapa, muselo se provést zaměření polohopisu a výškopisu. Nejčastěji používanou metodou je tachymetrie, která byla zvolena i v tomto případě, jelikož umožňuje měření výškopisu a polohopisu zároveň. Tato metoda má mnoho výhod, kterými jsou například měření délek nepřímo elektronicky nebo opticky, je také velmi rychlá a jednoduchá. Výpočtem rajónu určeného polární metodou se získá poloha bodů. Principem polární metody je určení polohy podrobných bodů, viz Obrázek č. 5. Měří se zde úhel ω a vzdálenost s 13. Určují se souřadnice bodu P 3 (y 3, x 3 ). Obrázek č. 5: Princip polární metody, zdroj [6] 5

15 Souřadnice bodu P 3 budou mít tvar: y 3 = y 1 + y 13 = y 1 + s 13. sinσ 13, (4.1) x 3 = x 1 + x 13 = x 1 + s 13. cosσ 13. (4.2) Směrník 13 (4.4) určíme z měřeného úhlu a vypočteného směrníku 12 (4.3) ze souřadnic bodů P 1 (y 1, x 1 ) a P 2 (y 2, x 2 ). σ 12 = arctg y 2 y 1 x 2 x 1, (4.3) σ 13 = σ 12 + ω. (4.4) Pro vyhotovení mapy je nezbytné také zaměření výšek bodů. Bylo zvoleno trigonometrické určení výšek, které je založeno na řešení pravoúhlého trojúhelníka. Tuto metodu použijeme v případě, kdy není možné změřit výšky přímým měřením. Tato metoda je znázorněna na Obrázku č. 6. Obrázek č. 6: Trigonometrické určení výšek, zdroj [7] Převýšení bodů A a B pro kratší délky (do 200 m): H AB = h + v s v c, (4.5) kde v s je výška stroje a v c výška cíle. h = s. tgε = s. sinε, (4.6) kde s je vodorovná délka, s šikmá délka a ε je výškový či hloubkový úhel. 6

16 Pro délky větší než 200 m se musí zavést oprava ze zanedbání skutečného horizontu q (4.7) a opravu z vlivu refrakce r (4.8). q = s2 2R, (4.7) kde s je vodorovná délka a R je poloměr Země. r = k. s2 2R, (4.8) kde s je vodorovná délka, R je poloměr Země a k je refrakční koeficient (k = 0,13). Vzorec výsledného převýšení vypadá tedy následovně: H AB = h + q r + v s v c. (4.9) 4.2 Technologie GNSS [7] GNSS je systém, který díky družicím umožňuje určování polohy s vysokou přesností. Tento princip je založen na příjmu rádiových vln vysílanými umělými družicemi Země. Základním souřadným systémem je WGS-84. [8] Struktura GNSS Tento systém se skládá ze tří základních segmentů: kosmický segment, řídící segment, uživatelský segment. Kosmický segment je tvořen soustavou družic, které obíhají po známých, přesně definovaných a určených oběžných drahách. Globální polohový systém NAVSTAR má počet oběžných drah šest, se sklonem 55 stupňů vzhledem k rovníku. Počet družic je v současné době 32. Systém GLONASS má 24 družic a 3 oběžné dráhy se sklonem 65 stupňů vzhledem k rovníku. Hlavní úkol řídícího segmentu z uživatelského hlediska je aktualizování údajů obsažených v navigačních zprávách, které jsou vysílaný jednotlivými družicemi kosmického segmentu. Tento segment tvoří soustava pěti pozemních monitorovacích stanic umístěných na vojenských základnách americké armády. Uživatelský segment funguje na základě přístrojů schopných přijímat a zpracovávat 7

17 signály z družic. GNSS přijímače přijmou signál a provedou předběžné výpočty polohy, rychlosti a času. Pro tyto výpočty jsou potřebné signály alespoň ze čtyř družic. [9] Chyby měření Tak jako každé geodetické měření, je i technologie GNSS zatížena chybami. Mezi faktory, které ovlivňují kvalitu měření, patří například stav družic, oslabený signál, způsobený průchodem korunami stromů. Další chyba je také multipath, při které GNSS přijímač zpracovává jak přímo přijatý signál, tak i signál odražený od blízkých ploch. Princip vzniku chyby multipath je znázorněna na Obrázku č. 7. [10] Další ovlivňující faktor je počet a geometrické uspořádání družic. Abychom mohli vypočítat polohu (X, Y, Z, T), tak potřebujeme minimálně 4 viditelné družice. Ideální stav je, když je jedna družice v zenitu a zbylé tři s elevací kolem 20 o. Neopomenutelný je také vliv atmosféry. Ionosféra způsobuje tzv. ionosférickou refrakci a je závislá na frekvenci procházejících vln. Troposféra způsobuje tzv. troposférickou refrakci, která je závislá na hustotě prostředí. [10] Metody určování polohy Obrázek č. 7: Princip vzniku multipath, zdroj [10] podle [11]: Metody určování polohy technologií GNSS je možné provádět různými metodami Statická metoda vyžaduje dlouhé observace, počítá se v postprocessingu. Tato metoda je málo využívána v praxi, ale je vhodná k aplikacím s požadavkem velké přesnosti. 8

18 Rychlá statická metoda (rapid static) určuje polohu v řádech minut a opět počítání v postprocessingu. Využití pro určení polohy do přesnosti 5-10 mm. Výhoda statické a rychlé statické metody je použití v místech, kde není možno přes internet dostávat korekce - kde není mobilní signál, nebo se nemůže použít aktivní rádiový signál (sklad trhavin). Metoda stop and go nejdříve se měří několik minut inicializace a potom několik vteřin podrobné měření. Přesnost je zde srovnatelná s kinematickou metodou v reálném čase (Real Time Kinematic - RTK). Kinematická metoda je jako metoda Stop and Go. Kvůli technologii on-the-fly se umí přijímač inicializovat i za pohybu. RTK využívá rádiové spojení k vysílání družicových dat z referenční stanice na podrobnou stanici. Uplatnění této metody je především u vytyčování Síť permanentních referenčních stanic Síť permanentních stanic GNSS České republiky (CZEPOS) poskytuje uživatelům GNSS korekční data pro přesné určení pozice na území České republiky. CZEPOS spravuje a provozuje Zeměměřický úřad jako součást geodetických základů České republiky. [12] CZEPOS využijí všichni uživatelé, kteří potřebují v reálném čase určovat pozici pevného či pohybujícího se stanoviště. [13] Stanice CZEPOS jsou zobrazeny na Obrázku č. 8. Celkem má 28 referenčních stanic a dalších 22 ostatních stanic. 9

19 Obrázek č. 8: Stanice CZEPOS, zdroj [12] Trimble nabízí také konkurenční službu Trimble Virtual Reference Station (VRS) Now Czech, která poskytuje korekční signál pro všechny GNSS přijímače ve stavebnictví, geodézii a geo-informační systémy pro celou Českou Republiku. Síť má 24 referenčních stanic a jejich rozmístění umožňuje zajištění kvalitního signálu po celém území státu a jeho pohraničních oblastí. V pohraničí je navíc navázaná na osm stanic Trimble VRS NOW Deutschland. Jednou z hlavních výhod Trimble VRS Now je neustálý přístup ke korekcím GNSS metodou RTK. Na Obrázku č. 9 je tato síť zobrazena. [14] Obrázek č. 9: Trimble VRS Now Czech, zdroj [14] 10

20 5 PŘÍSTROJOVÁ TECHNIKA použito. Tato kapitola obsahuje popis přístrojového vybavení, které bylo pro zaměření 5.1 Trimble R8 GNSS Tento přístroj nabízí technologii, díky níž mohou geodeti rozšířit dosah svých GNSS roverů do oblastí, které byly kvůli stromům příliš skryté, nebo v zastavěných částech. Důležitou funkcí je pokročilé satelitní sledování s technologií přijímače Trimble 360. Obsahuje také 6 čipů Trimble Maxwell 6 se 440 kanály GNSS. Hodnoty přesnosti síťové RTK jsou uvedeny v Tabulce č. 1. [15] Tabulka č. 1: Hodnoty přesnosti síťové RTK, zdroj [15] Vodorovně Svisle Doba inicializace 8 mm + 0,5 ppm RMS 15 mm + 0,5 ppm RMS Obvykle méně než 8 sekund Spolehlivost inicializace Obvykle více jak 99,9 % Hodnoty PPM sítě RTK jsou porovnávané s nejbližší fyzickou referenční stanicí. Inicializace může být ovlivněna atmosférickými podmínkami, vícecestným šířením signálu, překážkami a satelitní geometrií. Spolehlivost inicializace je neustále sledována, aby se zajistila nejvyšší kvalita. Trimble R8 je zobrazen na Obrázku č. 10. [15] 11

21 5.2 Totální stanice Trimble S3 Obrázek č. 10: Trimble R8, vlastní zdroj Totální stanice Trimble S3 umožňuje bezhranolové měření díky technologii Direct Reflex a je určena na jednomužní ovládání. Délky měří pomocí infračerveného paprsku. Optika v totální stanici od Carl Zeiss poskytuje při měření velkou spolehlivost. Totální stanice se může jednoduše připojit k Trimble GNSS. Při měření používáme odrazný hranol na výtyčce. Totální stanice je zobrazena na Obrázku č. 11. [16] Přesnost měření délek hranolem je uvedena v Tabulce č. 2 a v následující Tabulce č. 3 je uveden čas měření pomocí hranolu. Tabulka 2: Přesnost měření délek hranolem (směrodatná odchylka), zdroj [16] Standard Standard dle ISO Tracking 2 mm + 2 ppm 1.5 mm + 2 ppm 5 mm + 2 ppm Tabulka 3: Čas měření hranolem, zdroj [16] Standard Tracking 2 s 0.4 s 12

22 Obrázek č. 11: Trimble S3, vlastní zdroj 13

23 6 MĚŘICKÉ PRÁCE Následující kapitoly se zabývají praktickou částí bakalářské práce, čímž je tedy měření v terénu, které proběhlo v jedné etapě a to Příprava totální stanice Před samotným měřením musela být provedena horizontace přístroje. K tomu použijeme krabicovou libelu a nohy stativu. Vysouváním a zasouváním noh stativu urovnáme krabicovou libelu a tento postup opakujeme, dokud nebude bublina ve středu libely. Zrektifikovaná libela se pozná tak, že při otáčení přístrojem se poloha bubliny nemění. K přípravě stroje patří také kontrola kolimační a indexové chyby. Kolimační chyba znamená, že záměrná přímka Z není kolmá na točnou osu dalekohledu H a tím se záměrná přímka nepohybuje ve svislé rovině, ale po plášti dvojitého kužele. Tato chyba je zobrazena na Obrázku č. 12. Kolimační chybu zjistíme tak, že dalekohledem zacílíme na vzdálený dobře identifikovatelný bod P, přibližně v horizontu přístroje. Přečteme údaj vodorovného kruhu O 1, proložíme dalekohled do druhé polohy, zacílíme na stejný bod a přečteme hodnotu O 2. Hodnota kolimační chyby c se určí z rovnice: c = O 2 O 1 ±200gon. Indexová chyba vzniká, když není splněna podmínka, aby vodorovné záměře odpovídalo určité čtení na svislém kruhu, například 100gon. Znázornění této chyby je na Obrázku č. 13. Vliv kolimační chyby i eliminujeme přesným určením její velikosti podle rovnice: i = 400gon (O 1+O 2 ). [17] 2 Naměřené opravy kolimační a indexové chyby se zadají do totální stanice, která automaticky opraví veškeré měřené úhly. Použitá totální stanice v sobě obsahuje program na určení kolimační i zenitové chyby včetně uložení. 2 14

24 Obrázek č. 12: Kolimační chyba, zdroj [18] 6.2 Příprava GNSS přístroje Obrázek č. 13: Indexová chyba, zdroj [18] Příprava stroje Trimble R8 GNSS byla velmi jednoduchá. Nejprve se zvolila metoda měření a to RTK. Přístroj se sestavil tak, že se anténa umístila na tyčku, spustilo se zařízení, následovalo připojení na referenční systém CREF0001 Trimble a mohlo se provádět měření. 6.3 Stabilizace pevných bodů (orientace) stanoviska Zvolené stanovisko 5001, ze kterého bylo zaměřováno, bylo určené jako volné. Nebylo stabilizováno a bylo označeno ekologickým barevným sprejem na zpevněné ploše. 15

25 Stabilizace byla provedena pouze u orientací 4001, 4002 a 4003 pomocí zatlučených měřických hřebů a opět označených ekologickým barevným sprejem. 6.4 Měření bodového pole GNSS Po zvolení bodového pole byly body orientace zaměřeny přístrojem Trimble R8 GNSS. Použita byla technologie RTK s připojením na pevnou základnu, používanou pro měření na Severočeských dolech (SD) Tušimice určenou v systému CZEPOS. Tento přístroj byl připevněn na výtyčce a to umožňuje, že měření může provádět pouze jeden člověk. Zaměřeny byly body 4001, 4002 a Situace těchto bodů je na Obrázku č. 14 a nachází se v Příloze č. 2. Dále byly tyto body zaměřeny totální stanicí, což je popsáno v následujících kapitolách. Body se nakonec musely zaměřit znovu s hodinovou observací a tato dvě měření byla nakonec zprůměrována. Pro rozlišení jsem si body z druhého měření označila jako 4011, 4012 a Obrázek č. 14: Situace bodového pole, vlastní zdroj 6.5 Měření bodového pole totální stanicí K zaměření nově vytvořeného chodníku stačilo vytvořit pouze jedno volné stanovisko 5001, ze kterého bylo dostatečně vidět na všechny body. Polární měření bylo měřeno v jedné poloze a zaměřovalo se na již zmíněné body 4001, 4002 a Díky ověření indexové a kolimační chyby nebylo tedy potřeba měřit na tyto krátké vzdálenosti v obou polohách. Aby se ověřila správnost měření, tak na konci skupiny byly znovu 16

26 zaměřeny všechny orientace. Nesprávnost měření mohla být totiž ovlivněna jak vnějšími vlivy, tak nepozorností měřiče. 6.6 Měření podrobných bodů Cílem této bakalářské práce bylo výškové a polohové zaměření stavebního objektu, proto se pro vyhotovení modelu terénu zaměřily všechny změny, které byly provedeny. Zaměřen byl obrubník, sloupky plotu, značky a lampy. Pro nejjednodušší přehled se podrobné body označily od 1 do 49. Díky malé rozsáhlosti objektu bylo možné provést měření pouze z jednoho stanoviska. Důležitá součást měření je také vedení měřičského náčrtu, který by měl zobrazovat všechny měřené body. 6.7 Měřický náčrt Důležitým podkladem podrobného měření je měřický náčrt. Díky přehlednému území stačilo vytvořit pouze jeden měřický náčrt, který zahrnoval celý měřený úsek. Do náčrtu se při měření zakresloval tvar komunikace a všechny zaměřované body. Náčrt musí dovolovat jasné a čitelné zobrazení a zapsání všech potřebných údajů Pomocný měřický náčrt Pomocný měřický náčrt je takový náčrt, který se kreslí přímo při měření od ruky a nemá žádné měřítko. Měřický náčrt zaměřovaného území je zobrazen na Obrázku č. 15 a je v Příloze č

27 Obrázek č. 15: Pomocný měřický náčrt, vlastní zdroj Skutečný měřický náčrt Skutečný měřický náčrt je obvykle v měřítku 1:200 až 1:500. Vyhotovuje se buď přímo při měření, nebo nejčastěji v kanceláři, kde se překreslí pomocný měřičský náčrt. 6.8 Připojení podrobných bodů do systému Podrobné body byly určeny trigonometrickým měřením výšek a připojené na body GNSS, určené v systému Bpv. Poloha podrobných bodů je v systému S-JTSK. 18

28 7 ZPRACOVÁNÍ NAMĚŘENÝCH DAT Všechna naměřená data byla zpracována geodetickým softwarem, kterým zabývá tato kapitola. Všechny výstupy a výpočty budou uvedeny v přílohách. 7.1 Export dat Nejprve bylo zapotřebí vyexportovat naměřená data z přístrojů. Data, která byla zaměřena totální stanicí, se překopírovala pomocí datového kabelu a uložila se v textovém souboru, ve formátu *.txt. V Příloze č. 4 jsou tyto formáty dat v podobě zápisníku měřených hodnot v pořadí, v jakém byly zaznamenány. Ukázka protokolu totální stanice je na Obrázku č. 16. Obrázek č. 16: Ukázka protokolu totální stanice, vlastní zdroj Naměřená data přístrojem Trimble R8 GNSS byla přehrána opět pomocí datového kabelu do počítače a jako u totální stanice, i tato naměřená data byla uložena ve formátu *.txt a jsou v Příloze č. 5. Ukázka protokolu GNSS je na Obrázku č

29 7.2 Transformace Obrázek č. 17: Ukázka protokolu GNSS, vlastní zdroj Díky osvědčení na Obrázku č. 18 je patrné, že pro transformaci mezi novou realizací ETRS89 v České Republice a S-JTSK, bez volby identických bodů pomocí zpřesněné globální transformace s použitím transformačních tabulek, byl schválen transformační program Transformační modul zpřesněné globální transformace Trimble 2013 verze 1.0. Obrázek č. 18: Osvědčení, vlastní zdroj 20

30 7.3 Zpracování naměřených hodnot Všechna geodetická data, která byla vypočtena, byla provedena v počítačovém programu GROMA Veškeré protokoly a výstupy vytvořené z tohoto programu jsou součástí příloh. Zpracování naměřených hodnot probíhalo následovně: 1) Do programu GROMA byla importována data z měření totální stanicí a data měřená technologií GNSS. Vkládané souřadnice byly již v systému S-JTSK. 2) V Příloze č. 6 se provedlo přečíslování bodů bodového pole 4011 na 4001, 4012 na 4002 a 4013 na Dále následovalo zprůměrování těchto dvou měření a tím se získaly souřadnice bodového pole. 3) Zpracování zápisníku totální stanice: z důvodu měření v jedné řadě nebylo potřeba zpracovávat měření na podrobných bodech. Orientace byly zaměřeny ve dvou skupinách. 4) Byl proveden výpočet volného stanoviska z orientací na bodové pole. 5) Výpočet podrobných bodů polární metodou. Body 4 a 5 se v protokolu vypočítaly tzv. výpočtem polární metody dávkou. 6) Veškeré body se ukládaly do seznamu souřadnic (Příloha č. 7) a zobrazoval se jejich grafický výstup v MicroStationu (PowerView V8i), čímž se vytvořila síť bodů. Tyto body byly pospojovány, lampy a dopravní značky byly označeny symbolem, a tak vznikl grafický podklad. 21

31 8 MAPOVÉ DÍLO Grafickým výstupem této bakalářské práce je Základní mapa závodu Doly Nástup Tušimice, která byla vyhotovena v souladu s platnou technickou normou ČSN ,,Mapy velkých měřítek Základní a účelové mapy a ČSN Mapy velkých měřítek Kreslení a značky. Vyhotovená mapa je v měřítku 1:500 na mapovém listě Chomutov 5-9/ Klad mapových listů Souvislý klad mapových listů mapy navazuje na dělení mapových listů státní mapy 1: v S-JTSK. Klad je pravoúhlý, daný rovnoběžkami s osou Y a osou X souřadnicové soustavy. [19] Na Obrázku č. 19 je ukázka dělení mapového listu. Postupným dělením mapových listů na sloupce a vrstvy nám vznikne mapový list měřítka 1:500. [19] Obrázek č. 19: Dělení mapového listu, zdroj [19] 22

32 8.2 Vyhotovení ZMZ Vyhotovení Základní mapy závodu probíhalo v grafickém programu MicroStation (PowerView V8i) a její náhled je na Obrázku č. 20. Na poslední aktuální ZMZ před změnou bylo provedeno připojení zaměřené kresby jako referenční výkres a nakopírování mého měření do této mapy, případně obkreslení relevantní části. Vše se napojilo na prvky, které se nezměnily, lampy byly přesunuty na nová místa a smazaly se prvky, které byly odstraněny. Vzhled byl upraven tak, aby vše odpovídalo normám pro ZMZ a vytvořila se tak jedna kresba s aktuálním stavem, tzn. nová Základní mapa závodu. Nakonec se ještě provedla aktualizace mimorámových údajů, a to vše se dalo ke kontrole odpovědné osobě. Takto vytvořená nová aktuální mapa je dána k užití a stará mapa se archivuje. Typů archivace je několik, patří mezi ně například uložení na CD, uložení digitálně na serveru nebo v tištěné podobě. Formát mapy je A0, v měřítku 1:500 v Příloze č 8. Obrázek č. 20: Nová Základní mapa závodu, vlastní zdroj 23

33 Na Obrázku č. 21 je výřez ze ZMZ pro porovnání aktuálního stavu zájmového území a stavu předešlého. Toto porovnání je v Příloze č. 9. Obrázek č. 21: Porovnání stavů, vlastní zdroj 24

34 9 ZÁVĚR Cílem této bakalářské práce bylo doplnění daného objektu do Základní mapy závodu SD a.s., Doly Nástup Tušimice a prokázání základních znalostí získaných na Hornicko-geologické fakultě, oboru Inženýrská geodézie. Pro účel vyhotovení aktuální ZMZ bylo nutné zájmové území zaměřit polohopisně a výškopisně zvolenou měřickou metodou. Pro dosažení nejpříznivějších výsledků měření byla použita moderní technologie, a to měření totální stanicí Trimble S3 a technologií GNSS systém Trimble R8, metodou Real Time Kinematic. Díky dobře zvoleným metodám měření byla splněna správnost měření a vytvoření základní mapy závodu. Do budoucna budou tuto mapu využívat Severočeské Doly a.s. pro další měřické a bezpečnostní účely. 25

35 SEZNAM POUŽITÉ LITERATURY A ZDROJŮ [1] Územně identifikační registr [online].[cit ]. Dostupný z: < [2] BÍLEK, J.; URBAN, J.; JANGL, L. Dějiny hornictví na Chomutovsku, Chomutov: Vlastivědné muzeum, [3] Mapa České republiky [online].[cit ]. Dostupný z: < [4] Geoportal [online].[cit ]. Dostupný z: < [5] Merim.cz [online].[cit ]. Dostupný z: < [6] Institut geodézie a důlního měřictví [online].[cit ]. Dostupný z: < [7] Gis.zcu.cz [online].[cit ]. Dostupný z: < [8] GPS navigace [online].[cit ]. Dostupný z: < [9] RAPANT, P. Družicové polohové systémy, VŠB Technická univerzita Ostrava, [online].[cit ]. Dostupný z: < ve_polohove_systemy/links/582c467508ae138f1bf70cd3/druzicove-polohovesystemy.pdf> [10] VUT Brno [online].[cit ]. Dostupný z: <

36 [11] ŘÍHA, J. Moderní přístrojová technika, Praha [online].[cit ]. Dostupný z: < [12] Czepos.cz [online].[cit ]. Dostupný z: < [13] Czepos.cz [online].[cit ]. Dostupný z: < [14] Sitech-czech.cz [online].[cit ]. Dostupný z: < [15] Geotronics.sk [online].[cit ]. Dostupný z: < SKY_TrimbleR8GNSS_DS_0413_LR.pdf> [16] Geotronics.sk [online].[cit ]. Dostupný z: < CZE_TrimbleS3_DS_0613_LR.pdf > [17] RATIBORSKÝ, J. Soukromé výukové materiály, 2016 [18] K154.fsv.cvut.cz [online].[cit ]. Dostupný z: < df> [19] MUČKOVÁ, J. Klad listů map velkých měřítek, prezentace, 2017

37 SEZNAM OBRÁZKŮ Obrázek č. 1: Obrázek č. 2: Obrázek č. 3: Obrázek č. 4: Obrázek č. 5: Obrázek č. 6: Obrázek č. 7: Obrázek č. 8: Obrázek č. 9: Lokalizace Tušimic na mapě ČR Zaměřovaný chodník Zaměřovaný chodník Zájmové území Princip polární metody Trigonometrické určení výšek Princip vzniku multipath Stanice CZEPOS Trimble VRS Now Czech Obrázek č. 10: Trimble R8 Obrázek č. 11: Trimble S3 Obrázek č. 12: Kolimační chyba Obrázek č. 13: Indexová chyba Obrázek č. 14: Situace bodového pole Obrázek č. 15: Pomocný měřický náčrt Obrázek č. 16: Ukázka protokolu totální stanice Obrázek č. 17: Ukázka protokolu GNSS Obrázek č. 18: Osvědčení Obrázek č. 19: Dělení mapového listu Obrázek č. 20: Nová Základní mapa závodu Obrázek č. 21: Porovnání stavů

38 SEZNAM TABULEK Tabulka č. 1: Hodnoty přesnosti síťové RTK Tabulka č. 2: Přesnost měření délek hranolem Tabulak č. 3: Čas měření hranolem SEZNAM PŘÍLOH Příloha č. 1: ZMZ před změnou Příloha č. 2: Situace bodového pole Příloha č. 3: Pomocný měřický náčrt Příloha č. 4: Protokol totální stanice Příloha č. 5: Protokol GNSS Příloha č. 6: Výpočetní protokol Příloha č. 7: Seznam souřadnic Příloha č. 8: ZMZ po změně Příloha č. 9: Porovnání stavů

Zaměření a vyhotovení polohopisného a výškopisného plánu (tachymetrie)

Zaměření a vyhotovení polohopisného a výškopisného plánu (tachymetrie) Zaměření a vyhotovení polohopisného a výškopisného plánu (tachymetrie) Braun J., Třasák P. - 2012 1. Převzetí podkladů pro tvorbu plánu od investora Informace o zaměřovaném území (vymezení lokality) Účel

Více

PODROBNÉ MĚŘENÍ POLOHOPISNÉ

PODROBNÉ MĚŘENÍ POLOHOPISNÉ Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MAPOVÉ PODKLADY Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 7. 4. 2017 PODROBNÉ MĚŘENÍ POLOHOPISNÉ

Více

T a c h y m e t r i e

T a c h y m e t r i e T a c h y m e t r i e (Podrobné měření výškopisu, okolí NTK) Poslední úprava: 2.10.2018 9:59 Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_7, vztažné měřítko

Více

Tachymetrie (Podrobné měření výškopisu)

Tachymetrie (Podrobné měření výškopisu) Tachymetrie (Podrobné měření výškopisu) Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_8). Pro jeho vytvoření je potřeba znát polohu a výšku vhodně zvolených

Více

Globální navigační satelitní systémy 1)

Globální navigační satelitní systémy 1) 1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem

Více

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu: Zdroje dat GIS Primární Sekundární Geodetická měření GPS DPZ (RS), fotogrametrie Digitální formy tištěných map Kartografické podklady (vlastní nákresy a měření) Vstup dat do GISu: Data přímo ve potřebném

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Metody měření výškopisu, Tachymetrie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Více

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Ing. Hana Staňková, Ph.D. Ing. Filip Závada GEODÉZIE II 8. Technologie GNSS Navigační systémy

Více

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km.

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km. TECHNICKÁ ZPRÁVA Číslo zakázky: Název zakázky: Název akce: Obec: Katastrální území: Objednatel: Měření zadal: Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632

Více

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy Ing. Jiří Fejfar, Ph.D. GNSS Globální navigační satelitní systémy Kapitola 1: Globální navigační systémy (Geostacionární) satelity strana 2 Kapitola 1: Globální navigační systémy Složky GNSS Kosmická složka

Více

GEODÉZIE VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ STŘEDNÍ ŠKOLA STAVEBNÍ VYSOKÉ MÝTO. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství

GEODÉZIE VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ STŘEDNÍ ŠKOLA STAVEBNÍ VYSOKÉ MÝTO. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství GEODÉZIE Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 16. 12. 2016 VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A

Více

Protínání vpřed - úhlů, směrů, délek GNSS metody- statická, rychlá statická, RTK Fotogrammetrické metody analytická aerotriangulace

Protínání vpřed - úhlů, směrů, délek GNSS metody- statická, rychlá statická, RTK Fotogrammetrické metody analytická aerotriangulace Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Protínání vpřed - úhlů, sěrů, délek GNSS etody- statická, rychlá statická, RTK Fotograetrické etody analytická aerotriangulace +y 3 s 13 1 ω 1 ω σ 1 Používá se

Více

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. kontrolní oměrná míra PRINCIP POLÁRNÍ METODY 4. Podrobné

Více

4.1 Základní pojmy Zákonné měřicí jednotky.

4.1 Základní pojmy Zákonné měřicí jednotky. 4. Měření úhlů. 4.1 Základní pojmy 4.1.1 Zákonné měřicí jednotky. 4.1.2 Vodorovný úhel, směr. 4.1.3 Svislý úhel, zenitový úhel. 4.2 Teodolity 4.2.1 Součásti. 4.2.2 Čtecí pomůcky optickomechanických teodolitů.

Více

Určení svislosti. Ing. Zuzana Matochová

Určení svislosti. Ing. Zuzana Matochová Určení svislosti Ing. Zuzana Matochová Svislost stěn Jedná se o jeden z geometrických parametrů, který udává orientaci části konstrukce vzhledem ke stanovenému směru. Geometrické parametry jsou kontrolovány

Více

Moderní technologie v geodézii

Moderní technologie v geodézii Moderní technologie v geodézii Globální navigační satelitní systémy (GNSS) 3D skenovací systémy Globální navigační satelitní systémy (GNSS) Globální navigační satelitní systémy byly vyvinuty za účelem

Více

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ 5. PŘEDNÁŠKA LETNÍ 00 ING. HANA STAŇKOVÁ, Ph.D. MĚŘENÍ ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 METODY MĚŘENÍ ÚHLŮ. měření úhlů v jedné poloze dalekohledu.

Více

Protokol určení bodů podrobného polohového bodového pole technologií GNSS

Protokol určení bodů podrobného polohového bodového pole technologií GNSS Protokol určení bodů podrobného polohového bodového pole technologií GNSS Lokalita (název): Hosek246 Okres: Rakovník Katastrální území: Velká Buková ZPMZ: Organizace-firma zhotovitele:air Atlas spol. s

Více

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Vyhotovitel Za Kostelem 421, Jedovnice IČO: 75803216, tel.: 603325513 Číslo geometrického plánu (zakázky) 506-5/2017 ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Katastrální úřad pro Katastrální pracoviště Obec Katastrální

Více

Seznámení s moderní přístrojovou technikou Globální navigační satelitní systémy

Seznámení s moderní přístrojovou technikou Globální navigační satelitní systémy Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem a státním rozpočtem

Více

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Vyhotovitel Za Kostelem 421, Jedovnice IČO: 75803216, tel.: 603325513 Číslo geometrického plánu (zakázky) 510-5/2017 ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Katastrální úřad pro Katastrální pracoviště Obec Katastrální

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností Obecná část 1. Základní ustanovení katastrálního zákona,

Více

Zaměření aktuálního stavu, výpočet kubatur a geotechnický monitoring na SKO Libínské sedlo

Zaměření aktuálního stavu, výpočet kubatur a geotechnický monitoring na SKO Libínské sedlo Zaměření aktuálního stavu, výpočet kubatur a geotechnický monitoring na SKO Libínské sedlo stav skládky k 19. 11. 2015 leden 2015 ARTEZIS Solution s.r.o., Osadní 26, 170 00 Praha - Holešovice www.artezis.cz,

Více

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN

ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Vyhotovitel Za Kostelem 421, Jedovnice IČO: 75803216, tel.: 603325513 Číslo geometrického plánu (zakázky) 1241-5/2017 ZÁZNAM PODROBNÉHO MĚŘENÍ ZMĚN Katastrální úřad pro Katastrální pracoviště Obec Katastrální

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

Návod pro obnovu katastrálního operátu a převod

Návod pro obnovu katastrálního operátu a převod Český úřad zeměměřický a katastrální Návod pro obnovu katastrálního operátu a převod Dodatek č. 3 Praha 2013 Zpracoval: Český úřad zeměměřický a katastrální Schválil: Ing. Karel Štencel, místopředseda

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.10 GNSS GNSS Globální navigační satelitní systémy slouží k určení polohy libovolného počtu uživatelů i objektů v reálném čase

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

Měření při účelovém mapování a dokumentaci skutečného provedení budov

Měření při účelovém mapování a dokumentaci skutečného provedení budov Měření při účelovém mapování a dokumentaci skutečného provedení budov Účelové mapy Prostorová polární metoda Princip prostorové polární metody Záznam měřených dat Zásady měření Měření s teodolitem a pásmem

Více

ORIENTAČNÍ CENÍK GEODETICKÝCH PRACÍ

ORIENTAČNÍ CENÍK GEODETICKÝCH PRACÍ ORIENTAČNÍ CENÍK GEODETICKÝCH PRACÍ Strana 1 z 6 Základní údaje: Jsme geodetická kancelář působící od roku 2003 nejprve jako fyzická osoba Pavel Zdražil, od roku 2006 jako GEO75 s.r.o. Vlastníkem a jednatelem

Více

154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov.

154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 5.1 Úvod. 5.2 Prostorová polární metoda. 5.3 Tvorba (výškopisných) map. 1 5.1 Úvod. Účelové mapy jsou mapy se

Více

Komunikace MOS s externími informačními systémy. Lucie Steinocherová

Komunikace MOS s externími informačními systémy. Lucie Steinocherová Komunikace MOS s externími informačními systémy Lucie Steinocherová Vedoucí práce: Ing. Václav Novák, CSc. Školní rok: 2009-10 Abstrakt Hlavním tématem bakalářské práce bude vytvoření aplikace na zpracování

Více

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení),

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení), Učební osnova předmětu Geodézie Studijní obor: Stavebnictví Zaměření: Forma vzdělávání: Pozemní stavitelství denní Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho

Více

Testování přesnosti RTK měření v závislosti na vzdálenosti od referenční stanice

Testování přesnosti RTK měření v závislosti na vzdálenosti od referenční stanice Testování přesnosti RTK měření v závislosti na vzdálenosti od referenční stanice Mgr. Roman Vala Institut Goedézie a Důlního Měřictví, HGF VŠB-TU Ostrava, 17.listopadu 15 708 33, Ostrava-Poruba, Česká

Více

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů 5. PŘEDNÁŠKA LETNÍ 00 Ing. Hana Staňková, Ph.D. Měření úhlů Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 POPIS TEODOLITU THEO 00 THEO 00 kolimátor dalekohled

Více

SPŠSTAVEBNÍČeskéBudějovice. MAPOVÁNÍ Polohopisné mapování JS pro G4

SPŠSTAVEBNÍČeskéBudějovice. MAPOVÁNÍ Polohopisné mapování JS pro G4 SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ Polohopisné mapování JS pro G4 vsuvka: návrh řešení domácího úkolu Polohopisnémapování Přípravné práce projekt mapování vybudování měřické sítě příprava náčrtů Zjišťování

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Měření vodorovných úhlů Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Základním

Více

Global Positioning System

Global Positioning System Písemná příprava na zaměstnání Navigace Global Positioning System Popis systému Charakteristika systému GPS GPS (Global Positioning System) je PNT (Positioning Navigation and Timing) systém vyvinutý primárně

Více

Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie

Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie 1 Výškopis: Vytváření obrazu světa měřením a zobrazováním do mapy (v jakékoli formě) předpokládá měření polohy a výšky (polohopis

Více

CZEPOS a jeho úloha při zpřesnění systému ETRS v ČR

CZEPOS a jeho úloha při zpřesnění systému ETRS v ČR CZEPOS a jeho úloha při zpřesnění systému ETRS v ČR Jaroslav Nágl Zeměměřický úřad, Pod sídlištěm 9/1800, 182 11, Praha 8, Česká republika jaroslav.nagl@cuzk.cz Abstrakt. Koncepce rozvoje geodetických

Více

GPS - Global Positioning System

GPS - Global Positioning System Vysoká škola báňská - Technická univerzita Ostrava 20. února 2011 GPS Družicový pasivní dálkoměrný systém. Tvoří sít družic, kroužících na přesně specifikovaných oběžných drahách. Pasivní znamená pouze

Více

ODBORNÁ ZPRÁVA O POSTUPU PRACÍ A DOSAŽENÝCH VÝSLEDCÍCH ZA ROK Příloha k průběžné zprávě za rok 2015

ODBORNÁ ZPRÁVA O POSTUPU PRACÍ A DOSAŽENÝCH VÝSLEDCÍCH ZA ROK Příloha k průběžné zprávě za rok 2015 ODBORNÁ ZPRÁVA O POSTUPU PRACÍ A DOSAŽENÝCH VÝSLEDCÍCH ZA ROK 2015 Příloha k průběžné zprávě za rok 2015 Číslo projektu: Název projektu: Předkládá: Název organizace: Jméno řešitele: TA02011056 Vývoj nových

Více

CZ.1.07/2.2.00/28.0021)

CZ.1.07/2.2.00/28.0021) Metody geoinženýrstv enýrství Ing. Miloš Cibulka, Ph.D. Brno, 2015 Cvičen ení č.. 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Sada 2 Geodezie II. 09. Polní a kancelářské práce

Sada 2 Geodezie II. 09. Polní a kancelářské práce S třední škola stavební Jihlava Sada 2 Geodezie II 09. Polní a kancelářské práce Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen.

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen. Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 3. URČOV OVÁNÍ VÝŠEK metody Trigonometrická metoda

Více

6.1 Základní pojmy - zákonné měřící jednotky

6.1 Základní pojmy - zákonné měřící jednotky 6. Měření úhlů 6.1 Základní pojmy 6.2 Teodolity 6.3 Totální stanice 6.4 Osové podmínky, konstrukční chyby a chyby při měření 6.5 Měření úhlů 6.6 Postup při měření vodorovného úhlu 6.7 Postup při měření

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Další metody v geodézii

Další metody v geodézii Další metody v geodézii Globální navigační satelitní systémy (GNSS) 3D skenovací systémy Fotogrammetrie Globální navigační satelitní systémy (GNSS) Globální navigační satelitní systémy byly vyvinuty za

Více

Globální navigační satelitní systémy a jejich využití v praxi

Globální navigační satelitní systémy a jejich využití v praxi Globální navigační satelitní systémy a jejich využití v praxi Metoda RTK a její využití Martin Tešnar (GEODIS BRNO, spol. s r.o.) Tato prezentace je spolufinancována Evropským sociálním fondem a státním

Více

Geometrické plány jako podklad pro převody nemovitostí

Geometrické plány jako podklad pro převody nemovitostí Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

CH057 NÁVRH STAVBY V PROCESU ÚZEMNÍHO ŘÍZENÍ. úvod / katastr nemovitostí z pohledu situačních výkresů

CH057 NÁVRH STAVBY V PROCESU ÚZEMNÍHO ŘÍZENÍ. úvod / katastr nemovitostí z pohledu situačních výkresů CH057 NÁVRH STAVBY V PROCESU ÚZEMNÍHO ŘÍZENÍ úvod / katastr nemovitostí z pohledu situačních výkresů Autor: Radim Kolář 20. září 2017 1 Kontaktní údaje Ing. Radim Kolář, Ph.D. Ústav pozemního stavitelství

Více

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Prof. Ing. Jiří Pospíšil, CSc., 2010 V urbanismu a pozemním stavitelství lze trigonometrického určování výšek užít při zjišťování relativních

Více

9. Měření při účelovém mapování a dokumentaci skutečného provedení budov.

9. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 9. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 9.0 Účelové mapy, mapování 9.1 Prostorová polární metoda. 9.1.1 Princip prostorové polární metody. 9.1.2 Záznam měřených dat. 9.1.3

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

GNSS korekce Trimble Nikola Němcová

GNSS korekce Trimble Nikola Němcová GNSS korekce Trimble Nikola Němcová 04.02.2016 Trimble VRS Now Czech GNSS rover Trimble VRS Now Czech Maximální výkon + = Trimble VRS Now Czech Přes 6 let zkušeností 100% pokrytí ČR 29 stanic + 10 zahraničních

Více

pro převody nemovitostí (1)

pro převody nemovitostí (1) pro převody nemovitostí (1) Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Střední průmyslová škola zeměměřická GNSS. Jana Mansfeldová

Střední průmyslová škola zeměměřická GNSS. Jana Mansfeldová Střední průmyslová škola zeměměřická GNSS Jana Mansfeldová GNSS globální navigační satelitní systémy GPS NAVSTAR americký GLONASS ruský GALILEO ESA(EU) další čínský,... Co je to GPS Global Positioning

Více

zpřesněná globální transformace mezi ETRS89 a S-JTSK, přetrvávající omyly při využití GNSS

zpřesněná globální transformace mezi ETRS89 a S-JTSK, přetrvávající omyly při využití GNSS Setkání geodetů 2014 konference KGK (Beroun, 5. - 6.6.2014) zpřesněná globální transformace mezi ETRS89 a S-JTSK, přetrvávající omyly při využití GNSS Ing. Pavel Taraba Prvotní realizace systému ETRS89

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Výšky relativní a absolutní

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Výšky relativní a absolutní Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MĚŘENÍ VÝŠEK Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto leden 2017 Výšky relativní a absolutní

Více

Cvičení č. 6 : Komplexní úloha

Cvičení č. 6 : Komplexní úloha Cvičení č. 6 : Komplexní úloha Obsah 1. Úvod, účel komplexní úlohy... 2 2. Postup práce při mapování... 2 3. Tachymetrické měření přístrojem Topcon GPT-2006... 3 4. Kancelářské zpracování a kresba mapy...

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ POZEMKŮ Ing. Jana Marešová, Ph.D. rok 2018-2019 V praxi se geodet často setká s úkolem rozdělit pozemek (dědictví,

Více

Geometrický plán (1) Zeměměřické činnosti pro KN. Geometrický plán

Geometrický plán (1) Zeměměřické činnosti pro KN. Geometrický plán Geometrický plán (1) GEOMETRICKÝ PLÁN Zákon o katastru nemovitostí č. 256/2013 Sb. Vyhláška o katastru nemovitostí (katastrální vyhláška) č. 357/2013 Sb. Prohloubení nabídky dalšího vzdělávání v oblasti

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů SPŠ STAVEBNÍ České Budějovice GEODÉZIE Teodolit a měření úhlů ještě doplnění k výškovému systému jadranský systém udává pro stejný bod hodnotu výšky o cca 0,40 m větší než systém Bpv Potřebujeme vědět

Více

DOPORUČENÁ LITERATURA VZTAHUJÍCÍ SE KE KATASTRU NEMOVITOSTÍ A ZEMĚMĚŘICTVÍ

DOPORUČENÁ LITERATURA VZTAHUJÍCÍ SE KE KATASTRU NEMOVITOSTÍ A ZEMĚMĚŘICTVÍ Seznam a doporučené odborné literatury ke zkouškám odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností /1/ Zákon č. 177/1927 Sb., o pozemkovém katastru a jeho

Více

Robert PAUL NABÍDKOVÝ LIST č. 0 základní pravidla pro stanovení ceny. 1 bodové pole

Robert PAUL NABÍDKOVÝ LIST č. 0 základní pravidla pro stanovení ceny. 1 bodové pole Robert PAUL NABÍDKOVÝ LIST č. ===================================================================================================== 0 základní pravidla pro stanovení ceny 1 bodové pole 2 mapování 21 polohopis

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME Výuka v terénu I Obory: Inženýrská geodézie a Důlní měřictví Skupiny: GB1IGE01, GB1IGE02, GB1DME01 27. 4-30. 4. 2015 1. Trojúhelníkový řetězec Zásady pro zpracování úlohy: Zaměřte ve skupinách úhly potřebné

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů SPŠ STAVEBNÍ České Budějovice GEODÉZIE Teodolit a měření úhlů ještě doplnění k výškovému systému jadranský systém udává pro stejný bod hodnotu výšky o cca 0,40 m větší než systém Bpv Potřebujeme vědět

Více

MOŽNOSTI KOMBINOVANÉHO SLEDOVÁNÍ POKLESŮ TECHNOLOGIÍ GNSS A PŘESNOU NIVELACÍ V PODDOLOVANÝCH ÚZEMÍCH

MOŽNOSTI KOMBINOVANÉHO SLEDOVÁNÍ POKLESŮ TECHNOLOGIÍ GNSS A PŘESNOU NIVELACÍ V PODDOLOVANÝCH ÚZEMÍCH Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví MOŽNOSTI KOMBINOVANÉHO SLEDOVÁNÍ POKLESŮ TECHNOLOGIÍ GNSS A PŘESNOU NIVELACÍ V PODDOLOVANÝCH

Více

GEPRO řešení pro GNSS Leica

GEPRO řešení pro GNSS Leica GEPRO řešení pro GNSS Leica GEPRO spol. s r. o. Ing. Jan Procházka GEPRO řešení pro GNSS Leica GNSS rover» odolný PC tablet s Win 7» GNSS anténa přes bluetooth» až 1 cm přesnost» KOKEŠ, MISYS, PROLAND

Více

Seznámení s moderní přístrojovou technikou Totální stanice a digitální nivelační přístroje

Seznámení s moderní přístrojovou technikou Totální stanice a digitální nivelační přístroje Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem a státním rozpočtem

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

16.2.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz

16.2.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Výškový referenční systém je definován v nařízení vlády 430/2006 Sb. Výškový systém baltský - po vyrovnání je určen a) výchozím výškovým bodem, kterým je nula

Více

6.14. Elektronické měření - ELM

6.14. Elektronické měření - ELM 6.14. Elektronické měření - ELM Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE MATEMATICKÉ ZÁKLADY FOTOGRAMMETRIE fotogrammetrie využívá ke své práci fotografické snímky, které

Více

ZÁKLADNÍ POJMY A METODY ZEMĚMĚŘICKÝ ZÁKON

ZÁKLADNÍ POJMY A METODY ZEMĚMĚŘICKÝ ZÁKON Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství VYTYČOVÁNÍ STAVEB Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 19. 2. 2018 ZÁKLADNÍ POJMY A METODY

Více

NOVÉ MOŽNOSTI INOVACÍ MĚŘICKÝCH POSTUPŮ PŘI DOKUMENTACI DOPRAVNÍCH NEHOD. Doc. Ing. Jiří Šíma, CSc. Západočeská univerzita v Plzni

NOVÉ MOŽNOSTI INOVACÍ MĚŘICKÝCH POSTUPŮ PŘI DOKUMENTACI DOPRAVNÍCH NEHOD. Doc. Ing. Jiří Šíma, CSc. Západočeská univerzita v Plzni NOVÉ MOŽNOSTI INOVACÍ MĚŘICKÝCH POSTUPŮ PŘI DOKUMENTACI DOPRAVNÍCH NEHOD Doc. Ing. Jiří Šíma, CSc. Západočeská univerzita v Plzni březen 2011 ZEMĚMĚŘICTVÍ zahrnuje obory GEODÉZIE + KARTOGRAFIE + FOTOGRAMMETRIE

Více

Úvod do oblasti zpracování přesných GNSS měření. Ing. Michal Kačmařík, Ph.D. Pokročilé metody zpracování GNSS měření přednáška 1.

Úvod do oblasti zpracování přesných GNSS měření. Ing. Michal Kačmařík, Ph.D. Pokročilé metody zpracování GNSS měření přednáška 1. Úvod do oblasti zpracování přesných GNSS měření Ing. Michal Kačmařík, Ph.D. Pokročilé metody zpracování GNSS měření přednáška 1. Osnova přednášky Globální navigační družicové systémy Důvody pro zpracování

Více

GPS. Uživatelský segment. Global Positioning System

GPS. Uživatelský segment. Global Positioning System GPS Uživatelský segment Global Positioning System Trocha 3D geometrie nikoho nezabije opakování Souřadnice pravoúhlé a sférické- opakování Souřadnice sférické- opakování Pro výpočet délky vektoru v rovině

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

Cvičení software Groma základní seznámení

Cvičení software Groma základní seznámení Cvičení software Groma základní seznámení 4 2 3 1 Obr. 1: Hlavní okno programu Groma v.11. Hlavní okno 1. Ikony základních geodetických úloh, lze je vyvolat i z menu Výpočty. 2. Ikona základního nastavení

Více

GEODÉZIE II. Obraz terénn. nní tvary. rodními silami nebo. ená z rovných, vypuklých a vhloubených dílčích d. je to souhrn terénn

GEODÉZIE II. Obraz terénn. nní tvary. rodními silami nebo. ená z rovných, vypuklých a vhloubených dílčích d. je to souhrn terénn 1 Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 5. Podrobné m Ing. Miroslav Novosad Výškopis Obraz

Více

Protokol o předání geodetických prací č. 1/2017

Protokol o předání geodetických prací č. 1/2017 Zakázka č.: 91/2017 Objednatel: Porticus s.r.o Objednávka č: emailem Kat. území: Karlovy Vary Stavba: Rekonstrukce povrchů v pasáži u kina Čas Protokol o předání geodetických prací č. 1/2017 Dne 24.11.2017

Více

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Přednáška byla zpracována s využitím dat a informací uveřejněných na http://geoportal.cuzk.cz/ k 16.3. 2015. Státní mapová díla jsou stanovena nařízením vlády

Více

Systém pro výpočet prostorové polohy kolesa rýpadel na Severočeských dolech a.s. v reálném čase a jeho aplikace v praxi Lom Bílina

Systém pro výpočet prostorové polohy kolesa rýpadel na Severočeských dolech a.s. v reálném čase a jeho aplikace v praxi Lom Bílina Systém pro výpočet prostorové polohy kolesa rýpadel na Severočeských dolech a.s. v reálném čase a jeho aplikace v praxi Lom Bílina Doc. Ing. Dana Vrublová, Ph.D. Ing. Martin Vrubel, Ph.D. 1. Úvod 2. Základní

Více

Oblast podpory: 1.5 - Zlepšení podmínek pro vzdělávání na středních školách. Karlovy Vary nám. Karla Sabiny 16 Karlovy Vary

Oblast podpory: 1.5 - Zlepšení podmínek pro vzdělávání na středních školách. Karlovy Vary nám. Karla Sabiny 16 Karlovy Vary Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.5 - Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.5.00/34. 1077 Název projektu: Zkvalitnění výuky SOŠ

Více

8. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D.

8. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D. 8. přednáška ze stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. Měření při účelovém mapování a dokumentaci skutečného provedení budov Účelové mapy Prostorová polární metoda Princip prostorové polární metody

Více

Sada 2 Geodezie II. 14. Vytyčení polohopisu

Sada 2 Geodezie II. 14. Vytyčení polohopisu S třední škola stavební Jihlava Sada 2 Geodezie II 14. Vytyčení polohopisu Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace

Více

GEODÉZIE II. Metody určov. Geometrická nivelace ze středu. vzdálenost

GEODÉZIE II. Metody určov. Geometrická nivelace ze středu. vzdálenost Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II 1. URČOV OVÁNÍ VÝŠEK Metody určov ování převýšení Geometrická nivelace Ing.

Více

Ing. Pavel Hánek, Ph.D.

Ing. Pavel Hánek, Ph.D. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Výškový referenční systém je definován v nařízení vlády 430/2006 Sb. Výškový systém baltský - po vyrovnání je určen a) výchozím výškovým bodem, kterým je nula

Více

MĚŘICKÉ BODY II. S-JTSK. Bpv. Měřické body 2. část. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství

MĚŘICKÉ BODY II. S-JTSK. Bpv. Měřické body 2. část. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MĚŘICKÉ BODY II. Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 24. 3. 2017 Měřické body 2. část S-JTSK

Více

GEODETICKÁ TECHNICKÁ ZPRÁVA

GEODETICKÁ TECHNICKÁ ZPRÁVA GEODETICKÁ TECHNICKÁ ZPRÁVA Název akce Technicko provozní evidence vodního toku Kocába od ústí do Vltavy k soutoku se Sychrovským potokem ř.km 0,0-27,322 Investor Zhotovitel : Povodí Vltavy, státní podnik

Více