Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B"

Transkript

1 Řešení úloh 1 kola 55 ročníku fyzikální olympiády Kategorie B Autořiúloh:JJírů(1,2),JThomas(3,5,7),MJarešová(4),MKapoun(6) 1a) Během celého děje tvoří vozík s kyvadlem ve vodorovném směru izolovanou soustavu, tudíž hybnost soustavy zůstává po celou dobu pohybu i po nárazu nulová stejně jako v počátečním stavu Proto po dokonale nepružném nárazu, kdy kyvadlo zůstane vzhledem k vozíku v klidu, zůstane celá soustava též v klidu Během pohybu kyvadla je podle zákona zachování hybnosti v každém okamžiku poměr velikostí rychlosti těles opačný k poměru jejich hmotností, proto i poměr posunutí ve vodorovném směru je opačný k poměru hmotností(vodorovná souřadnice těžiště se nemění) Pro M = 4m dostanemeposunutívozíku x= 1 5 l=4cm 3body b) Označme v maximální velikost rychlosti kuličky vzhledem k zemi Ze zákonů zachování mechanické energie a zachování hybnosti během vzájemného pohybu kyvadla a vozíku mgl= 1 2 mv MV2, mv=mv dostaneme V= m (M+ m)m 2gl Číselně vychází V= 1 5 2gl= 2 9,81 0,20m s 1 =0,44m s body c) Velikost rychlosti kuličky vzhledem k zemi bezprostředně před nárazem je v= M m V= M m m M 2gl= 2gl (M+ m)m (M+ m)m Kulička vzhledem k vozíku opisuje kružnici se středem v bodě závěsu, velikost její rychlosti vzhledem k vozíku bezprostředně před nárazem je u=v+ V= Tahová síla napínající vlákno pak je F= mg+ mu2 l M+ m 2gl= (M+ m)m m = mg+ ( ) 2 M+ m 2gl M l M+ m 2gl M = ( 3+ 2m ) mg M Pro M=4mdostaneme F= 7 2 mg 4body 1

2 2a) PlynnejprvepřiizobarickémrozpínánízvětšíobjemzV 0 na2v 0,potése rozpíná s lineárně rostoucím tlakem v závislosti na objemu na konečný objem 3V 0 Označme SplošnýobsahpístuPřírůstektlakujevyvolándeformací pružiny, konečný tlak je p 1 = p 0 + kh S = p 0+ kh2 V 0 =129kPa Konečnou teplotu určíme ze stavové rovnice p 0 V 0 T 0 = ( ) p 0 + kh2 3V V 0 0, T 1 znížplyne ( ) 3 p 0 + kh2 ) V 0 T 1 = T 0 =3 (1+ kh2 T 0 =3,86T 0 =1130K p 0 p 0 V 0 b) Plyn vykonal práci 4body W = p 0 S 2h+ 1 2 kh2 = p 0 V 0 h 2h+1 2 kh2 =2p 0 V kh2 =322J 2body c) Plyn zvětšil vnitřní energii o hodnotu U= 5 2 p 1 3V p 0V 0 = 5 ) (p 0 + kh2 3V p 0V 0 =5p 0 V kh2 Plyn přijal teplo V 0 Q= U+ W =5p 0 V kh2 +2p 0 V kh2 =7p 0 V 0 +8kh 2 =1,40kJ 4body 3a) Zvolme vztažnou soustavu podle obr 1 Parametrické rovnice trajektorie pak jsou x=v 0 cosα 0 t, y=h+v 0 sinα 0 t 1 2 gt2 Vyloučenímparametru tadosazením x=l, y= Hdostanemerovnici H= h+ltg α 0 gl 2 2v 2 0cos 2 α 0, (1) 2

3 kterou pomocí substituce y y v gl 2 2v cos 2 α =tg2 α+1upravímenatvar tg 2 α 0 Ltg α 0 + gl2 2v H h=0 (2) v 0 h α 0 H O x v L x 1 α 1 x v 1 Obr 1 Na tuto rovnici se se můžeme dívat jako na kvadratickou rovnici s neznámou tg α 0 Zvolíme-lipřílišmalouvelikost v 0 počátečnírychlosti,nedoletímíček na horní okraj zdi při žádné volbě elevačního úhlu Bude-li naopak počáteční rychlost větší než minimální, budou vyhovovat dva elevační úhly pro různě strmé trajektorie Pro hledanou minimální rychlost má rovnice jediné řešení a její diskriminant je roven nule: D=L 2 4 gl2 2v 2 0 ( gl 2 2v 2 0 Úpravou dojdeme k bikvadratické rovnici Úloze vyhovuje kořen ) + H h =0 v 4 0 2g(H h)v2 0 g2 L 2 =0 v 2 0= g (H h+ (H h) 2 + L 2 ) (3) Kvadratická rovnice(2) má pak dvojnásobný kořen tg α 0 = L+0 gl 2 v 2 0 = H h+ (H h) 2 + L 2 (4) L 3

4 Prodanéhodnotyvycházítg α 0 =2, α 0 =63,4, v 0 =8,9m s 1 5bodů Poznámka: Řešení by se dalo podstatně zjednodušit užitím rovnice tzv ochranné paraboly viz studijní text Polák, Šedivý: Vrhy, Knihovnička FO č56 b) Dobu letu míčku určíme řešením kvadratické rovnice Úloze vyhovuje kladný kořen t 1 = v 0sinα 0 + h+v 0 sinα 0 t 1 2 gt2 =0 v 2 0 sin2 α 0 +2gh Za tuto dobu doletí míček do vzdálenosti g x 1 = v 0 cosα 0 t 1 =7,3m, dopadnetedyvevzdálenosti3,3modzdi c) V okamžiku dopadu má rychlost míčku souřadnice =1,84s 2body v x = v 0 cosα 0 =3,96m s 1, v y = v 0 sinα 0 gt 1 = 10,1m s 1 Velikostrychlostidopaduje v 1 = vx+ 2 vy=10,8m 2 s 1 aodchylkaod vodorovnéhosměru α 1 =arctg v y v x = 68,6 2body d) Dobavýstupumíčkuje t v = v 0sinα 0 g souřadnice =0,81sZatutodobumíčekzíská x v = v 0 cosα 0 t v =3,2m, y v = h+v 0 sinα 0 t v 1 2 gt2 v =5,2m 1bod Jiné řešení úlohy a): Úpravou rovnice(1) dostaneme vztah, který vyjadřuje, jak závisí velikost počáteční rychlosti potřebné k zasažení horního okraje zdi na zvoleném elevačním úhlu: 1 =[Ltg α 0 (H h)] 2cos2 α 0 gl 2 = 2 [ gl 2 Lsinα0 cosα 0 (H h)cos 2 ] α 0 v 2 0 Má-libýtvelikostpočátečnírychlosti v 0 minimální,musímítvýraz V= Lsinα 0 cosα 0 (H h)cos 2 α 0 (5) 4

5 maximální hodnotu, tedy dv dα 0 = L(cos 2 α 0 sin 2 α 0 ) (H h) 2cosα 0 ( sinα 0 )=0 ovnici upravíme na tvar Úloze vyhovuje kořen Ltg 2 α 0 2(H h)tg α 0 L=0 tg α 0 = H h+ (H h) 2 + L 2 L Pomocídruhéderivacevýrazu V semůžemepřesvědčit,žesejednáomaximum Vztah(5) upravíme na tvar v 2 0= gl2 (1+tg 2 α 0 ) 2[Ltg α 0 (H h)], dosadímezatg α 0 adostaneme v 2 0 = g ( H h+ (H h) 2 + L 2 ) 4a) Obvod se skládá z nekonečně mnoha členů znázorněných na obr 2 Označme odpornekonečnésítě x Pokudbychomnazačáteksítěpředřadilidalšíčlen, odporsítěbysenemělměnit(obr2),protožesíťjenekonečná Pak by mělo platit: x = + 2 x 2+ x Po úpravě dostaneme kvadratickou rovnici 2 x x 2 2 =0 Fyzikální význam má pouze kladné řešení x = AB = A B x =2 2 Obr 2 4body b) Budemepostupovatobdobnějakovúlozea)pouzestímrozdílem,žečlen, který se pravidelně opakuje, bude složitější(obr 3) x 5

6 C 2 x 2 x D Obr 3 Tento obvod budeme postupně v jednotlivých krocích zjednodušovat, abychomnakonecmohlivyjádřitodporobvodu x 1ezistory, x vpravonahradímejediným oodporu 1 (obr4)platí: 1 = x + x 2ezistory2, 1 vpravonahradímejediným oodporu 2 (obr5)platí: 2 =2+ 1, podosazeníza 1 dostaneme 2 =2+ x + x = (2+3 x) + x 3ezistory2, 2 vpravonahradímejedinýmoodporu 3 (obr6)platí: 1 = , 2 podosazeníza 2 dostaneme 1 = x (2+3 x ) 3 = 2(2+3 x) 4+5 x 4Nakonecmůžemepsát x = + 3,kamdosadímeza 3 : x = + 2(2+3 x) 4+5 x Po úpravě dostaneme kvadratickou rovnici 5 2 x 7 x 8 2 =0 C D x C D x 2 Obr Obr 5 C D x 3 Obr 6 6

7 Fyzikální význam má pouze řešení x = CD = =0,7+ 2,09 =2,15 6bodů Řešení úlohy vyšetřením posloupnosti odporů postupně prodlužované konečné sítě: a) Vsítipodleobr1budemezasebeřaditčlenyzobrazenénaobr7Dostaneme posloupnost odporů, která bude mít první člen 1 =3 (6) abudeuníplatitrekurentnívzorec,kterýodvodímezobr8: n+1 = + 2 n n +2 =3 n+2 2 = 3 n+6 4 n +2 n +2 =3 42 n +2 = ( 3 4 n +2 Vztahy(6) a(7) umožnují postupně vypočítat libovolný počet členů posloupnosti Z tabulky pořízené v Excelu ale vidíme, že posloupnost rychle konverguje k hodnotě 2 a od desátého členu je prakticky konstantní 2 n+1 2 n = ) (7) Obr 7 Obr 8 Ještě přesvědčivěji vyřešíme úlohu použitím vzorce pro n-tý člen: Platí ( 2 = 2+ 1 ) (, 3 = 2+ 1 ) (, 4 = 2+ 1 ), Protože 5=1+4, 21=1+4+16, 85= , odhadneme vzorec pro n-tý člen ve tvaru Q 5 Q 5 n =2+ (8) n 1 4 i i=0 7

8 Důkaz matematickou indukcí: Dosazením(8) do(7) dostaneme n+1 = n 1 4 i i=0 = 2+1 n i = 3 i=0 4 n 1 = 4 i +1 i=0 n 4 i 1 n =2+ n, 4 i 4 i i=0 i=0 cožjeočekávanývýsledekpro(n+1)-týčlenpodlevzorce(8)odpornekonečné sítě pak určíme jako limitu = lim n n=2 b) Podobně budeme postupovat i při řešení sítě podle obr 2 Tentokrát budeme za sebe řadit členy podle obr 9 První člen posloupnosti bude Z obr 10 odvodíme rekurentní vztah ( 2+ ) n + n 2 n+1 = + i= = + 5 =11 (9) n + n ( = 2+ n 4+5 n ) (10) Výpočtemdostaneme 2 = , 3= Zdesenámasinepodaříodvoditvzorecprovýpočet n-téhočlenuaomezíme se proto jen na výpočet dostatečného počtu členů posloupnosti pomocí rekurentního vzorce Z tabulky pořízené v Excelu vidíme, že posloupnost konverguje ještě rychleji než v úloze a) Od třetího členu má prakticky konstantní hodnotu 2, n n Q 5 Q 5 Obr 9 Obr 10 8

9 5a) Vyjdeme z obr 11 Nejprve užitím kosinové a sinové věty určíme délku strany BCaúhly βa γvtrojúhelníku ABC: BC = 2,25L 2 + L 2 3L 2 cos60 = L 1,75, sinβ L = sinα L 1,75 sinβ= sinα 1,75 β=40,9, γ=79,1 Momentytíhovésílyaelektrickésílyvzhledemkbodu Amusíbýtuobou kuliček v rovnováze Tedy Ztoho F G 1,5Lsinα 1 = F e 1,5Lsinβ, sinα 1 sinα 2 = F G Lsinα 2 = F e Lsinγ sinα 1 sin(α α 1 ) = sinβ sinγ = L 1,5L = 1 1,5, 1,5sinα 1 =sin(α α 1 )=sinαcosα 1 cosαsinα 1 Vydělenímcosα 1 aúpravoudostaneme sinα 3 tg α 1 = 1,5+cosα = α 1 =23,4, α 2 =36,6 4 A 4body T 1 1,5L α 1 α 2 L T 2 γ C F e α 2 B β D F G γ T 2 F e α 1 T 1 β F G Obr 11 Nyní již můžeme určit velikost elektrické síly a velikost náboje Podle sinové věty F e = sinα 1 F G sinβ F e = kq2 1,75L 2=mgsinα 1 =5, N, sinβ 9

10 Q= F e 1,75L 2 k =34nC 3body b) Velikosti sil, kterými jsou napnuta vlákna, můžeme určit pomocí sinové věty: T 1 = sin(180 α 1 β) F G sinβ T 1 = mgsin(α 1+ β) sinβ Podobněurčímevelikostsíly T 2 : = sin(α 1+ β), sinβ =1,35mN, T 2 = mgsin(α 2+ γ) sinγ =0,90mN Mohli jsme také využít podobnost trojúhelníků Z ní plyne T 1 = AB F G AD, T 2 = AC F G AD T 1 T 2 = AB AC =1,5 3body 6a) Měření bylo provedeno na žárovce se jmenovitými hodnotami 24 V/ 0,1 A Výsledky lineární regrese(graf 1) a mocninné regrese(graf 2) se shodují Konstantažárovkymáčíselnouhodnotu {C}=10 1,1676 =15,8,exponent n=0,5837sejennepatrnělišíodočekávanéhodnoty3/5vysokáhodnotakoeficientudeterminace 2 =0,9998svědčíodobrémsouhlasureálné funkční závislosti s ověřovaným vztahem U / V I / ma log{u} log{i} 1 16,0 0, , ,7 0, , ,6 0, , ,0 0, , ,1 0, , ,9 1, , ,0 1, , ,0 1, , ,0 1, ,

11 2,5 log{i } 2,0 y = 0,5837x + 1, = 0,9998 1,5 1,0 0,5 Graf1 0,0 120 I / ma ,0 0,5 1,0 1,5 log{u } y = 15,76x 0, = 0, U / V Graf2 7bodů b) PříkonžárovkyjepraktickyrovenjejímuzářivémutokuPlatí AT, Ztoho P= UI Φ=BT 4 B 4 A 4= B A 4 U4 I 4 I 5 B A 4 U3, I ( ) 1 B 5 3 U5 A 4 = CU 3 5 3body J 7a) Dobukmitufyzickéhokyvadlaurčímezevztahu T =2p, kde J je D moment setrvačnosti tělesa vzhledem k ose otáčení a D = mgd je direkční moment d je vzdálenost těžiště od osy otáčení a m hmotnost kmitající soustavy Protože má menší obruč poloviční délku, je její hmotnost M/2 Těžiště sou- 11

12 stavyjenaúsečce ABvevzdálenosti y= M+ M 2 2 M+ M 2 = 5 6 od bodu B Moment setrvačnosti vhledem k ose procházející bodem A J= J 1 + J 2 =2M 2 + M = 13 4 M2, direkčnímoment D= 3 2 M g 7 6 =7 4 Mg, 13 T=2p 4 M2 13 =2p Mg 7g =1,50s b) Moment setrvačnosti vzhledem k ose procházející bodem B J= J 1 + J 2 =2M 2 +2 M ( ) 2 = M2, direkčnímoment D= 3 2 M g 5 6 =5 4 Mg, 9 T=2p 4 M2 9 =2p 5 4 Mg 5g =1,47s 3body 2body c) KřešenívyužijemezákonzachováníenergiePřivychýleníobručíoúhel α m získá soustava potenciální energii tíhovou E p = M 2 g 2 (1 cosα m) M 2 g 2 α2 m 2 = M 8 gx2 m, kde x m = α m jevzdálenost,okterouseposunulstředvětšíobručepřimaximální výchylce proti rovnovážné poloze Při průchodu rovnovážnou polohousestředvětšíobručepohybujerychlostí v m = ωx m = 2p T x m asoustava získákinetickouenergii E k = 1 2 JΩ2 m, kde J= 9 4 M2 jemomentsetrvačnosti vzhledem k okamžité ose otáčení(bod dotyku větší obruče s podložkou) aω m jemaximálníúhlovárychlost,jakouseotáčísoustavakolemtétoosy 12

13 Platí Ω m = v m = 2p T x m,kde v m jerychlost,jakousepohybujestřed větší obruče při jejím průchodu rovnovážnou polohou Z rovnosti potenciální energie v krajní poloze a kinetické energie při průchodu rovnovážnou polohou dostaneme 1 2 JΩ2 m =1 9 4p2 M2 2 4 T 2 2x2 m =9 8 M4p2 T 2 x2 m = M 8 gx2 m, 9 T=2p g =3,3s 5bodů 13

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Řešení úloh krajského kola 52. ročníku fyzikální olympiády Kategorie B Autořiúloh:M.Jarešová(1,3),J.Thomas(2),P.Šedivý(4)

Řešení úloh krajského kola 52. ročníku fyzikální olympiády Kategorie B Autořiúloh:M.Jarešová(1,3),J.Thomas(2),P.Šedivý(4) Řešení úloh krajského kola 5. ročníku fyzikální olympiády Kategorie utořiúloh:m.jarešová,3),j.thomas),p.šedivý).a) Kdyžjespínačrozepnut,potomjemožnoobvodzobr.překreslitnaobr.. Obr. Celkový odpor obvodu

Více

vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %

vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 % Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (,, 3, 4, 5, 7), I. Čáp (6).a) Předpokládáme-li impuls třecích sil puků o led vzhledem k velmi krátké době srážky za

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh. kola 49. ročníku fyzikální olympiády. Kategorie C Autořiúloh:J.Jírů(),P.Šedivý(2,3,4,5,6),I.VolfaM.Jarešová(7)..Označme v 0souřadnicirychlostikuličkyohmotnosti3mbezprostředněpředrázem a v

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B Řešení úloh kola 9 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová,,,5),PŠedivý3,7)aVKoubek6) a) Označme hvýškunadzemí,kdedojdekesrážcespodní kuličkadopadnenazemrychlostíovelikosti v 0 Hg

Více

Řešení úloh 1. kola 50. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 50. ročníku fyzikální olympiády. Kategorie A Řešení úloh kola 50 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),PŠedivý(,,5,6,7),úlohajepřevzatazMoskevskéFO a) Zvolme vztažnou soustavu podle obr R Po přestřižení vlákna koná kulička šikmý

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4)

Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4) Řešení úloh regionálního kola 47 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová(1,,3)MCvrčekaPŠedivý(4) 1a) Pro pohyb úlomků platí zákon zachování hybnosti: mv 01 + mv 0 + mv 03 0 Protože

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4) Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2 Řešení úloh. kola 47. ročníku fyzikální olympiády. Kategorie C Autořiúloh:R.Baník(3),I.Čáp(),M.Jarešová(6),J.Jírů()aP.Šedivý(4,5,7).a) Pohybtělesajerovnoměrnězrychlenýsezrychlením g. Je-li v rychlost u

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1 Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A Řešení úloh kola 53 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),MJarešová(2,6),JThomas(4,7),PŠedivý(3,5) a) Vzhledemktomu,že v c,můžemesdostatečnoupřesnostípoužítzákony klasické fyziky Elektrické

Více

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh kola 49 ročníku fyzikální olympiády Kategorie C Autořiúloh:IČáp6),JJírů5),Kapoun),IVolf3)aPŠedivý,7) 4 úloha převzata z oskevské regionální FO 6 a) Celkovýpohybtělískasestávázvolnéhopádupodobu

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Počty testových úloh

Počty testových úloh Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

III. Dynamika hmotného bodu

III. Dynamika hmotného bodu III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]

Více

Veletrh nápadů učitelů fyziky. Gravitační katapult

Veletrh nápadů učitelů fyziky. Gravitační katapult Gravitační katapult Jiří Bartoš (bartos@physics.muni.cz), Pavel Konečný Ústav teoretické fyziky a astrofyziky, Katedra obecné fyziky Přírodovědecká fakulta Masarykovy univerzity v Brně. Katapulty různé

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář. / 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L.

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Ledvina (4) 1.a) Na dosažení rychlosti v 0 potřebuje každý automobil dobu t v 0

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

Derivace goniometrických funkcí

Derivace goniometrických funkcí Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

Měření momentu setrvačnosti

Měření momentu setrvačnosti Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :

Více

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení 1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1)

Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1) Řešení úoh 1. koa 54. ročníku fyzikání oympiády. Kategorie C Autořiúoh:J.Jírů(1),J.Thomas(,3,5),M.Jarešová(4,7),P.Šedivý(6). 1.a) Během brzdění roste dráha s časem pode vzorce s=v 0 t 1 at. (1) Zevzorcepyne

Více

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(1),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4)

Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(1),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4) Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4).a) Zaveďme vztažnou soustavu Oxy podle obr. R. Pohyb lodí popisují vztahy

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více