ANALÝZA A KLASIFIKACE DAT

Rozměr: px
Začít zobrazení ze stránky:

Download "ANALÝZA A KLASIFIKACE DAT"

Transkript

1 ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚLÁVÁNÍ a analýz

2 II. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD

3 PŘÍZNAKOVÝ POPIS Příznakový obaz zpacovávaných dat je vyjádřen n-ozměným (loupcovým vektoem hodnot i, i,2,,n příznakových poměnných (veličin chaakteizujících vlatnoti těchto dat, tj. platí (, 2,, n T.

4 PŘÍZNAKOVÝ POPIS Příznakové poměnné mohou popiovat kvantitativní i kvalitativní vlatnoti oubou dat. Jejich hodnoty nazýváme příznaky. Podle definičního obou ozlišujeme poměnné: pojité nepojité, dikétní, vyjmenovatelné logické, binání, altenativní, dichotomické

5 PŘÍZNAKOVÝ POPIS Vchol každého příznakového vektou (obazu předtavuje bod n-ozměného potou X n, kteý nazýváme obazovým potoem. Obazový poto je definován katézkým oučinem definičních oboů všech příznakovým poměnných, tzn. že jej tvoří všechny možné obazy zpacovávaného oubou dat.

6 PŘÍZNAKOVÝ POPIS Při vhodném výběu příznakových veličin je podobnot objektů (je popiujících dat z jedné klaifikační třídy vyjádřena blízkotí jejich obazů v obazovém potou. Vymezení klaifikační třídy: etalony - chaakteitické epezentativní obazy hanice dikiminační funkce

7 PŘÍZNAKOVÝ KLASIFIKÁTO Příznakový klaifikáto je toj tolika vtupy, kolik je příznaků a jedním dikétním výtupem, kteý udává třídu, do kteé klaifikáto zařadil ozpoznávaný obaz. d( d( je kalání funkce vektoového agumentu, kteou nazýváme ozhodovací pavidlo klaifikátou; je identifikáto klaifikační třídy

8 PŘÍZNAKOVÝ KLASIFIKÁTO deteminitický a nedeteminitický pevným a poměnným počtem příznaků bez učení a učením

9 PŘÍZNAKOVÝ KLASIFIKÁTO deteminitický a nedeteminitický pevným a poměnným počtem příznaků bez učení a učením Nadále e nějaký ča věnujme deteminitickým klaifikátoům pevným počtem příznaků.

10 PŘÍZNAKOVÝ KLASIFIKÁTO Obazový poto je ozhodovacím pavidlem ozdělen na dijunktních potoů,,,, přičemž každá podmnožina obahuje ty obazy, po kteé je d(. Návh ozhodovacího pavidla je základním poblémem návhu klaifikátou.

11 III. KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ

12 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ DISKIMINAČNÍ ANALÝZA týká e obecně vztahu mezi kategoiální poměnnou a množinou vzájemně vázaných příznakových poměnných. Konkétně, předpokládejme že eituje konečný počet, řekněme, ůzných a pioi známých populací, kategoií, tříd nebo kupin, kteé označujeme,,, a úkolem dikiminační analýzy je nalézt vztah, na základě kteého po daný vekto příznaků popiujících konkétní objekt tomuto vektou přiřadíme hodnotu.

13 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ hanice klaifikačních tříd definujeme pomocí kaláních funkcí g (, g 2 (,, g ( takových, že po obaz z podmnožiny po všechna platí g ( > g (, po,2,, a funkce g ( mohou vyjadřovat např. míu výkytu obazu patřícího do -té klaifikační třídy v daném mítě obazového potou nazýváme je dikiminační funkce

14 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ hanice mezi dvěma ouedními podmnožinami a je učena půmětem půečíku funkcí g ( a g (, definovaného ovnicí g ( g (, do obazového potou.

15 BLOKOVÉ SCHÉMA KLASIFIKÁTOU POMOCÍ DISKIMINAČNÍCH FUNKCÍ

16 BLOKOVÉ SCHÉMA KLASIFIKÁTOU POMOCÍ DISKIMINAČNÍCH FUNKCÍ u dichotomického klaifikátou (dvě třídy je ign (g ( g 2 (

17 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ nejjednodušším tvaem dikiminační funkce je funkce lineání, kteá má tva g ( a 0 + a + a a n n kde a 0 je páh dikiminační funkce poouvající počátek ouřadného ytému a a i jou váhové koeficienty i-tého příznaku i lineáně epaabilní třídy

18 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ nejjednodušším tvaem dikiminační funkce je funkce lineání, kteá má tva g ( a 0 + a + a a n n kde a 0 je páh dikiminační funkce poouvající počátek ouřadného ytému a a i jou váhové koeficienty i-tého příznaku i lineáně epaabilní třídy

19 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ nejjednodušším tvaem dikiminační funkce je funkce lineání, kteá má tva g ( a 0 + a + a a n n kde a 0 je páh dikiminační funkce poouvající počátek ouřadného ytému a a i jou váhové koeficienty i-tého příznaku i lineáně epaabilní třídy

20 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ nejjednodušším tvaem dikiminační funkce je funkce lineání, kteá má tva g ( a 0 + a + a a n n kde a 0 je páh dikiminační funkce poouvající počátek ouřadného ytému a a i jou váhové koeficienty i-tého příznaku i lineáně epaabilní třídy

21 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ LINEÁNĚ NESEPAABILNÍ TŘÍDY zachováme původní obazový poto a zvolíme nelineání dikiminační funkci definovanou obecně loženou po čátech z lineáních úeků zobazíme původní n-ozměný obazový poto X n nelineání tanfomací Φ: X n X m do nového m-ozměného potou X m, obecně je m n, tak, aby v novém potou byly klaifikační třídy lineáně epaabilní a v novém potou použijeme lineání klaifikáto (Φ převodník

22 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ BAYESŮV KLASIFIKÁTO

23 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ BAYESŮV KLASIFIKÁTO při řešení paktických úloh je třeba předpokládat, že obazy ignálů jou ovlivněny víceméně náhodnými fluktuacemi zdoje ignálu, v přenoové cetě, při předzpacování i analýze, kteé e nepodaří zcela eliminovat.

24 KLASIFIKACE PODLE DISKIMINAČNÍCH FUNKCÍ BAYESŮV KLASIFIKÁTO P( p(.p( p( P( je apoteioní podmíněná pavděpodobnot zatřídění obazového vektou do třídy ; p( je podmíněná hutota pavděpodobnoti obazů ve třídě ; P( je apioní pavděpodobnot třídy ; p( je hutota pavděpodobnoti ozložení všech obazů v celém obazovém potou.

25 ZÁKLADNÍ POJMY A PŘEDPOKLADY ZÁKLADNÍ POJMY A PŘEDPOKLADY ztátová funkce λ( udává ztátu při chybné klaifikaci λ obazu ze třídy do třídy. matice ztátových funkcí matice ztátových funkcí λ λ λ ( ( ( 2 L λ λ λ ( ( ( M O M M L λ λ λ λ ( ( ( 2 L třední ztáta J(a udává půměnou ztátu při chybné klaifikaci obazu

26 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY pokud e outředíme na obazy pouze ze třídy, je třední ztáta dána půměnou hodnotou z λ(d(,a vzhledem ke všem obazům ze třídy, tj. J ( a λ (d(, a.p( d kde p( je podmíněná hutota pavděpodobnoti výkytu obazu ve třídě

27 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY Celková třední ztáta J(a je půměná hodnota ze ztát J (a J( a J( a.p( λ(d(, a.p(.p( d nebo podle Bayeova vzoce ( P(.p( p(.p( J( a λ (d(, a.p(.p( d kde p( je hutota pavděpodobnoti výkytu obazu v celém obazovém potou a P( je podmíněná pavděpodobnot, že daný obaz patří do třídy (tzv. apoteioní pavděpodobnot třídy.

28 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY Návh optimálního klaifikátou, kteý by minimalizoval třední ztátu, počívá v nalezení takové množiny paametů ozhodovacího pavidla a*, že platí J( a* minj( a Doadíme-li za J(a z předchozího vztahu, je J( a * min λ (d(, a a a.p(.p( d Je-li ztátová funkce λ( kontantní po všechny obazy z, je dále J( a* min λ (.p(.p( d

29 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY Označíme-li ztátu při klaifikaci obazu do třídy L ( λ(.p(.p( tak po doazení dotaneme J( a* min L ( d Úloha nalezení minima celkové třední ztáty e tak převedla na minimalizaci funkce L (. Optimální ozhodovací pavidlo d(,a* podle kitéia minimální celkové třední ztáty je L ( d (, a* min L ( ME

30 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY Chceme-li využít pincipu dikiminačních funkcí min L ( ma ( L ( Dikiminační funkci optimálního klaifikátou podle kitéia minimální chyby pak definujeme g ( L ( λ(.p(.p(

31 λ KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY DICHOTOMICKÝ KLASIFIKÁTO Celková třední ztáta v případě dvou tříd je J( a 2 λ(.p(.p( d + λ( 2.p(.P( d 2 λ(.p( p(.d + λ( 2.P( 2 p( 2.d + + λ( 2.P( p(.d + λ( 2 2.P( 2 p( 2.d 2 2 ( 2.P(.( α + λ( 2.P( 2. β + λ( 2.P(. α + λ( 2 2.P( ( β 2

32 KITÉIUM MINIMÁLNÍ STŘEDNÍ ZTÁTY DICHOTOMICKÝ KLASIFIKÁTO Dikiminační funkce po dichotomický klaifikáto bude λ( g( g ( g.p( 2 (.P( L λ( ( 2 + L (.p( 2 2.P( + λ( 2.p(.P( + λ( 2 2.p( 2.P( 2 ( λ( λ (.p(.p( + ( λ ( λ (.p(.p( ( Položíme-li tento výaz nule dotaneme vztah po haniční plochu dichotomického klaifikátou, ze kteého můžeme učit pomě hutot pavděpodobnoti výkytu obazu v každé z obou klaifikačních tříd - věohodnotní pomě p( ( λ( 2 λ( 2 2.P( 2 Λ2 p( λ( λ (.P( ( 2 ( 2 Obaz zařadíme do třídy, když je věohodnotní pomě větší než výaz na pavé taně, je-li menší pak obaz zařadíme do třídy

33 VĚOHODNOSTNÍ POMĚ I. Sumaizuje veškeou infomaci zíkanou epeimentem. Pavděpodobnot, že jev (data natane za daných podmínek (hypotéza děleno pavděpodobnotí, že tejný jev natane za jiných podmínek. Podmínky jou vzájemně e vylučující.

34 VĚOHODNOSTNÍ POMĚ II. Věohodnotní pomě (likelihood atio L udává podíl pavděpodobnoti, že e vykytne nějaký jev A za učité podmínky (jev B, k pavděpodobnoti, že e jev A vykytne, když podmínka neplatí (jev nonb. Má-li například pacient náhlou ztátu paměti (jev A, chceme znát věohodnotní pomě výkytu jevu A v případě, že má mozkový nádo (jev B, tj. podíl pavděpodobnoti, jakou ztáta paměti vzniká při nádou mozku, k pavděpodobnoti, jakou vzniká v otatních případech. Věohodnotní pomě je tedy podíl podmíněných pavděpodobnotí L P(A B P(A nonb

35 KITÉIUM MINIMÁLNÍ PAVDĚPODOBNOSTI CHYBNÉHO OZHODNUTÍ Díky obtížnému tanovení hodnot ztátových funkcí λ( e kitéium minimální chyby zjednodušuje použitím jednotkových ztátových funkcí definovaných λ( 0 po po Matice jednotkových ztátových funkcí má pak tva a celková ztáta je 0 L 0 L λ M M O M L 0 J( a X - p(.p( d což je hodnota pavděpodobnoti chybného ozhodnutí.

36 KITÉIUM MINIMÁLNÍ PAVDĚPODOBNOSTI CHYBNÉHO OZHODNUTÍ Doadíme-li hodnoty jednotkových ztátových funkcí do vztahu po ztátu při klaifikaci obazu do chybné třídy L ( p(.p( p(.p( p(.p( a využitím Bayeova vztahu L ( p( P( p(.p( p( p(.p( p( nezávií na klaifikační třídě a tedy neovlivňuje výbě minima. Dikiminační funkci tedy můžeme učit jako g( p(.p(

37 KITÉIUM MINIMÁLNÍ PAVDĚPODOBNOSTI CHYBNÉHO OZHODNUTÍ V případě dichotomického klaifikátou je dikiminační funkce g ( p(.p( p(.p( g 2 2 A věohodnotní pomě je potom Λ 2 p( P( 2 p( 2 P(

38 KITÉIUM MAXIMÁLNÍ APOSTEIONÍ KITÉIUM MAXIMÁLNÍ APOSTEIONÍ PAVDĚPODOBNOSTI PAVDĚPODOBNOSTI PAVDĚPODOBNOSTI PAVDĚPODOBNOSTI Modifikujeme-li vztah po ztátu při chybné klaifikaci obazu podle Bayeova vztahu ( P(.p( p(.p( platí λ λ.p( ( p(.p(.p( ( ( L Hutota pavděpodobnoti p( nezávií na klaifikační třídě a tedy míto L ( lze použít λ.p( ( p( ( L ( ' L a jednotkovými ztátovými funkcemi je P( P( P( P( ( ' L

39 KITÉIUM MAXIMÁLNÍ APOSTEIONÍ PAVDĚPODOBNOSTI Minimum ztáty L ( je pávě tehdy, když P( je maimální. Tzn. že jako dikiminační funkci můžeme zvolit pávě hodnotu apoteioní pavděpodobnoti třídy, tj. g ( P( Po případ dichotomického klaifikátou je dikiminační funkce nebo g( P( - P( 2 0. Z toho plyne, že hanicí mezi třídami učuje vztah P( P( 2 P( P( Podle tohoto kitéia zatřídíme obaz do té třídy, jejíž apoteioní pavděpodobnot je při výkytu obazu větší. 2

40 KITÉIUM MAXIMÁLNÍ PAVDĚPODOBNOSTI (MINIMAX Neznáme-li apioní pavděpodobnoti všech tříd, předpokládáme ovnoměné ozložení (pavděpodobnot všech tříd je táž (P( P( /. Potom celková třední ztáta J( a doáhne minima, když λ(.p( d J( a* min a λ(.p( d Dikiminační funkci lze jako v předchozích případech definovat jako g ( L ( λ(.p(

41 KITÉIUM MAXIMÁLNÍ PAVDĚPODOBNOSTI (MINIMAX V případě dichotomie je věohodnotní pomě Λ 2 ( λ( ( 2 λ 2 ( λ( λ( p( 2 ( p 2 2 Pokud jou ceny pávného ozhodnutí nulové, tj. λ( λ( 2 2 0, je Λ 2 p( p( ( λ( 2 ( λ( 2 Obaz je zařazen do třídy, když je věohodnotní pomě než pomě cen ztát chybných zatřídění. Jou-li obě ceny tejné, je obaz zařazen do té třídy, po kteou je hodnota p( větší. 2

42 KITÉIUM MAXIMÁLNÍ PAVDĚPODOBNOSTI (MINIMAX

43 Přípava nových učebních mateiálů obou Matematická biologie je podpoována pojektem ESF č. CZ..07/2.2.00/ INTEDISCIPLINÁNÍ OZVOJ STUDIJNÍHO OBOU MATEMATICKÁ BIOLOGIE INVESTICE DO OZVOJE VZDĚLÁVÁNÍ

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANAÝZA A KASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚÁVÁNÍ a analýz III. BAYESŮV KASIFIKÁTO Intitut biotatitiky a analýz Intitut biotatitiky a analýz ZÁKADN KADNÍ

Více

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VI. VOLBA A VÝBĚR PŘÍ ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace;

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

Analýza a klasifikace dat

Analýza a klasifikace dat Analýza a klasifikace dat Jiří Holčík Březen 0 Přípava a vydání této publikace byly podpoovány pojektem ESF č. CZ..07/..00/07.038 Víceoboová inovace studia Matematické biologie a státním ozpočtem České

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava

Více

ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK

ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK Hana Boháčová Univezita Padubice, Fakulta ekonomicko-spávní, Ústav matematiky

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Mechanika hmotného bodu

Mechanika hmotného bodu Mechanika hmotného bodu Pohybové zákony klaické fyziky Volný hmotný bod = hmotný bod (HB), na kteý nepůobí žádné íly (je to abtaktní objekt). Ineciální vztažná (ouřadná) outava = vztažná (ouřadná) outava,

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Fyzikální koepondenční eminář MFF UK Úloha I.4... něo je tu nakřivo 6 bodů; půmě 3,1; řešilo 6 tudentů Pozoovatel e nahází na lodi na otevřeném moři ve výše h nad hladinou. Je vzdálen d od vodoovného zábadlí

Více

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo. B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

( + ) t NPV 10000 + + = NPV

( + ) t NPV 10000 + + = NPV Základní pojmy Finanční management Základní pojmy ozhodování a nejčastější omyly ovlivnitelné a neovlivnitelné položky elevantní náklad stálé a poměnné náklady půměné náklady maginální náklady Příklad

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

MODELOVÁNÍ VYSOKOFREKVENČNÍCH PULSACÍ

MODELOVÁNÍ VYSOKOFREKVENČNÍCH PULSACÍ VYSOKÉ UČNÍ TCHNICKÉ V BNĚ BNO UNIVSITY OF TCHNOLOGY FAKULTA STOJNÍHO INŽNÝSTVÍ NGTICKÝ ÚSTAV FACULTY OF MCHANICAL NGINING NGY INSTITUT MODLOVÁNÍ VYSOKOFKVNČNÍCH PULSACÍ HIGH-FQUNCY PULSATIONS MODLING

Více

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.

Více

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08 Modely podukčních systémů Plánování výoby seminání páce Auto: Jakub Metl Xname: xmej08 Datum: ZS 07/08 Obsah Obsah... Úvod... 3 1. Výobní linky... 4 1.1. Výobní místo 1... 4 1.. Výobní místo... 5 1.3.

Více

PMD - POLARIZAČNÍ VLIVY OPTICKÝCH VLÁKEN

PMD - POLARIZAČNÍ VLIVY OPTICKÝCH VLÁKEN VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1. eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

5.4.6 Objemy a povrchy rotačních těles I

5.4.6 Objemy a povrchy rotačních těles I 5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.

Více

SOUSTAVY ROVNIC A SLOVNÍ ÚLOHY K NIM VEDOUCÍ

SOUSTAVY ROVNIC A SLOVNÍ ÚLOHY K NIM VEDOUCÍ Pojekt ŠABLONY NA GVM Gmnáium Velké Meiříčí egitační čílo ojektu: CZ..7/.5./.9 IV- Inovace a kvalitnění výuk měřující k ovoji matematické gamotnoti žáků tředních škol SOUSTAVY ROVNIC A SLOVNÍ ÚLOHY K NIM

Více

3.2.8 Oblouková míra. Předpoklady:

3.2.8 Oblouková míra. Předpoklady: 3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,

Více

1 Seznamová barevnost úplných bipartitních

1 Seznamová barevnost úplných bipartitních Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

ZÁKLADY ROBOTIKY Transformace souřadnic

ZÁKLADY ROBOTIKY Transformace souřadnic ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován

Více

Obsah přednášky. 1. Základní pojmy. 2. Jednorozměrné charakteristiky 3. Rozložení 4. Vícerozměrné charakteristiky. Jak stručně popsat data

Obsah přednášky. 1. Základní pojmy. 2. Jednorozměrné charakteristiky 3. Rozložení 4. Vícerozměrné charakteristiky. Jak stručně popsat data Obah přednášky 1. Základní pojmy. Jednorozměrné charakteritiky 3. Rozložení 4. Vícerozměrné charakteritiky Jak tručně popat data 5. Hypotézy, tety O kvalitě dat a modelů Základní a výběrový oubor, pravděpodobnot,

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

dynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně

dynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně Dnaika I,. přednáška Oba přednášk : dnaika otnéo bodu, pobová ovnice, d lebetůvpincip, dva du úlo v dnaice, zákon o zacování / zěně Doba tudia : ai odina Cíl přednášk : eznáit tudent e základníi zákonitoti

Více

ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY. Jitka Bartošová

ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY. Jitka Bartošová ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY Jitka Batošová Kateda managementu infomací, Fakulta managementu, Vysoká škola ekonomická Paha, Jaošovská 1117/II, 377 01 Jindřichův Hadec batosov@fm.vse.cz Abstakt: Poces

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

6 Diferenciální operátory

6 Diferenciální operátory - 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou

Více

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota Fuzzy pedikto po kinematicko silové řízení káčejícího obota Ing. Jan Kaule, Ph.D. Ing. Mioslav UHER VA Bno Kateda technické kybenetiky a vojenské obotiky, Kounicova 65, 6 00 Bno, Česká epublika Abstakt:

Více

Chyba rozměru šroubové drážky

Chyba rozměru šroubové drážky Chyba ozměu šoubové dážky Kael Jandečka, Pof. Ing. CSc. Kateda technologie obábění, FST, ZČU v Plzni, Univezitní 8, 306 4, Plzeň, Č, jandecka@kto.zcu.cz Článek pezentuje další výledky v řešení této poblematiky

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vyoké učení technické v Bně Fakulta tojního inženýtví Útav tojíenké technologie Odbo obábění Téma: 3. cvičení - Geometie řezného nátoje Okuhy: Učení nátojových úhlů po nátoje ovinnými plochy Aγ, Aα Kontola

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

ú ú ú ú úč Š ú Š ú š Č š ú Š š Ř Ý Č ž Š ú Č ó ú ž š šť ž Š ž ž ž Š ž ú ó ž ú Š š š ú š Š Š Š ú ť ú š Š ú ú ú Ř Ý Á Š É š Č Ó Ó Ť Ě Ť š Ý Ů Č Š Ř Š Ě Ý š Č ó ó ú ď Á ó ž ú ž ú Ó Á Ý Á Á š Ť ť ť ť Ť š

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení Jméno a příjmení ID FYZIKÁLNÍ PRAKTIK Ročník 1 Předmět Obor Stud. kupina Kroužek Lab. kup. FEKT VT BRNO Spolupracoval ěřeno dne Odevzdáno dne Příprava Opravy čitel Hodnocení Název úlohy Čílo úlohy 1. Úkol

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

NUMERICKÉ STUDIUM STĚNOVÉ VRSTVY PLAZMATU VÁLCOVÉ KATODY

NUMERICKÉ STUDIUM STĚNOVÉ VRSTVY PLAZMATU VÁLCOVÉ KATODY NUMERICKÉ STUDIUM STĚNOVÉ VRSTVY PLAZMATU VÁLCOVÉ KATODY J. Blaže 1) P. Špatena ) J. Olejníče 3) P. Batoš 1) 1) Jihočeá univezita ateda fyziy Jeonýmova 1 371 15 Čeé Budějovice ) Technicá univezita Libeec

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

5. Teorie informace. Kvantitativní vyjádení množství informace ve zpráv. Syntax versus sémantika (zde nás zajímá syntaktická ást).

5. Teorie informace. Kvantitativní vyjádení množství informace ve zpráv. Syntax versus sémantika (zde nás zajímá syntaktická ást). Enet 004 5. Teoie infomace 5. Infomace a entopie Kvantitativní vyjádení množtví infomace ve zpáv. Syntax ve émantika (zde ná zajímá yntaktická át. Dležité pojmy: o Abeceda nap. {a,b,c,bd,cd}. o Zpáva (nap.

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

3 Chyby měření. 3.1 Hrubé chyby

3 Chyby měření. 3.1 Hrubé chyby 3 Chyby měření Za daných podmínek má každá fyzikální veličina určitou hodnotu, kterou ovšem z principiálních důvodů nemůžeme zjitit úplně přeně. Každé měření je totiž zatíženo chybami, které jou nejrůznějšího

Více

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení

Více

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

11 - Regulátory. Michael Šebek Automatické řízení

11 - Regulátory. Michael Šebek Automatické řízení - Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

3D metody počítačového vidění, registrace, rekonstrukce

3D metody počítačového vidění, registrace, rekonstrukce 3D metody počítačového vidění, egistace, ekonstkce účel měření - bezkontaktní měření polohy a vzdálenosti - zjištění/měření postoových ozměů - zjištění 3D tva evezní inženýing modely existjících věcí,

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

Příklad 1 Ověření šířky trhlin železobetonového nosníku

Příklad 1 Ověření šířky trhlin železobetonového nosníku Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování

Více

Přednáška Omezení rozlišení objektivu difrakcí

Přednáška Omezení rozlišení objektivu difrakcí Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

Části kruhu. Předpoklady:

Části kruhu. Předpoklady: 2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SNÍMAČ S VNESENOU IMPEDANCÍ EDDY CURRENT SENSOR DIPLOMOVÁ PRÁCE MASTER S THESIS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SNÍMAČ S VNESENOU IMPEDANCÍ EDDY CURRENT SENSOR DIPLOMOVÁ PRÁCE MASTER S THESIS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

MANAŽERSKÉ ROZHODOVÁNÍ

MANAŽERSKÉ ROZHODOVÁNÍ MANAŽERSKÉ ROZHODOVÁNÍ Téma 21 - PRAVIDLA ROZHODOVÁNÍ ZA RIZIKA A NEJISTOTY doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika a managementu Katedra vojenského managementu

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

obr. 3.1 Pohled na mící tra

obr. 3.1 Pohled na mící tra 3. Mení tecích ztrát na vzduchové trati 3.1. Úvod Problematika urení tecích ztrát je hodná pro vodu nebo vzduch jako proudící médium (viz kap..1). Micí tra e liší použitými hydraulickými prvky a midly.

Více