Historie pravděpodobnosti a statistiky Popisná statistika

Rozměr: px
Začít zobrazení ze stránky:

Download "Historie pravděpodobnosti a statistiky Popisná statistika"

Transkript

1 Historie pravděpodobnosti a statistiky Popisná statistika Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část Tato kapitola je věnována z části historii pravděpodobnosti a statistiky a ve druhé části základním statistickým pojmům. 1. Formulace statistického šetření Seznámit se s historií pravděpodobnosti a statistiky. Porozumět základním statistickým pojmům. Základní text 1 hod. Příklady také 1 hod. Rozšiřující text ¼ hod. Hromadný náhodný jev Statický soubor Rozsah statistického souboru Statistická jednotka Statistický znak Hodnota statistického znaku Základní statistický soubor Náhodný výběr Výběrový statistický soubor Termín statistika je odvozen od latinského slova status, které v latině znamená stav a v přeneseném slova smyslu stát. Z těchto uvedených termínů vznikla v období 16. až 17. století italská slova státistico, což znamená statistický nebo také statistik a státística, tj. statistika. Tento termín tehdy představoval souhrn znalostí o státních záležitostech a rovněž znamenal velmi ceněné muže statistiky, kteří byli výbornými znalci důležitých státních záležitostí. Počátky pravděpodobnosti, jako empirické vědy možná spíše hledáme, než nalézáme v hrách, z nichž patrně nejstarší jsou hry v kostky. Prvním hracím nástrojem byla zřejmě hlezenní kost ovcí a koz, která má tvar nepravidelného šestistěnu a po hození může zaujmout čtyři různé polohy (viz. Obr.). Archeologické nálezy v lidských sídlištích z doby před let dokládají, že se patrně hrálo již tehdy. Nejstarším typem hry mohla být pouhá ekvilibristika spočívající v nadhazování a chytání kůstek hřbetem ruky. Na egyptských malbách z doby I. dynastie (3500 let př. Kr.) se kostka objevuje jako pomůcka v deskových hrách. Dochovaly se i celé hrací soupravy pro hry Senet a Psi a šakali, což jsou jisté obdoby dnešních

2 vrhcábů. Kostky se šesti hracími stěnami se nejprve zhotovovaly zbroušením hlezenních kůstek, ale ty se pak brzy ohrály. Ke hrám nebo možná k věštění se používaly také krátké tyčinky opatřené čísly, nebo s odpovídajícím počtem vrypů, případně runami, a to v Anglii kolem počátku našeho letopočtu a také u Mayů. O popularitě kostek v Řecku svědčí to, že byly častým motivem umělecké tvorby, dostaly se dokonce i na platidla. Také v Římské říši bylo značné rozšíření hry v kostky; dosvědčují to nástěnné mozaiky hráčů nalezené na stěnách domů v Pompejích. Rájem her v kostky byla zřejmě i starověká Indie. Přes uvedenou všeobecnou rozšířenost her v kostky však zatím nikde nebyla nalezena zmínka o relativní četnosti vrhů určitých čísel či jejich kombinací. Naopak bodování na hlezenních kůstkách přiřazuje nejnižší bodovou hodnotu vrhu s nízkou relativní četností. V historických dobách měla společnost ke hrám vztah negativní. Nářek nešťastného hráče v kostky (v Indii se používaly a doposud používají oříšky stromu vibhidaka), který svou vášní ztratil všechno, zničil svou rodinu a je v opovržení u všech příbuzných lze najít v Ridgvédě, nejstarší z indických Véd.: Sotva ty hnědé oříšky zachřestí a padnou, běžím jim vstříc, jak zamilovaná dívka Ač samy bez rukou pevně svírají otěže nad těmi, co je mají Jak kouzelné uhlíky, ač chladné, v popel obrátí hráčovo srdce. V Bibli se kritika hráčských vášní nevyskytuje z prostého důvody, byly totiž explicitně zakázány. V Evropě se hra v kostky udržela v masové oblibě od římských dob až do renesance, kdy byla zčásti vytlačena kartami, přitom však docházelo ke kritice a zákazům, jak ze strany církve, tak i státu. Hraní kostek bylo omezeno jen na určitou dobu (kolem svátků na konci roku v Římě), jindy byly zcela zakázány (ve Francii Ludvíkem IX. Svatým, v Anglii Jindřichem VIII.), potírala je i církev v kázáních i na koncilech. A křižáci ji měli v předpisech povolenou jenom proto, aby se z nečinnosti nevěnovali jiným neřestem. Bojovníci nižší úrovně než rytíři o peníze hrát nesměli vůbec a rytíři a duchovní nesměli prohrát více než 20 šilinků za 24 hodin. Při oblibě her založených na náhodě je s podivem, že jim odpovídající teorie pravděpodobnosti se objevuje teprve v 17. století. Její počátek je obecně spojován se jmény Blaire Pascala a Pierra Fermata, kteří problémy týkající se hry v kostky a dělení sázky v roce 1654 řešili ve své korespondenci. První publikací byla ovšem krátká práce Huyghensova v roce Jedním z vysvětlení je, že hráči dávali přednost spoléhání na štěstí, před zkoumáním neúprosných zákonitostí. P. R. de Montmort píše ve své knize Esej o analýze hazardních her: Obecným principem této pověrčivosti je připisování dobra i zla a všeho, co se v tomto světě děje osudové síle, která se neřídí žádným řádem a pravidly. Věří, že je třeba uchlácholit tuto slepou sílu, kterou

3 nazývají štěstěnou a donutit ji, aby jim byla příznivá a řídila se pravidly, která pro ni vymysleli. Hry ovšem nebyly jediným uplatněním náhodných jevů: byly využívány také k věštbám u Řeků, Římanů i Germánů. Obdobu věštění můžeme nalézt v dnešní době na stránkách internetu (Tarot, Runy, I Ťing). Populární bylo věštění z Vergilia: Aeneida, byla otevřena na náhodné stránce, poslepu vybrán řádek a interpretován. U křesťanů byla (a možná stále je) k podobným účelům používána Bible. Skutečně pravděpodobnostní úvahy se však vyskytují v tóře a v rabínské literatuře. Náhoda je tam využívána jako prostředek k řešení nejednoznačných situací, přičemž její rozhodnutí bylo považováno za vyjádření boží vůle ve věcech podstatných a za nestranný soud v záležitostech denního života. V liturgii i pro nalezení práva bylo nejvíce rozšířeno losování z urny (dělení majetku, dědictví). Losem se řídily také zvířecí oběti, služby v chrámu a dělení masa obětovaných zvířat mezi sloužící kněžstvo. Povolení neprovádět obřízku, když předchozí novorození chlapci v důsledku obřízky zemřeli, kdy je počet zemřelých tak velký, že se jedná o mor atd. Vidíme tedy, že uplatnění pravděpodobnosti mimo hry je daleko starší a stojí za úvahu se zamyslet, kolik rozhodujících momentů historie (ztracených bitev a neúspěšných tažení, dynastických sporů, ) bylo způsobeno neočekávanými výkyvy počasí nebo propuknutím epidemie. První známou ucelenou prací o počtu pravděpodobnosti je dílo Ars conjectandi, což v češtině znamená umění předvídat, od švýcarského matematika Jacoba Bernoulliho ( ) Dnes používaný BMI (Body Mass Index) zavedl již Quetelet ( ), jako index tělesné váhy a označoval jím úředně stanovenou obezitu (QI > 30) V průběhu 17. a 18. století dostávala slova statistický, statistika a statistik postupně mezinárodní smysl. Od poloviny 18. století bylo slovo statistika především v Německu používáno namísto dříve preferovaného termínu státověda die Staatswissenschaft. Toto slovo označovalo cyklus přednášek na univerzitách, které se zabývaly obyvatelstvem, územím obchodem peněžnictvím, armádou apod. jednotlivých států. Uvedená univerzitní statistika představovala především slovní popis, použití čísel bylo zpočátku zcela výjimečné. Vzniku slova statistika předcházelo úřední zjišťování počtu lidí a velikosti jejich majetku. Takováto úřední zjišťování se prováděla již před několika tisíci lety a docházelo k nim zejména v těch zemích, které potřebovaly znát zejména např. přesné počty mužů schopných bojovat nebo počty osob schopných a povinných platit daně. Takováto zjišťování se v průběhu let neustále zdokonalovala až po současnou podobu sčítání lidu, která jsou organizována a prováděna současnými statistiky ve všech kulturních zemích světa přibližně každých deset let.

4 V 17. století, kdy se v Itálii a v Německu začala utvářet univerzitní statistika, se v Anglii, která byla hospodářsky vyspělejší, zabývá John Graunt ( ) a William Petty ( ) zkoumáním společenských jevů na podkladě objektivních číselných záznamů. Jednalo se o zjišťování a zkoumání počtu obyvatel, složení rodin, pravidelností v rození a umírání. Objevili např., že se rodí o něco více chlapců než dívek, že umírá více mužů než žen nebo, že ve městech umírá více lidí, než se jich tam narodí apod. Dalším předmětem jejich zájmu bylo zjišťování a zkoumání pravidelností ve výši příjmů obyvatel podle jednotlivých povolání atd. Hlavním nástrojem těchto badatelů bylo číselné charakterizování jevů. Šlo přitom o obyvatelstvo jako celek, o pravidelnosti v narozeních, úmrtích atd. John Graunt a William Petty zkoumali hromadné jevy, zkoumali tedy skutečnosti, které se neustále opakují. Postupy zkoumání hromadných jevů Johna Graunta a Williama Pettyho byly nazvány politickou aritmetikou. Důvodem pro tento název byla nejenom ta skutečnost, že se jedna z knih Williama Pettyho nazývala Politická aritmetika, ale především to, že jednak zkoumali jevy, které bylo možno po jejich zkoumání ovlivňovat a usměrňovat politicky státem, a jednak používali čísla k měření, vážení, počítání, neboli zkrátka aritmetiku při zkoumání a charakterizování hromadných jevů. Na základě záznamů o úmrtích a narozeních v některých městech prováděli podobné výpočty v Německu v 18. století Johann Peter Sűssmilch ( ) i jiní. K ostrým střetům, ale i k vzájemnému obohacování znalostí začalo docházet posléze mezi politickými aritmetiky a univerzitními statistiky. V dalším vývoji se proto používají k charakterizování státních pozoruhodností, jako jsou území, obchod, peněžnictví, obyvatelstvo, armáda apod., stále více čísla. Sběr dat K tomu, abychom mohli provádět statistické šetření, potřebujeme data, ze kterých po zpracování statistickými metodami, získáme potřebné informace. Data je možné získat přímo (dotazníkovým šetřením, anketou, vlastním pozorováním, ) nebo je můžeme převzít z jiných zdrojů, jako je Český statistický úřad - výroční zprávy podniků, články v tisku atd. My jsme provedli anketu. Studenti, kteří se v určitých dnech dostavili na přednášku, vyplnili pod pořadovými čísly svou váhu, výšku. Obdrželi jsme údaje o 97 studentech a studentkách. Ze souboru dat jsme si vybrali pouze údaje o ženách, kterých je 46 a ty budeme dále zpracovávat (stejně tak jsme si mohli vybrat údaje o mužích). Informaci jsou uvedeny v následující tabulce: č. výška váha č. výška váha č. výška váha

5 Nyní si objasníme základní pojmy, se kterými se při statistickém zpracování dat pracuje. 1. Formulace statistického šetření Hromadný náhodný jev HNJ je jev, který se vyskytuje mnohokrát a neustále se může opakovat. Existují dva typy hromadných jevů. První typ spočívá ve velkém počtu opakovaných pozorování. (100x hodím jednou kostkou) Druhým typem hromadného jevu je nějaká vlastnost množiny, která se skládá z velkého počtu prvků. (hodím 100 kostek naráz) Vyzkoušejte si Vezměte si minci a zkuste si hodit 10x touto mincí. Zapisujte si, kolikrát padne panna a kolikrát padne orel. Tento pokus několikrát zopakujte. V tabulce je zobrazeno 10 takových sad po 10 hodech mincí. Vidíme, že poměr P:0 (panna: orel) se vyskytuje od hodnoty 3:7 až po 8:2. V takto malém souboru můžeme obdržet libovolný výsledek (třeba i 10:0). Sečteme-li však dvě sady hodů (tedy 20 hodů) dohromady, rozdíly už nejsou tak veliké a pro všech 10 sad (100 hodů) jsme obdrželi poměr 51:49, což se blíží teoretické pravděpodobnosti 50:50. Poměr P:O Hod Sada 1 P P O P O P P O P O 6:4 2 P P P O O O O P O O 4:6 10:10

6 3 O P O O P P O O O O 3:7 4 O O P O P P P O P O 5:5 8:12 5 O O O P P O O P O P 4:6 6 P P O O P P P O O P 6:4 10:10 7 P P O P O P O O O P 5:5 8 P O P O O O P P O P 5:5 10:10 9 P P P P O O P P P P 8:2 10 O O P P O O P P O P 5:5 13:7 51:49 Deset sad po deseti hodech mincí Z našeho pokusu vyplývá, že pro statistické šetření je potřeba vycházet z dostatečného množství pozorování. Na základě zkušeností lze konstatovat, že jakmile je uvažován soubor 30 a více prvků, můžeme již hovořit o hromadných jevech. Statistická jednotka (SJ) je vymezena stejnými vlastnostmi prvků zkoumané množiny. (studentka VŠFS) Statistický znak (SZ) je dán některou z odlišných vlastností prvků zkoumané množiny. (výška, váha studentky) Hodnota statistického znaku (HSZ) je způsob popisu zkoumaného statistického znaku. (170 cm) Základní statistický soubor (ZSS) je dán všemi statistickými jednotkami, jeho rozsah je roven počtu všech statistických jednotek. (všechny studentky VŠFS) Obvykle není v praktických možnostech statistiků zkoumat statistický znak (SZ) u všech statistických jednotek (SJ) a je nutno přistoupit k omezení počtu SJ. (ZSS je značně rozsáhlý - asi by se nám nepodařilo získat data úplně od všech studentek, pokud přece ano, tak by to bylo finančně i časově nákladné.) V některých statistických šetřeních dochází navíc ke zničení zkoumané SJ např. zkoumání životnosti baterie, z tohoto důvodu není možné testovat celou výrobu, ale pouze malou část. Náhodný výběr (NV) je omezení počtu zkoumaných statistických jednotek takovým způsobem, aby bylo možné přenášet získané výsledky na celý základní statistický soubor. Existují rozmanité způsoby náhodného výběru (losování, generování tabulkou náhodných čísel, záměrný výběr, ). Je potřebné ověřovat, zda je

7 možno získaný výběr považovat za náhodný. Výběrový statistický soubor VSS je dán těmi statistickými jednotkami, které byly vybrány ze základního statistického souboru procesem náhodného výběru. (Studentky, které se dostavily na příslušné semináře.) Rozsah VSS je roven počtu vybraných statistických jednotek. (46 studentek n = 46) Výběrový statistický soubor VSS je jednorozměrným, je-li u něj zkoumán jen jeden statistický znak, vícerozměrným, je-li zkoumáno více statistických znaků. (výška, váha - dvourozměrný statistický soubor) Rozšiřující text Za zrod moderní matematické teorie pravděpodobnosti je považována korespondence mezi francouzským matematikem Blaisem Pascalem ( ) a Pierrem Fermatem ( ) v 17. století. Nastínění problému: Opakovaně házíte kostkou a chcete, aby alespoň jednou padla např. 6. Jaké jsou vaše šance? Hodíte-li jednou? Hodíte-li čtyřikrát? Mnoho lidí si myslí, že je to 4/6 Pravděpodobnost, že 6 nepadne při jednom hodu je 5/ = 0,48225 Při čtyřech hodech je Pravděpodobnost, že padne je tedy 1-0,48225, což je 51,8% Ve Francii sedmnáctého století vydělával mazaný hráč jménem Antoine Gombaud, rytíř de Méré, pěkné částky tím, že se s lidmi sázel, že při čtyřech hodech kostkou padne alespoň jedna šestka. Zákon velkých čísel mu při dlouhodobém provozování zajišťuje zisk. Pak se snažil sázku upravit tak, že při 24 hodech dvěma kostkami padne alespoň jednou dvojice šestek. Uvažoval takto: pravděpodobnost, že padne dvojice šestek je 1/36, bude házet 24 krát a 24/36=4/6, budou pravděpodobnosti v obou hrách stejné a on bude dále vyhrávat. Správná hodnota je 1-(35/36) 24 = 0,4914 tj. 49,1%, takže chudák rytíř začal prodělávat (opět zákon velkých čísel). Zmatený de Méré se obrátil na Pascala, který problém pak diskutoval v korespondenci s Fermatem.

8 B. Pascal P. Fermat Čerpáno z knihy Zasažen bleskem od Jeffrey S. Rosenthala Shrnutí Kontrolní otázky a úkoly Seznámili jsme se s počátky pravděpodobnosti a statistiky. Vymezili jsme si základní statistické pojmy. Hromadný náhodný jev Statický soubor Rozsah statistického souboru Statistická jednotka Statistický znak Hodnota statistického znaku Základní statistický soubor Náhodný výběr Výběrový statistický soubor V tabulce jsou údaje o 30 domácnostech x 1 měsíční výdaje domácnosti na potraviny v Kč x 2 počet členů domácnosti x 3 průměrný věk vydělávajících členů domácnosti x 4 typ vlastnictví bytu (N-nájemní, V-vlastní, D-družstevní) i symbol vyjadřující číslo řádku Proveďte formulaci statistického šetření i x-i1 x-i2 x-i3 x-i N D N V D N N D D V D V D

9 N V V N N D D V V D D N V D V N N Seznam použitých zkratek Studijní literatura Odkazy Klíč k úkolům HNJ - Hromadný náhodný jev SS - Statický soubor SJ - Statistická jednotka SZ - Statistický znak HSZ - Hodnota statistického znaku ZSS - Základní statistický soubor NV - Náhodný výběr VSS - Výběrový statistický soubor Bílková, D. Budinský, P. Vohánka, V.: Pravděpodobnost a statistika. Aleš Čeněk, Plzeň, Cyhelský, L. Souček, E.: Základy statistiky. EUPRESS, Praha Hindls, R. Hronová, S. Seger, J.: Statistika pro ekonomy. Professional Publishing, Praha Český statistický úřad - Jeffrey S. Rosenthal: Zasažen bleskem x 1 měsíční výdaje domácnosti na potraviny v Kč HNJ - Měsíční výdaje domácnosti na potraviny v Kč SJ Jedna domácnost SZ Měsíční výdaje domácnosti na potraviny v Kč HSZ Částka v Kč ZSS Všechny domácnosti v ČR VSS 30 vybraných domácností x 2 počet členů domácnosti HNJ - Počet členů domácnosti

10 SJ Jedna domácnost SZ Počet členů domácnosti HSZ Hodnoty 1 až 6 ZSS Všechny domácnosti v ČR VSS 30 vybraných domácností x 3 průměrný věk vydělávajících členů domácnosti HNJ - Průměrný věk vydělávajících členů domácnosti SJ Jedna domácnost SZ Průměrný věk vydělávajících členů domácnosti HSZ Věk v letech ZSS Všechny domácnosti v ČR VSS 30 vybraných domácností x 4 typ vlastnictví bytu (N-nájemní, V-vlastní, D-družstevní) HNJ - Typ vlastnictví bytu SJ Jedna domácnost SZ Typ vlastnictví bytu HSZ N-nájemní, V-vlastní, D-družstevní ZSS Všechny domácnosti v ČR VSS 30 vybraných domácností

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

STATISTIKA jako vědní obor

STATISTIKA jako vědní obor STATISTIKA jako vědní obor Cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů. Statistika se zabývá popisem hromadných jevů - deskriptivní, popisná statistika

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl?

Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1.1 Základní statistické pojmy a metody Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1 Co se dozvíte Co je to statistika

Více

2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY

2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Základní statistické pojmy Aleš Drobník strana 1 2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Organizace (zpravodajská jednotka) provádějí různé druhy statistického zjišťování z důvodu: vlastní

Více

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI 5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI Hry v kostky Podle archeologických nálezů se hrací kostky používaly již v době před 40 tisíci lety. Nejprve se jednalo o přírodní nepravidelné předměty,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Úvod. Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia

Úvod. Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia Úvod Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia Otázka, jakým principem se řídí šťastná a nešťastná náhoda, trápí lidstvo jako málokterá jiná.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Chytrý medvěd učí počítat

Chytrý medvěd učí počítat CZ Habermaaß-hra 3151A /4547N Chytrý medvěd učí počítat Medvědí kolekce vzdělávacích her pro 2 až 5 hráčů ve věku od 4 do 8 let. S navlékacím počítadlem Chytrého medvěda a třemi extra velkými kostkami.

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I.

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I. Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I. pro kombinované a distanční studium Radim Briš Martina Litschmannová

Více

Výskyt sázkového hraní v populaci

Výskyt sázkového hraní v populaci Výskyt sázkového hraní v populaci Mgr. Pavla Chomynová 7/11/2013 Obsah zdroje dat prevalence hraní v obecné populaci výsledky studií charakteristika hráčů prevalence problémového hraní PGSI škála hraní

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

SISP - charakteristika výběrového souboru

SISP - charakteristika výběrového souboru SISP - charakteristika výběrového souboru Výběr osob ve Studii individuální spotřeby potravin reprezentuje populaci České republiky dle Výsledků sčítání lidu, domů a bytů, 21. Šetření se zúčastnilo 259

Více

Adresa školy... Adresa bydliště... (Adresy vyplňte až po ukončení soutěžního kola, zejm. u prací postupujících do vyššího kola.)

Adresa školy... Adresa bydliště... (Adresy vyplňte až po ukončení soutěžního kola, zejm. u prací postupujících do vyššího kola.) Č. Jméno Adresa školy... Adresa bydliště.... (Adresy vyplňte až po ukončení soutěžního kola, zejm. u prací postupujících do vyššího kola.) Národní institut pro další vzdělávání Senovážné nám. 25, 110 00

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň. Název školy. Název projektu. Číslo materiálu 37. Mgr. Bc.

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň. Název školy. Název projektu. Číslo materiálu 37. Mgr. Bc. Název školy Název projektu Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň Digitalizace výuky Číslo projektu CZ.1.07/1.5.00/34.0977 Číslo šablony VY_32_inovace_ST37 Číslo materiálu 37

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

RENESANCE A OSVÍCENSTVÍ

RENESANCE A OSVÍCENSTVÍ RENESANCE A OSVÍCENSTVÍ pracovní list Mgr. Michaela Holubová Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Michaela Holubová. RENESANCE A VĚK ROZUMU Renesance kulturní znovuzrození

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

1 ÚVOD DO UČIVA DĚJEPISU

1 ÚVOD DO UČIVA DĚJEPISU 1 ÚVOD DO UČIVA DĚJEPISU Promysli a vypiš k čemu všemu je člověku dobrá znalost historie Pokus se co nejlépe určit tyto historické prameny. Kam patří? PROČ SE UČÍME DĚJEPIS historie je věda, která zkoumá

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně

Více

Masérská a lázeňská péče

Masérská a lázeňská péče Masérská a lázeňská péče VY_32_INOVACE_181 AUTOR: Mgr. Andrea Továrková ANOTACE: Prezentace slouží k seznámení s historií sportovní a rekondiční masáže. KLÍČOVÁ SLOVA: Starověk, Středověk, Novověk. Historie

Více

Koaliční hry. Kooperativní hra dvou hráčů

Koaliční hry. Kooperativní hra dvou hráčů Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Výuka s ICT na SŠ obchodní České Budějovice Šablona III/2:

Výuka s ICT na SŠ obchodní České Budějovice Šablona III/2: Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

NEJSTARŠÍ OSÍDLENÍ NAŠÍ VLASTI

NEJSTARŠÍ OSÍDLENÍ NAŠÍ VLASTI VY_32_INOVACE_02_Nejstarší osídlení naší vlasti NEJSTARŠÍ OSÍDLENÍ NAŠÍ VLASTI Použité zdroje : PhDr. Harna Josef, CSc. a kolektiv: Vlastivěda Obrazy ze starších českých dějin, Alter 1996 http://pravek.boiohaemum.cz/index.php

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Stručná historie výpočetní techniky část 1

Stručná historie výpočetní techniky část 1 Stručná historie výpočetní techniky část 1 SOU Valašské Klobouky VY_32_INOVACE_1_1 IKT Stručná historie výpočetní techniky 1. část Mgr. Radomír Soural Za nejstaršího předka počítačů je považován abakus,

Více

Biostatistika a e-learning na Lékařské fakultě UK v Hradci Králové

Biostatistika a e-learning na Lékařské fakultě UK v Hradci Králové Univerzita Karlova v Praze Lékařská fakulta v Hradci Králové Ústav lékařské biofyziky Biostatistika a e-learning na Lékařské fakultě UK v Hradci Králové Josef Hanuš, Josef Bukač, Iva Selke-Krulichová,

Více

Metodický list - Finanční deriváty

Metodický list - Finanční deriváty Metodický list - Finanční deriváty Základní odborná literatura vydaná VŠFS: [0] Záškodný,P., Pavlát,V., Budík,J.: Finanční deriváty a jejich oceňování.všfs,praha 2007 Tato literatura platí v plném rozsahu,

Více

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D. Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a

Více

Počátky křesťanství, Betlém

Počátky křesťanství, Betlém Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Kot19 Vypracoval(a),

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

3.2 OBJEMY A POVRCHY TĚLES

3.2 OBJEMY A POVRCHY TĚLES . OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_I.14.1 Autor Petr Škapa Datum vytvoření 24. 11. 2012 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

Hry v rozvinutém tvaru a opakované hry. Hry v rozvinutém tvaru

Hry v rozvinutém tvaru a opakované hry. Hry v rozvinutém tvaru Hry v rozvinutém tvaru a opakované hry Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část 1) Hry v rozvinutém tvaru 2) Opakované hry I. Konečně opakované hry

Více

1 Statistická data a jejich prezentace 1.1 Co je to statistika

1 Statistická data a jejich prezentace 1.1 Co je to statistika 1 Statistická data a jejich prezentace 1.1 Co je to statistika S pojmem»statistika«se můžete v praxi setkat hned ve čtyřech různých významech, které spolu souvisí: 1. Statistika jako údaj nebo souhrn údajů,

Více

Mezinárodní výzkum PISA 2009

Mezinárodní výzkum PISA 2009 Mezinárodní výzkum PISA 2009 Zdroj informací: Palečková, J., Tomášek, V., Basl, J,: Hlavní zjištění výzkumu PISA 2009 (Umíme ještě číst?). Praha: ÚIV 2010. Palečková, J., Tomášek V. Hlavní zjištění PISA

Více

Důvěra některým institucím veřejného života v březnu 2015

Důvěra některým institucím veřejného života v březnu 2015 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 286 8 129 E-mail: nadezda.cadova@soc.cas.cz Důvěra některým institucím veřejného života v březnu

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika samostatná práce 1) Ve školním roce /13 bylo v Brně 5 základních škol, ve kterých bylo celkem 5 tříd. Tyto školy navštěvovalo 1 3 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Jaké pokusy potřebujeme z termiky?

Jaké pokusy potřebujeme z termiky? Úvod Jaké pokusy potřebujeme z termiky? Václava Kopecká KDF MFF UK; Vaclava.Kopecka@mff.cuni.cz Fyzikální pokusy učitel používá k přiblížení učiva žákům při výkladu snad všech částí fyziky. Ale máme dostatek

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

12. Křesťanství... 106 12.1 Místo křesťanství v současném světě... 106 12.2 Křesťanství na pozadí jiných náboženství... 107 12.

12. Křesťanství... 106 12.1 Místo křesťanství v současném světě... 106 12.2 Křesťanství na pozadí jiných náboženství... 107 12. Obsah 1. Úvod.... 11 1.1 Situace oboru... 11 1.2 Místo této práce v oborové souvislosti... 12 1.3 Vztah k dosavadní literatuře... 13 1.4 Jaké cíle si klade tato práce?... 14 1.5 Poznámkový aparát a práce

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

MATEMATIKA. Statistika

MATEMATIKA. Statistika MATEMATIKA Statistika Během těchto vyučovacích hodin změří žáci pomocí senzorů Pasco svoji klidovou tepovou frekvenci a tepovou frekvenci po námaze. Získané výsledky budou v další hodině zpracovávat do

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

VÝTVARNÁ KULTURA. 6. Řím a počátky křesťanství. 9-Výtvarná kultura. Vytvořil: Lenka Tichá. www.isspolygr.cz

VÝTVARNÁ KULTURA. 6. Řím a počátky křesťanství. 9-Výtvarná kultura. Vytvořil: Lenka Tichá. www.isspolygr.cz VÝTVARNÁ KULTURA 6. www.isspolygr.cz Vytvořil: Lenka Tichá Strana: 1 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tematická oblast Název DUM 1. ročník (SOŠ, SOU) Interaktivní

Více

2.2 VYJADŘOVÁNÍ VELKÝCH ČÍSEL, POČÍTÁNÍ: NEPOZIČNÍ ČÍSELNÁ SOUSTAVA

2.2 VYJADŘOVÁNÍ VELKÝCH ČÍSEL, POČÍTÁNÍ: NEPOZIČNÍ ČÍSELNÁ SOUSTAVA 2.2 VYJADŘOVÁNÍ VELKÝCH ČÍSEL, POČÍTÁNÍ: NEPOZIČNÍ ČÍSELNÁ SOUSTAVA Zkusme nejprve vymyslet vlastní nepoziční soustavu třeba vajíčkovou : v kuchařských receptech se obvykle počítají vajíčka na kusy, při

Více

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1 Srovnání údajů. Poměrná čísla Aleš Drobník strana 4. SROVNÁVÁNÍ ÚDAJŮ Statistika mj. zpracovává údaje (viz definice statistiky). Důležitou součástí zpracování údajů je srovnávání údajů (statistických znaků

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

odpovědí: rizikové již při prvním užití, rizikové při občasném užívání, rizikové pouze při pravidelném užívání, není vůbec rizikové.

odpovědí: rizikové již při prvním užití, rizikové při občasném užívání, rizikové pouze při pravidelném užívání, není vůbec rizikové. TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: 8 840 9 E-mail: jan.cervenka@soc.cas.cz Postoj veřejnosti ke konzumaci vybraných návykových látek

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

NÁVOD. SPOJUJ SLŮVKA téma: DŮM. vzdělávací hra ve 2 variantách od 7 let

NÁVOD. SPOJUJ SLŮVKA téma: DŮM. vzdělávací hra ve 2 variantách od 7 let NÁVOD SPOJUJ SLŮVKA téma: DŮM vzdělávací hra ve 2 variantách od 7 let Dílky s obrázky a anglickými slovíčky, které popisující obsah těchto obrázků jsou jednoduchou a atraktivní formou výuky pro nejmladší.

Více

Vyhodnocení dotazníkového šetření - Gymnázium Česká Lípa 3. ročník

Vyhodnocení dotazníkového šetření - Gymnázium Česká Lípa 3. ročník Vyhodnocení dotazníkového šetření - Gymnázium Česká Lípa 3. ročník Dotazníkového šetření se zúčastnilo 36 žáků ve dvou skupinách 1. Skupina 18 žáků, z toho 12 dívek a 6 chlapců 2. Skupina 18 žáků, z toho

Více

l HISTORIE ROTVAJLERA

l HISTORIE ROTVAJLERA l HISTORIE ROTVAJLERA Staří Římané Historie rotvajlera nás přivádí zpět do dob vlády Římanů v Evropě. Římské legie si sebou na několikaměsíční pochody neosídlenou krajinou často brávaly velké dogovité

Více

METODICKÉ LISTY PRO KOMBINOVANÉ STUDIUM PŘEDMĚTU ZÁKLADNÍ OTÁZKY DEMOKRACIE

METODICKÉ LISTY PRO KOMBINOVANÉ STUDIUM PŘEDMĚTU ZÁKLADNÍ OTÁZKY DEMOKRACIE METODICKÉ LISTY PRO KOMBINOVANÉ STUDIUM PŘEDMĚTU ZÁKLADNÍ OTÁZKY DEMOKRACIE Cílem předmětu je seznámit studenty s pojmem demokracie. V průběhu kurzu bude sledován obsahový vývoj pojmu demokracie. Posluchačům

Více

Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012)

Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012) Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012) Obsah Úvod... 2 1. Vymezení možnosti uplatnění absolventů VŠKE, a.s... 3 2.

Více

KOLÉBKA RENESANCE. (Die Wiege der Renaissance)

KOLÉBKA RENESANCE. (Die Wiege der Renaissance) KOLÉBKA RENESANCE (Die Wiege der Renaissance) Hanno Kuhn Wilfried Kuhn Počet hráčů: 2-4 Věk: od 12 let Délka hry: 45-60 min Herní materiál 36 historických událostí Poznámka: Texty událostí mají různou

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 284 Jméno autora Mgr. DANA ČANDOVÁ Datum, ve kterém byl DUM vytvořen 13. 1. 2012 Ročník, pro který je DUM určen Vzdělávací oblast (klíčová slova) Metodický

Více

Základní škola T. G. Masaryka, Studénka, ul. 2. května 500, okres Nový Jičín. Vzdělávací oblast: Člověk a společnost

Základní škola T. G. Masaryka, Studénka, ul. 2. května 500, okres Nový Jičín. Vzdělávací oblast: Člověk a společnost Základní škola T. G. Masaryka, Studénka, ul. 2. května 500, okres Nový Jičín Číslo projektu: CZ.1.07/1.4.00/21.1489 Autor: Milan Stiller Označení vzdělávacího materiálu: VY_32_INOVACE_CASPO.9.12 Vzdělávací

Více

Pravěk a starověk / dějepisný atlas

Pravěk a starověk / dějepisný atlas Pravěk a starověk / dějepisný atlas Sešitový atlas pro ZŠ a víceletá gymnázia je prvním z ucelené řady dějepisných atlasů. Seznamuje s historickým vývojem v období pravěku a starověku, od počátků lidského

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

ZADÁNÍ FOTBAL. Název materiálu: Fotbal Autor: Mgr. Barbora Říhošková

ZADÁNÍ FOTBAL. Název materiálu: Fotbal Autor: Mgr. Barbora Říhošková ZADÁNÍ FOTBAL Fotbal, šílený král sportu, nemá žádný smysl. Sport to není - spíše baviči než sportovci se potácejí po trávníku, kopou se, vulgárně řvou na staršího pruhovaného tvora, který je komanduje,

Více

Habermaaß-hra 4646. Chutná nebo nechutná?

Habermaaß-hra 4646. Chutná nebo nechutná? CZ Habermaaß-hra 4646 Chutná nebo nechutná? Chutná nebo nechutná? Hra podporující exekutivní funkce pro 2 4 hráče ve věku od 4 do 99 let. Využívá Fex-efekt na zvýšení stupně obtížnosti hry. Autoři: Markus

Více

Pravděpodobnost je Martina Litschmannová MODAM 2014

Pravděpodobnost je Martina Litschmannová MODAM 2014 ravděpodobnost je Martina Litschmannová MODAM 2014 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo. Jak osedlat

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Vyhodnocení a zpětná vazba:

Vyhodnocení a zpětná vazba: Název: Číslovky a jejich skloňování Cíl: Opakování učiva o číslovkách Fáze vyučovacího procesu: opakování Organizační forma vyučování: skupinová Převažující myšlenková operace: analýza, syntéza, srovnávání

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

MEZINÁRODNÍ DEN ARCHIVŮ Státní okresní archiv Zlín Klečůvka 9. června 2012 SEMINÁŘ KRONIKÁŘŮ. 5. a 7. června 2012

MEZINÁRODNÍ DEN ARCHIVŮ Státní okresní archiv Zlín Klečůvka 9. června 2012 SEMINÁŘ KRONIKÁŘŮ. 5. a 7. června 2012 SEMINÁŘ KRONIKÁŘŮ 5. a 7. června 2012 PROGRAM 1. Mezinárodní den archivů pozvánka 2. Co by v kronice nemělo chybět 3. Weby archivů a archiválie zveřejňované on-line 4. Dnešní možnosti ukládání digitálních

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

Matematika s chutí Proč? S kým? A jak?

Matematika s chutí Proč? S kým? A jak? Matematika s chutí Proč? S kým? A jak? První otázka Proč jsme se rozhodli realizovat projekt Matematika s chutí? Důvod první: Motivace a vztah k matematice Od roku 2003 (PISA věnovaná především matematice)

Více

Morálka politiků očima veřejnosti - březen 2015

Morálka politiků očima veřejnosti - březen 2015 pd15002 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 286 80 129 E-mail: nadezda.cadova@soc.cas.cz Morálka politiků očima veřejnosti - březen

Více

Jméno autora: Mgr. Barbora Jášová Datum vytvoření: 26. 04. 2013 Číslo DUMu: VY_32_INOVACE_13_ZSV

Jméno autora: Mgr. Barbora Jášová Datum vytvoření: 26. 04. 2013 Číslo DUMu: VY_32_INOVACE_13_ZSV Jméno autora: Mgr. Barbora Jášová Datum vytvoření: 26. 04. 2013 Číslo DUMu: VY_32_INOVACE_13_ZSV Ročník: II. Seminář ze základu společenských věd Vzdělávací oblast: Společenskovědní vzdělávání Vzdělávací

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3149

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3149 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3149 Šablona III/2 č. materiálu: VY_32_INOVACE_94 : Jméno autora: Pavlína Sluková Třída/ročník:

Více