Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Rozměr: px
Začít zobrazení ze stránky:

Download "Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv"

Transkript

1 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího rozděleí výosů aktiv Josef Volý Abstrakt říspěvek je věová popisu a aplikaci metodiky Value at Risk při výpočtu itegrovaé hodoty Value at Risk lieárích sub-portfolií za předpokladu, že výosy aktiv sub-portfolií se chovají dle vícerozměrého ormálího rozděleí. Nejprve je představe přístup Value at Risk, poté je a základě vlastostí vícerozměrého ormálího rozděleí a vzorce pro aalytický výpočet hodoty Value at Risk odvozea formule pro určeí itegrovaé hodoty Value at Risk. tegrace je ověřea a reálých datech českého kapitálového trhu. Výsledky jsou iterpretováy. líčová slova Value at Risk, vícerozměré ormálí rozděleí, itegrovaá hodota Value at Risk. Úvod otřeba řízeí a elimiace fiačích rizik je důsledkem začé promělivosti fiačích trhů, jež se projevuje ve volatilitě poteciálí ztráty ebo zisku spojeých s vlastictvím fiačích aktiv a portfolií. Aalýza a řízeí fiačích rizik se des opírá o velmi rozviutou a prakticky využívaou metodu Value at Risk. odstata tohoto přístupu již byla diskutováa v publikacích řady autorů, blíže Jorio (000), Dowd (998), Holto (003); trží stadard této metody uvedla baka J.. Morga přístupem RiskMetrics, blíže Logerstay ad Specer (996). Metodologie RiskMetrics je založea a předpokladu, že výosy aktiv portfolia mají vícerozměré ormálí rozděleí. eto přístup je vhodý pro lieárí portfolia (akcie, obligace a komodity), kde relativí změy výosů portfolia jsou lieárí fukcí změ výosů rizikových faktorů (ce fiačích istrumetů). U velkých fiačích istitucí zpravujících řadu rozsáhlých portfolií je možé kvatifikovat riziko u každého dílčího portfolia a základě metodologie Value at Risk. Vziká však požadavek, jak vyčíslit výši pravděpodobé ztráty pro celou fiačí istituci, tz. jak itegrovat hodoty Value at Risk držeých portfolií. Zaměříme-li se pouze a lieárí portfolia, pak vzhledem k charakteristikám statistického rozděleí výosů aktiv a liearitě agregace výosů aktiv portfolií, lze provést spojeí lieárích portfolií růzých fiačích trhů a vypočíst itegrovaou hodotu Value at Risk tohoto globálího portfolia. Cílem příspěvku je odvodit vztah pro aalytický výpočet itegrovaé hodoty Value at Risk za předpokladu vícerozměrého ormálího rozděleí výosů aktiv portfolia a ověřit možost itegrace a reálých datech českého kapitálového trhu. g. Josef Volý, Vysoká škola báňská echická uiverzita Ostrava, Ekoomická fakulta, katedra Fiací, Sokolská třída 33, 70 Ostrava, 435

2 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 tegrace hodot Value at Risk. Metodologie Value at Risk lze defiovat dvěma přístupy, jejichž podstata závisí a způsobu iterpretace: (a) Ztráta z portfolia aktiv bude větší ež předem staoveá hladia ztráty (VAR ), a daé hladiě výzamosti za určitý časový iterval. vrzeí lze zapsat tímto vztahem r ( ZRÁA ) =, graficky Obr. č.. Obr. č. : Value at Risk v oboru ztráty -st. Distribučí fukce Fukce hustoty = ZS ZRÁA (b) Zisk z portfolia aktiv bude meší ež předem určeá hladia zisku ( VAR ), a staoveé hladiě výzamosti za daý časový iterval. vrzeí lze zapsat takto r ZS =, graficky Obr. č.. ( ) Obr. č. : Value at Risk v oboru zisku -st. Distribučí fukce Fukce hustoty = ZS ZS Je tedy zřejmé, že pro odvozeí hodoty Value at Risk portfolia pro daé je ezbyté určit rozděleí pravděpodobosti přírůstku hodoty portfolia aktiv. Hodota Value at Risk může být staovea aalytickým způsobem ebo pomocí simulačích techik. ro potřebu tohoto příspěvku se zaměřme a aalytické řešeí hodoty Value at Risk portfolia, jež vychází ze dvou základích předpokladů: (i) výosy aktiv portfolia se chovají jako áhodá proměá dle vícerozměrého ormálího rozděleí R N ( Ε ( R),Σ), (ii) přírůstek hodoty portfolia lze vyjádřit lieárí kombiací áhodých výosů aktiv portfolia R a absolutí částky ivestovaé do každého aktiva δ, Π = R δ + + R δ. oté hodotu Value at Risk lze defiovat ásledujícím vztahem = Φ ( Π) ( Π) E, () 436

3 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 kde Φ je hodota iverzí fukce k distribučí fukci ormovaého ormálího rozděleí a hladiě pravděpodobosti, E ( Π ) je středí hodota přírůstku hodoty portfolia a Π je směrodatá odchylka přírůstku hodoty portfolia. ( ). Charakteristika statistického rozděleí výosů aktiv portfolia ředpokládejme rozměrý áhodý vektor spojitých výosů aktiv portfolia R = ( R,, R ), kde R ( ) = l S, t S, t a R N( E( R ), ). Dále uvažujme rozměrý vektor středích hodot výosů aktiv portfolia E ( R) = ( E( R ),, E( R ) a rozměrou kovariačí matici Σ, kde je -tý diagoálí prvek kovariačí matice, pak áhodý vektor výosů aktiv portfolia má -rozměré ormálí rozděleí R N ( Ε ( R),Σ), jehož fukce hustoty je defiováa takto N( R; E( R), Σ) = ( π ) Σ exp{ 0,5( R E( R ) Σ ( R E( R )}, a distribučí fukce dle ásledujícího vztahu F { } dr dr R R ( R,, R ) ( ) Σ exp 0,5( R E( R ) Σ ( R E( R ) = π. Následující obrázek zázorňuje rozděleí áhodého vektoru výosů aktiv pro případ ormovaého dvourozměrého ormálího rozděleí. Obr.č.3: Normovaé dvourozměré ormálí rozděleí výosů aktiv portfolia df R R Dále předpokládejme rozměrý vektor absolutího možství peěz, ivestovaého do -tého aktiva v portfoliu δ = ( δ,, δ ). Má-li áhodý vektor výosů aktiv portfolia R N ( E( R),Σ), pak přírůstek hodoty portfolia Π, má ormálí rozděleí Π N ( E( Π), ( Π ). řírůstek hodoty portfolia je defiová vztahem Π = δ R = δ R, () středí hodota přírůstku hodoty portfolia vzorcem 437

4 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 ( Π) = δ E( R ) δ E( R) = Ε, (3) rozptyl přírůstku hodoty portfolia výrazem Π = δ δ = δ Σ, pro i, j =,,, (4) ( ) δ i j i ij j a směrodatá odchylka přírůstku hodoty portfolia takto Π = δ δ = δ Σ, pro i, j =,,. (5) ( ) δ i j i ij j ro itegraci hodot Value at Risk dále uvažujme rozděleí tohoto portfolia aktiv a dvě sub-portfolia tak, že áhodý vektor výosů aktiv portfolia je možé rozložit a dvě podmožiy R ( R, R ) =, kde R a R platí R ( ( ), N E R Σ ) a R N ( ( ), E R Σ ), s vektorem absolutích částek ivestovaých do aktiv portfolia δ = ( δ,δ ), s odpovídajícím vektorem středích hodot Ε ( R) = ( E( R ), E( R ) a rozměrou kovariačí maticí výosů aktiv portfolia Σ Σ Σ =, Σ Σ kde Σ je rozměrá a Σ je rozměrá kovariačí matice sub-portfolií, pro + = a Σ je rozměrá kovariačí matice výosů aktiv mezi sub-portfolií. Rozptyl přírůstku hodoty portfolia skládajícího se ze dvou sub-portfolií je poté defiová takto ( Π) δ Σδ = δ Σδ + δ Σδ + δ Σδ, (6) kde výrazy δ δ Σ představují rozptyly přírůstků hodot sub-portfolií, výraz δ δ Σ δ Σ a δ je kovariace mezi sub-portfolií..3 Odvozeí formule pro výpočet itegrovaé hodoty Value at Risk ro výpočet itegrovaé hodoty Value at Risk portfolia skládajícího se ze dvou subportfolií vyjděme ze vztahu pro aalytický výpočet, vzorec (). Vzhledem k symetričosti ormálího rozděleí pro které platí, že Φ = Φ, pak vzorec () lze zapsat takto = Φ δ Σδ δ E( R). (7) V ěkterých aplikacích metody Value at Risk se předpokládá, že středí hodota výosu aktiv a tedy i portfolia se rová ule. Empiricky byla tato skutečost ověřea zejméa u krátkodobých výosů, tj. deí, týdeí a měsíčí, blíže Zmeškal (004). Jestliže E ( R ) = 0, pak také Ε ( Π ) = 0 a po úpravě výrazu (7), lze vypočíst takto = Φ δ Σδ, (8) o ásledující úpravě = ( Φ ) δ Σδ = ( Φ ) δ Σδ, je obdrže výraz, (9) o dosazeí do (9) za δ Σδ vzorec (5) dostaeme = Φ δ Σ δ + δ Σ δ + δ Σ δ, ( ) ( ) po rozásobeí hodotou ( Φ ) pak = ( Φ ) δ Σδ + ( Φ ) δ Σδ + ( Φ ) δ Σδ. 438

5 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 Výrazy ( ) δ Σδ a ( ) δ Σδ Φ sub-portfolií = + + tedy určea vztahem Φ a ( Φ ) δ Σ jsou vztahy pro výpočet hodot Value at Risk. o substituci obdržíme δ. Hodota Value at Risk celkového portfolia je ( Φ ) δ Σ = + + δ. (0) ovariaci celkového portfolia lze vyjádřit výrazem Σδ = φ δ Σδ δ Σδ δ, () kde po úpravě φ = δ Σδ, δ Σδ δ Σδ () je parametr φ korelace mezi sub-portfolií, kde φ platí φ ; +. Dosadíme-li do (0) výraz () obdržíme = ( Φ ) φ δ Σδ δ Σ + + δ. Vzhledem k tomu, že výrazy Φ δ Σδ =, (3) a Φ δ Σδ =, (4) po úpravě je itegrovaá hodota Value at Risk portfolia, ozačme ji + +, vyjádřea takto = φ. (5) Dosadíme-li zpět do vzorce (5) středí hodotu přírůstků hodoty portfolia E( Π) = δ E( R), pak vzorec pro aalytický výpočet hodoty je ásledující ( ) = E Π φ. (6) Z výše uvedeého rozkladu vyplývá, že lze itegrovat dvě lieárí sub-portfolia a určit itegrovaou hodotu Value at Risk globálího portfolia a základě dílčích hodot Value at Risk sub-portfolií a daé hladiě pravděpodobosti dle vzorce (6) za předpokladu, že výosy aktiv sub-portfolií mají vícerozměré ormálí rozděleí. 3 Ověřeí itegrace hodot Value at Risk portfolia Cílem této kapitoly je ověřeí možosti výpočtu a základě hodot Value at Risk sub-portfolií. Jak bylo uvedeo v předchozích odstavcích, mají-li výosy dílčích aktiv portfolia vícerozměré ormálí rozděleí R N ( E( R),Σ), vzhledem k lieárí agregaci výosů aktiv portfolia a absolutích částek ivestovaých do každého aktiva, má přírůstek hodoty portfolia ormálí rozděleí Π N ( E( Π) ; ( Π ) a je možé určit hodotu Value at Risk portfolia a hladiě pravděpodobosti. Je-li toto portfolio rozděleo a dvě sub-portfolia, pak hodotu lze odvodit a základě dílčích hodot Value at Risk sub-portfolií, a koeficietu korelace φ pro φ ; +, přičemž musí platit rovost =. 439

6 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září Charakteristiky portfolia ředpokládejme akciové portfolio českého kapitálového trhu o aktivech. Charakteristiky portfolia určeé a základě 5 deích časových řad ce titulů portfolia uvádí ab. č.. Data v tabulce jsou uspořádáy do dvou podskupi, představující dílčí subportfolia. rví sub-portfolio obsahuje tituly ásledujících emitetů: ČEZ, a. s., Český telecom, a. s., ErsteBak, a. s., omerčí baka, a. s., Zetiva, a. s., Uipetrol, a. s. Druhé sub-portfolio poté tituly emitetů: hilip Morris ČR, a. s., Severočeské doly, a. s., Severočeská eergetika, a. s., Stavby silic a železic, a. s., aramo, a. s. δ E ( R ) Aktivum č % ČEZ ,35 Český telecom 5 5-0,5 ErsteBak ,09 omerčí baka ,05 Zetiva 0-0, Uipetrol 33-0,3 hilip Morris ČR ,07 Severočeské doly ,08 Severočeská eergetika ,08 Středočeská eergetika ,09 Stavby silic a železic ,8 aramo ,08 ab.č.: Charakteristiky aktiv portfolia ovariačí matici deích výosů uvádí ásledující tabulka. ČEZ Č Erste b. B Zetiva Uip. hil. M. Sev. d. S. e. St. e. Stav. s. ar. ČEZ 0,0004 0,000 0,000 0,000 0,000 0,0003 0,000 0,000 0,0000 0,0000 0,0000 0,0000 Č 0,000 0,000 0,0000 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000 Erste b. 0,000 0,0000 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 B 0,000 0,000 0,000 0,0003 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,000 Zetiva 0,000 0,000 0,000 0,000 0,0003 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 Uip. 0,0003 0,000 0,000 0,000 0,000 0,000 0,0000 0,000 0,0000 0,0000-0,000 0,000 hil. M. 0,000 0,0000 0,0000 0,000 0,000 0,0000 0,0003 0,0000 0,0000 0,0000 0,000 0,0000 Sev. d. 0,000 0,0000 0,0000 0,0000 0,000 0,000 0,0000 0,0008 0,0000 0,0000 0,000 0,000 S. e. 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000 0,0000 0,000 0,000 St. e. 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0004 0,0000 0,0000 Stav. s. 0,0000 0,0000 0,0000 0,0000 0,0000-0,000 0,000 0,000 0,000 0,0000 0,0004 0,000 ar. 0,0000 0,000 0,0000 0,000 0,0000 0,000 0,0000 0,000 0,000 0,0000 0,000 0,0008 ab.č.: ovariačí matice 3. Algoritmus výpočtu i. Výpočet hodot aalytickým přístupem, dle vzorce (), a základě íže defiovaých vstupích parametrů ( E ( Π ) dle vztahu (3), ( Π ) dle vztahu (5) a Φ a hladiě pravděpodobosti 5%). ii. Rozklad kovariačí matice Σ a sub-matice Σ, Σ, Σ. 440

7 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 iii. Určeí hodot a, dle vzorců (3) a (4), za předpokladu, že středí hodota přírůstků hodot sub-portfolií je rova ule. iv. Výpočet koeficietu korelace φ mezi sub-portfolii podle vztahu (). v. Dopočet hodoty podle vzorce (6). 3.3 Řešeí příkladu, iterpretace výsledků a aalýza citlivosti Veškeré vstupí parametry jsou vypočtey ve třech variatách, tz. pro celé portfolio,. sub-portfolio a. sub-portfolio. Nezbytý rozklad kovariačí matice a sub-matice je provede takto Σ Σ = Σ Σ Σ M = M 6, 6 6,7 6,. 7, 7,6 7 7,, O N,6 M M,6,7 M M,7 N O, M M Vstupí parametry výpočtu hodot Value at Risk, E ( Π ), ( Π ) pravděpodobosti 5%, uvádí ab. č. 3. ( Π E ) ( Π ) ( Π ) a Φ a hladiě Ukazatel č č č - ortfolio celkem -407, , ,58,65. sub-portfolio -93, ,8 998,05,65. sub-portfolio -34, ,9 3 5,05,65 ab.č.3: Vstupí parametry k výpočtu hodot Value at Risk Nejprve jsou vypočtey hodoty dílčích portfolií, tz. u celého portfolia, u. subportfolia a. sub-portfolia. oté jsou určey hodoty a za předpokladu, že středí hodota přírůstků hodot sub-portfolií je rova ule. oeficiet korelace je determiová ve výši φ = 0, 3. Výsledky shruje ab. č. 4. ( Π ) Ukazatel E č č ortfolio celkem -407, ,4. sub-portfolio -93,5 735,6. sub-portfolio -34,3 6 05,9. sub-portfolio 0 64,64. sub-portfolio ,6 ortfolio po itegraci -407, ,4 ab.č.4: Výsledé hodoty Value at Risk Hodota deí ztráty portfolia a hladiě pravděpodobosti 5% bude vyšší ež 6 784,4 č. Je-li toto portfolio rozděleo a dvě sub-portfolia, poté hodota deí ztráty. subportfolia a hladiě pravděpodobostí 5% bude vyšší ež 735,6 č a. sub-portfolia vyšší ež 6 05,9 č. tegrujeme-li zpět tato sub-portfolia a základě výše uvedeé procedury, Φ 95% 44

8 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 obdržíme hodotu ztráty itegrovaého portfolia a hladiě pravděpodobostí 5% ve výši 6 784,4 č, čímž je ověřea itegrovatelost portfolií. Výše ztráty itegrovaého portfolia je ovšem závislá a míře korelace výosů aktiv apříč portfolií, tz. a výši koeficietu korelace φ. Důkaz uvádí ab. č. 5 a Obr. č. 4, prezetující aalýzu citlivosti hodoty ztráty itegrovaého portfolia v závislosti a míře korelace mezi výosy sub-portfolií φ, a hladiě pravděpodobosti 5%. φ -,00-0,50 0,00 +0,50 +,00 (v č) 4 557, , ,6 7 7, ,08 ab. č.5: Výsledé hodoty závislosti a φ, a hladiě pravděpodobosti 5% Z tabulky je zřejmé, že roste-li míra korelace mezi aktivy apříč sub-portfolií (roste koeficiet korelace φ ), roste výše deí ztráty itegrovaého portfolia a daé hladiě pravděpodobosti. ro hodotu φ = + je výše deí ztráty itegrovaého portfolia rova součtu ztrát sub-portfolií a daé hladiě pravděpodobosti. Obr.č.4: Závislost hodoty a koeficietu korelace φ, a hladiě pravděpodobosti 5% 4 Závěr V příspěvku byla popsáa problematika výpočtu ukazatele Value at Risk portfolia aalytickým přístupem za předpokladu vícerozměrého ormálího rozděleí výosů aktiv portfolia. Dále bylo demostrováo odvozeí formule pro výpočet itegrovaé hodoty Value at Risk portfolia a základě dílčích hodot Value at Risk lieárích sub-portfolií, jež je možé aplikovat a základě charakteristik vícerozměrého ormálího rozděleí. tegrace ukazatelů Value at Risk byla ověřea a reálých datech akciového portfolia českého kapitálového trhu a hladiě pravděpodobosti 5%. Z výsledků vyplyulo, že mají-li výosy aktiv portfolia vícerozměré ormálí rozděleí, lze a základě lieárí agregace výosů a absolutích částech ivestovaých do aktiv určit přírůstky hodoty portfolia, jež mají ormálí rozděleí a poté určit hodotu Value at Risk. Je-li toto portfolio rozděleo a dvě sub-portfolia, pak itegrovaou hodotu Value at Risk lze vypočíst a základě dílčích hodot Value at Risk sub-portfolií (za předpokladu ulové středí hodoty přírůstku hodot sub- 44

9 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací září 006 portfolií) a koeficietu korelace mezi sub-portfolií. Je zřejmé, že výši itegrovaé hodoty Value at Risk ovlivňuje koeficiet korelace mezi sub-portfolií. S rostoucí mírou korelace, roste itegrovaá hodota Value at Risk. eto přístup je vhodý pouze pro lieárí portfolia, skládající se apř. z akciových, komoditích a měových pozic, kde relativí změa výosů portfolia je lieárí fukcí změy výosů rizikových faktorů (ce fiačích istrumetů). uto itegraci lze využít zejméa v případě, kdy kapacití možosti hardwaru fiačí istituce eumožňují zpracováí velkého možství dat simultaě a jedom počítači a tudíž je ezbyté kvatifikaci rizika provést odděleě a poté hodoty itegrovat. Literatura [] CAROL, A.: Risk Maagemet ad Aalysis, Measurig ad Modellig Fiacial risk. New York: Joh Wiley & Sos p. [] CHOUDHRY, M.: A troductio to Value-at-Risk. Chichester: Joh Wiley & Sos p. [3] AMDEM, S. J.: Value at Risk ad Expected Shortfall for Liear ortfolios with Elliptically Distributed Risk Factors. Workig paper [4] LONGERSAEY, J., Specer, M.: RiskMetrics M echical Documet. New York: J.. Morga/Reuters, p. [5] RACHEV, S.., MENN. CH., FABOZZ, J. F.: Fat-ailed ad Skewed Asset Retur Distributios, mplicatios for Risk Maagemet, ortfolio Selectio, ad Optio ricig. New Jersey: Joh Wiley & Sos p. [6] ONG, Y. L.: he Multivariate Normal Distributio. New York: Spriger-Verlag p. [7] ZMEŠAL, Z. et al.: Fiacial models. Ostrava: VSB-echical Uiversity of Ostrava, p. Summary his paper is devoted to the descriptio ad the applicatio of Value at Risk methodology for estimatio of itegrated value of Value at Risk, which is based o Value at Risk of the liear sub-portfolios. he basic assumptio is multivariate ormal distributio of uderlyig assets retur. First, Value at Risk approach is preseted. Next, there is derived formula for estimatio itegrated value of Value at Risk. tegratio is verified o model sample of equity portfolio of the Czech capital market. Results are iterpreted. 443

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Lineární a adaptivní zpracování dat. 9. Modely časových řad II.

Lineární a adaptivní zpracování dat. 9. Modely časových řad II. Lieárí a adaptiví zpracováí dat 9. Modely časových řad II. Daiel Schwarz Ivestice do rozvoje vzděláváí Opakováí K čemu je dobré vytvářet modely procesů geerující časové řady? Dekompozice časový řad: jaké

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS Jiří Tůma & Jiří Kulháek Abstract: The paper deals with the dyamic properties of the electroic gyroscope as a sesor of agular

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Experimentální postupy. Koncentrace roztoků

Experimentální postupy. Koncentrace roztoků Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více