3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A

Rozměr: px
Začít zobrazení ze stránky:

Download "3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A"

Transkript

1 3 RAVDĚODOBNOST Základní vztahy: ravděpodobnost negace jevu A: A 1 A ravděpodobnost sjednocení jevů A,B: A B A B A B - pro disjunktní (neslučitelné) jevy A, B: A B A B ravděpodobnost průniku jevů A, B: A B A B A - pro nezávislé jevy A, B: A B A B 1. de Morganův zákon: A B A B. de Morganův zákon: A B A B odmíněná pravděpodobnost: A B B A B Věta o úplné pravděpodobnosti: A = A B i Bi n i=1 Bayesova věta: B k A = n i=1 k (A B ) B k A B i B i 3.1 ravděpodobnost, že selže hasící systém továrny je 0%, pravděpodobnost, že selže poplachové zařízení je 10% a pravděpodobnost, že selžou jak hasící systém, tak i poplachové zařízení jsou 4%. Jaká je pravděpodobnost,že: a) alespoň jeden systém bude fungovat? b) budou fungovat oba dva systémy? Označme si možné jevy takto: H... hasící systém funguje S... poplachové zařízení (siréna) funguje Víme, že: H 0, 0 S 0, 10 H S 0, 04 Máme zjistit: ada) H S K řešení této otázky můžeme přistupovat dvojím způsobem: - -

2 odle definice: Nejde o jevy neslučitelné (mohou nastat zároveň), proto: H S H S H S, kde by mohlo být problémem určit nebo H S řes jev opačný: Kdy na základě de Morganových zákonů můžeme psát, že: H S H S1 H S 1, což můžeme vyčíslit přímo. H S 1 0,04 0, 96 ravděpodobnost, že bude fungovat alespoň jeden z ochranných systémů je 96%. adb) H S Což nemůžeme řešit prostřednictvím definičního vztahu: ( H S H S S S H H ), neboť nemáme informace o závislosti poruch jednotlivých ochranných systémů. roto zkusíme znovu postupovat přes jev opačný: H S H S1 H S 1 H S H S 1, což můžeme přímo vyčíslit: H S1 H S H S 1 0,0 0,10 0,04 0, 74 ravděpodobnost, že oba dva ochranné systémy budou fungovat je 74%. 3. Spočtěte pravděpodobnost toho, že z bodu 1 do bodu bude protékat elektrický proud, je-li el. obvod včetně pravděpodobnosti poruch jednotlivých součástek vyznačen na následujícím obrázku. (oruchy jednotlivých součástek jsou na sobě nezávislé.) 0, 0,1 0,3 C 1 A B D 0,3 E 0, - 6 -

3 Označme si: A... součástka A funguje, C... součástka C funguje, B... součástka B funguje, D... součástka D funguje E... součástka E funguje, ak: A 0,1 A 0, 9 C 0, C 0, 8 B 0,3 B 0, 7 D 0,3 D 0, 7 E 0, E 0, 8 ro zjednodušení si obvod představíme jako sériové zapojení dvou bloků. Blok 1 je tvořen sériovým zapojením součástek A a B, Blok je tvořen paralelním zapojením součástek C, D a E. V první fázi si určíme pravděpodobnosti poruch jednotlivých bloků: Blok 1: B1... Blok 1 funguje Máme-li sériově zapojené součástky, je vhodné určovat přímo pravděpododobnost, že systém (blok) funguje. Blok 1 funguje právě tehdy, jsou-li funkční součástky A i B. Vzhledem k nezávislosti poruch jednotlivých součástek můžeme říci, že: 0,1 0,3 A B Blok 1 ( B1) ( A B) ( A). ( B) 0,9.0,7 0,63 Blok : B Blok funguje Máme-li paralelně zapojené součástky, je vhodné pravděpodobnost toho, že systém (blok) funguje určovat jako doplněk pravděpodobnosti jevu opačného tj. toho, že systém (blok) nefunguje. Blok nefunguje právě tehdy, není-li funkční ani jedna ze součástek C, D, E. Vzhledem k nezávislosti poruch jednotlivých součástek můžeme říci, že: ( B) ( C D E) ( C). ( D). ( E) 0,.0,3.0, 0,01 0, C D 0,3 E 0, Blok ( B) 1 ( B) 1 0,01 0,988 Celý systém je při tomto značení dán sériovým zapojením Bloku 1 a Bloku. Zbývá nám tedy již jen určit spolehlivost celého systému (pravděpodobnost, že systém bude funkční)

4 1 B1 B S systém je funkční S B1 B B1 B 0,63 0,988 0, 6 ravděpodobnost toho, že z bodu 1 do bodu bude protékat elektrický proud je asi 6%. Geometrická pravděpodobnost používáme ji v případech, které lze převést na toto schéma: V rovině (případně na přímce nebo v prostoru) je dána určitá oblast Ω a v ní další uzavřená oblast A. ravděpodobnost jevu A, který spočívá v tom, že náhodně zvolený bod v oblasti Ω leží i v oblasti A je: A A, kde A, Ω jsou míry oblastí A a Ω 3.3 Jak je pravděpodobné, že meteorit padne na pevninu, víme-li, že pevnina má rozlohu 149 milionů km a moře 361 milionů km. 149 A 0, Dva známí se domluví, že se sejdou na určitém místě mezi 1. a 16. hodinou, přičemž doba čekání je 0 minut. Jaká je pravděpodobnost, že se při této dohodě setkají? y A x... doba po 1.hodině v níž přijde první, x 0,60 y... doba po 1.hodině v níž přijde druhý, y 0;60 jev A... oblast vymezená čtvercem a nerovnicí x y 0 0 délky 40, tedy: x Ω = = 3600 Když spojíme dva nevyšrafované trojúhelníky, tak dostaneme čtverec o straně - 8 -

5 Takže: A = = A 0, odmíněná pravděpodobnost: A B A B B 3. Neprůhledný pytlík obsahuje 10 černých a bílých kuliček. Budeme provádět náhodný pokus vytažení jedné kuličky, přičemž kuličku do pytlíku nevracíme. Určete pravděpodobnost, že v druhém tahu vytáhneme bílou kuličku. Jev B1 C1 B C Definice jevu při první realizaci náh. pokusu byla vytažena bílá kulička při první realizaci náh. pokusu byla vytažena černá kulička při druhé realizaci náh. pokusu byla vytažena bílá kulička při druhé realizaci náh. pokusu byla vytažena černá kulička Stav pytlíku před první realizací pokusu: 10 ks ks ravděpodobnost, že při první realizaci pokusu vytáhnu bílou (černou) kuličku je zřejmě: ( B1) 1, resp. ( C1) 10 1 Je taktéž zřejmé, že stav pytlíku před druhou realizací pokusu závisí na výsledku první realizace. Stav pytlíku před druhou realizací pokusu, byla-li při prvním pokusu vytažena bílá kulička: 10 ks 4 ks Stav pytlíku před druhou realizací pokusu, byla-li při prvním pokusu vytažena černá kulička: 9 ks ks - 9 -

6 Z obrázku (a z logického úsudku) vidíme, že výsledek druhé realizace pokusu závisí na výsledku první realizace pokusu, jinými slovy: výsledek druhé realizace pokusu je podmíněn výsledkem první realizace pokusu. Můžeme tedy určit pravděpodobnosti následujících jevů: Jev B/B1 C/B1 B/C1 C/C1 Definice jevu při druhé realizaci náh. pokusu byla vytažena bílá kulička, jestliže při první realizaci náh. pokusu byla vytažena bílá kulička při druhé realizaci náh. pokusu byla vytažena černá kulička, jestliže při první realizaci náh. pokusu byla vytažena bílá kulička při druhé realizaci náh. pokusu byla vytažena bílá kulička, jestliže při první realizaci náh. pokusu byla vytažena černá kulička při druhé realizaci náh. pokusu byla vytažena černá kulička, jestliže při první realizaci náh. pokusu byla vytažena černá kulička Na základě obrázku odpovídajících stavu pytlíku před druhou realizaci pokusu při splnění příslušných podmínek (za lomítkem) můžeme určit: 4 10 ( B / B1), ( C / B1), ( B / C1), ( C / C1) ozn.: Všimněte si, že: ( A/ B) ( A/ B) Chceme-li tedy určit například pravděpodobnost toho, že v druhém tahu vytáhneme bílou kuličku, musíme vzít v úvahu, že k tomuto jevu může dojít ve dvou případech: ( B B1) nebo ( B C1 ) roto platí: ( B) (( B B1) ( B C1)) Jelikož jevy ( B B1) a ( B C1 ) jsou neslučitelné (nemohou nastat zároveň), platí: 9 14 ( B) ( B B1) ( B C1), ( B) B/ B1 B1 B/ C1 C Obdobně můžeme určit pravděpodobnost, že v druhém tahu vytáhneme černou kuličku. 3.6 studentů absolvovalo zkoušky z matematiky a z fyziky. 30 z nich nesložilo obě zkoušky, 8 nesložilo pouze zkoušku z matematiky a nesložilo pouze zkoušku z fyziky. Určete pravděpodobnost, že náhodně vybraný student: a) složil zkoušku z matematiky, víme-li že nesložil zkoušku z fyziky b) složil zkoušku z fyziky, víme-li že nesložil zkoušku z matematiky c) složil zkoušku z matematiky, víme-li že složil zkoušku z fyziky

7 Označme si možné jevy takto: M... složil zkoušku z matematiky F... složil zkoušku z fyziky Víme, že: M F M F M F 30 8 Máme zjistit: ada) M F což určíme jednoduše podle definice podmíněné pravděpodobnosti: M F M F F M F M F M F, kde pravděpodobnost, že student nesložil zkoušku z fyziky určujeme podle věty o úplné pravděpodobnosti jako součet pravděpodobnosti, že student nesložil pouze zkoušku z fyziky a pravděpodobnosti, že student nesložil obě zkoušky. o vyčíslení tedy víme, že: M F M F M F M F ,14 7 ravděpodobnost, že student složil zkoušku z matematiky, víme-li že nesložil zkoušku z fyziky je asi 14%. adb) F M což určíme obdobně jako při řešení předcházející úlohy: F M F M M o vyčíslení tedy víme, že: F M F M F M F M F M F M F M 8, ,1 ravděpodobnost, že student složil zkoušku z fyziky, víme-li že nesložil zkoušku z matematiky je asi 1%

8 adc) M F opět si napíšeme definiční vztah: M F M F (F), k němuž můžeme přistoupit dvojím způsobem: Buď se pokusíme tento vztah upravit na základě známých vztahů tak, abychom jej mohli prostřednictvím zadaných parametrů vyčíslit: M F 1 M F 1 M F ( F) 1 F 1 1 M F F M F M 1 1 F M F M F M F M F M 1 F M F M F M F M F M F M 1 F M F M F M 1 F M F M ,91 8 nebo se pokusíme potřebné pravděpodobnosti vyčíst ze zadání: Zadané údaje si zapíšeme do tabulky: Složili zkoušku z Nesložili zkoušku z Celkem matematiky matematiky Složili zkoušku z fyziky 8 Nesložili zkoušku z fyziky 30 3 Celkem 38 a zbylé údaje v tabulce jednoduše dopočítáme: Kolik studentů složilo zkoušku z fyziky? To je celkový počet () mínus počet studentů, kteří zkoušku z fyziky nesložili (3), což je 8. Obdobně určíme počet studentů, kteří složili zkoušku z matematiky, což je 38 = 8. A konečně počet těch, kteří složili obě zkoušky určíme např. jako počet těch, kteří složili zkoušku z matematiky (8) mínus počet těch, kteří složili pouze zkoušku z matematiky (), což je 77. Složili zkoušku z Nesložili zkoušku z Celkem matematiky matematiky Složili zkoušku z fyziky Nesložili zkoušku z fyziky 30 3 Celkem

9 Hledané pravděpodobnosti tedy jsou: 77 8 M F ; F, z čehož plyne: M F M F ( F) ,91 8 ravděpodobnost, že student složil zkoušku z matematiky, víme-li že složil zkoušku z fyziky je asi 91%. ozn.: odle údajů v tabulce bychom mohli řešit i úkoly a) a b). 3.7 Z výrobků určitého druhu dosahuje 9% předepsanou kvalitu. V určitém závodě, který vyrábí 80% celkové produkce, však předepsanou kvalitu má 98% výrobků. Mějme náhodně vybraný výrobek předepsané kvality. Jaká je pravděpodobnost, že byl vyroben ve výše uvedeném závodě? jev A...výrobek je vyroben ve zmiňovaném závodě jev B...výrobek je předepsané kvality A B 0,8.0,98 A/ B 0,8 B 0,9 Opakované závislé pokusy Nechť je dán soubor N prvků, z nichž M má určitou vlastnost a (N - M) nikoliv. Vybereme postupně n prvků, z nichž žádný nevracíme. ravděpodobnost, že mezi n vybranými bude k takových, že mají sledovanou vlastnost, vypočteme podle vzorce: M N M ( ) k n k k ; pro max(n - N m;0) k min(m;n) N n 3.8 Mezi 00 vajíčky určenými pro prodej v jisté maloobchodní prodejně je 0 vajíček prasklých. Jaká je pravděpodobnost, že vybereme-li si náhodně 0 vajec, bude 8 z nich prasklých? Jde o výběr bez vracení (vybrané vajíčko nevracíme zpět), jednotlivé pokusy jsou závislé v tomto případě mluvíme o opakovaných závislých pokusech. Hledanou pravděpodobnost určíme z klasické definice pravděpodobnosti:

10 očet všech možností: vybíráme 0 vajec z 00 vajec (bez ohledu na pořadí) C 0(00) 00 0 očet příznivých možností: mezi vybranými 0-ti vejci má být 8 prasklých, tj. vybíráme 8 prasklých vajec z 0-ti prasklých a zároveň 1 (0-8) dobrých vajec ze 10-ti : A proto: 010 C 8( 0) C1(10) ( X 8) 0,07,7% 00 0 ravděpodobnost, že mezi 0-ti vybranými vejci bude 8 prasklých je 0,07. Věta o úplné pravděpodobnosti a Bayesova věta Věta o úplné pravděpodobnosti: A = A B i Bi n i=1 Bayesova věta: B k A = n i=1 k (A B ) B k A B i B i 3.9 Laboratoř, která provádí rozbory krve, potvrdí s pravděpodobností 9% existencí protilátek na virus určité nemoci, jestliže jí pacient skutečně trpí. Zároveň test určí jako pozitivní 1% osob, které však touto nemocí netrpí. Jestliže 0,% populace trpí zmíněnou nemocí, jaká je pravděpodobnost, že určitá osoba, jejíž test byl pozitivní, skutečně onu nemoc má? Takovéto problémy směřují k řešení pomocí věty o úplné pravděpodobnosti, popř. pomocí Bayesova teorému. ro přehledný zápis situace často využíváme tzv. rozhodovací strom. Označme si: N... pacient trpí nemocí T... test na protilátky vyšel pozitivní Rozhodovací strom pak vypadá takto:

11 Daný stav Výsledek testu 0,9 T 0,00.0,9 = 0,0047 opulace 0,00 N 0, 0 T 0,00.0,0 = 0,000 T 0,99 N 0,01 T T 0,99.0,01 = 0,0099 0,99 T 0,99.0,99 = 0,980 Na spojnice prvního větvení zapisujeme pravděpodobnosti výskytu daného stavu, tj. (N) a N, přičemž součet pravděpodobností v jednom větvení dává vždy 1 (100%). V našem případě tedy (N) známe ze zadání a N určíme jako 1 (N). Na spojnice druhého větvení se pak zapisují podmíněné pravděpodobnosti výsledek testu za předpokladu daný stav. V našem případě jsou to pravděpodobnosti: T N, T N, T N, T N. Opět platí, že součet pravděpodobností v jednom větvení dává vždy 1. Ze zadání známe T N a T N a zbylé dvě podmíněné pravděpodobnosti dopočítáme jako doplňky do 1. Chceme-li určit, jaká je pravděpodobnost toho, že nastal daný stav a zároveň výsledek testu, stačí vynásobit hodnoty uvedené u příslušné větve. Např.: pravděpodobnost toho, že pacient trpí nemocí a zároveň mu vyšel negativní test je 0,000 ). říslušné pravděpodobnosti jsou uvedeny ve ( N T N T N 0,00 0,0 0, 000 sloupci vedle rozhodovacího stromu. ravděpodobnosti toho, že dojde k určitému výsledku testu, se určují prostřednictvím věty o úplné pravděpodobnosti. My je okamžitě vyčteme ze sloupce uvedeného vedle rozhodovacího stromu. Např.: T N T N T 0,0047 0,0099 0, A nyní již přejděme k naší otázce: Měli jsme určit jaká je pravděpodobnost, že určitá osoba, jejíž test byl pozitivní, skutečně onu nemoc má neboli: N T Tuto podmíněnou pravděpodobnost z rozhodovacího stromu přímo nevyčteme, pro její určení použijeme Bayesův teorém: N T N T, T do nějž již stačí pouze dosadit hodnoty vyčtené z rozhodovacího stromu: N T N T T 0,0047 0,0047 0,33 0,0047 0,0099 0,

12 ravděpodobnost toho, že osoba jejíž test vyšel pozitivní, skutečně onu nemoc má je asi 3,3%. (Zamyslete se nad tím, co by znamenalo, kdyby lékař pouze na základě jednoho pozitivního výsledku testu, označil člověka za nemocného (např. AIDS)) Restaurace zakoupila 1 chladniček z 1. závodu, 0 z. závodu a 18 z 3. závodu. ravděpodobnost, že chladnička je výborné jakosti, pochází-li z 1.závodu je 0,9, z.závodu 0,6 a z 3.závodu 0,9. Jaká je pravděpodobnost, že náhodně vybraná chladnička bude výborné jakosti? jev A...náhodně vybraná chladnička bude výborné jakosti jev B i... náhodně vybraná chladnička pochází z i-tého závodu Chladniček je dohromady 0. Ledničky 1/0 0/0 18/0 0,9 B 1 1. závod 0,1 0,6 B. závod 0,4 0,9 B 3 3. závod 0,1 A/B 1 A/B A/B A /B 3 1 A /B A /B 3 A A B A B A B 1 3 Věta o úplné pravděpodobnosti: A A B A B A B 1 3 (A) = (B 1 ).(A/B 1 ) + (B ).(A/B ) + (B 3 ).(A/B 3 ) A.0,9.0, 6.0,9 0, Ve společnosti je 4% mužů a % žen. Vysokých nad 190 cm je % mužů a 1 % žen. Náhodně vybraná osoba je vyšší než 190 cm. Jaká je pravděpodobnost, že je to žena? jev A...vybraný člověk je vyšší než 190 cm jev B 1...vybraný člověk je muž jev B...vybraný člověk je žena

13 Společnost 0,4 0, 0,0 B 1 muž 0,9 0,01 B žena 0,99 A/B 1 A /B 1 A/B 3 A /B 3 Věta o úplné pravděpodobnosti: A A B1 A B 0, 4.0,0 0,.0,01 0,08 Bayesova věta: B A B 0,.0, 01 0,08 / A 0,196 A 3.1 Student jde na zkoušku, ale neví, který ze tří možných předmětů (STA,LA,MA) se zkouší. Ví, že neumí 40% otázek ze STA, 1% z LA a 0% z MA. a) Jaká je pravděpodobnost, že bude od zkoušky vyhozen? b) Jaká je pravděpodobnost, že bude vyhozen z STA? c) Bude-li vyhozen, jaká je pravděpodobnost toho, že to bude ze STA? ravděpodobnosti konání zkoušky z jednotlivých předmětů jsou si rovny. LA MA ( STA) 1 3 odmíněné pravděpodobnosti vyhození od zkoušky jsou: V STA 0,40 V LA 0,1 V MA 0, 0 ada) Ze vztahu pro úplnou pravděpodobnost určíme pravděpodobnost vyhození:

14 V STA STA V LA LA V MA MA V ,40 0,1 0, , adb) ravděpodobnost, že bude vyhozen ze STA: V STA V STA STA 0, 133 adc) Z Bayesovy věty plyne: STAV V STA V 0,133 0, 0, V obchodě jsou tři pokladny na nichž dojde k chybě v účtování s pravděpodobností: 0,1; 0,0 a 0,, přičemž z hlediska umístění pokladen v obchodě jsou pravděpodobnosti odbavení pokladnami 0,3; 0, a 0,4. a) Jaká je pravděpodobnost, že osoba opouštějící obchod má chybný účet? b) Jaká je pravděpodobnost, že jsme byli u druhé pokladny, máme-li chybný účet? jev A: došlo k chybě v účtování jev B i : odbavení i-tou pokladnou okladny 0,30 0, 0,4 0,10 B 1 1. pokl. 0,90 0,0 B. pokl. 0,9 0, B 3 3. pokl. 0,8 A/B 1 A/B A/B A /B 3 1 A /B A /B 3 ada) Věta o úplné pravděpodobnosti: A A B A B A B

15 (A) = (B 1 ).(A/B 1 ) + (B ).(A/B ) + (B 3 ).(A/B 3 ) A 0, 30010, 0, 0,0 0,4 0,0 013, 0, 133 adb) Bayesova věta: B A B A B A B A 0, 0, , A, DALŠÍ NEŘEŠENÉ ŘÍKLADY: Geometrická pravděpodobnost: 1. Na zastávku místní dopravy přijíždí autobus každých 7 minut a zdrží se 0, minuty. Jaká je pravděpodobnost, že příjdu a zastihnu autobus na zastávce? [0,07]. Autobus přijíždí na zastávku každé 4 minuty, tramvaj (má zastávku vedle) každých 6 minut. Určete pravděpodobnost, že se cestující dočká: a) autobusu před tramvají b) autobusu nebo tramvaje v průběhu minut [0,66; 0,66] 3. acient se léčí doma a od 7 do 0 hod. je možné jej kontrolovat. Vycházky má od 13 do 1 hod. Jaká je pravděpodobnost, že mezi 7. a 0. hodinou bude doma k zastižení? [0,846] 4. Hodiny, které nebyly ve stanovenou dobu nataženy, se po určitém čase zastaví. Jaká je pravděpodobnost, že se velká ručička zastaví mezi 6 a 9? [0,]. Tyč délky 10m je náhodně rozlomena na části. Jaká je pravděpodobnost, že menší část bude delší než 4m? [0,]

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10

(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10 2. cvičení - STATISTIKA Náhodný jev, Pravděpodobnost jevu, Podmíněná pravděpodbnost, Úplná pravděpodobnost, Bayesova věta 1. V cele předběžného zadržení sedí vedle sebe 10 podezřelých, z toho 3 ženy. Jaká

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

PRAVDĚPODOBNOST JE. Martina Litschmannová

PRAVDĚPODOBNOST JE. Martina Litschmannová RAVDĚODOBNOST JE Martina Litschmannová Čím se zabývá teorie pravděpodobnosti? Teorie pravděpodobnosti je matematická disciplína popisující zákonitosti týkající se náhodných jevů, tj. používá se k modelování

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení šesté aneb Podmíněná pravděpodobnost Statistika (KMI/PSTAT) 1 / 13 Pravděpodobnost náhodných jevů Po dnešní hodině byste měli být schopni: rozumět pojmu podmíněná pravděpodobnost

Více

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

S1P Příklady 01. Náhodné jevy

S1P Příklady 01. Náhodné jevy S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 3 Pravděpodobnost jevů Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická

Více

5.1. Klasická pravděpodobnst

5.1. Klasická pravděpodobnst 5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI ZÁKLDY TEORIE RVDĚODOBNOSTI 1 Vytvořeno s podporou projektu růřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně

Více

Poznámky k předmětu Aplikovaná statistika, 1. téma

Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Podmíněná pravděpodobnost

Podmíněná pravděpodobnost odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

A B = A A B P A B C = P A P B P C = =

A B = A A B P A B C = P A P B P C = = 9..8 Nezávislé jevy II Předpoklady: 907 Jsou-li nezávislé jevy a. Jsou nezávislé i jevy a? Z obrázku je vidět, že platí: ( ) ( ) = ( ( ) ) ( ( ) ) = ( ) ( ) P P P P P = použijeme nezávislost jevů, : P

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Podmíněná pravděpodobnost, spolehlivost soustav

Podmíněná pravděpodobnost, spolehlivost soustav S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou

Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou 1 Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace VÝUKOVÝ MATERIÁL

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3 SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat

Více

Teorie pravěpodobnosti 1

Teorie pravěpodobnosti 1 Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Podmíněná pravděpodobnost, nezávislost

Podmíněná pravděpodobnost, nezávislost Podmíněná pravděpodobnost, nezávislost Úloha 1: Do třídy 1.A chodí 10 chlapců a 20 dívek, z toho jsou 3 chlapci se jménem Jakub a 2 dívky se jménem Katka. Martina tvrdí, že ráno potkala někoho ze třídy

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Výběr báze. u n. a 1 u 1

Výběr báze. u n. a 1 u 1 Výběr báze Mějme vektorový prostor zadán množinou generátorů. To jest V = M, kde M = {u,..., u n }. Pokud je naším úkolem najít nějakou bázi V, nejpřímočařejším postupem je napsat si vektory jako řádky

Více

VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová

VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

Pravděpodobnost je Martina Litschmannová MODAM 2014

Pravděpodobnost je Martina Litschmannová MODAM 2014 ravděpodobnost je Martina Litschmannová MODAM 2014 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo. Jak osedlat

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Vybrané kapitoly z pravděpodobnosti (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Vybrané kapitoly z pravděpodobnosti (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Vybrané kapitoly z pravděpodobnosti (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 102 1

Více

Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.

Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více

Řešení 5. série kategorie Student

Řešení 5. série kategorie Student Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Úvod do teorie pravděpodobnosti

Úvod do teorie pravděpodobnosti Úvod do teorie pravděpodobnosti Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 33 Obsah 1 Náhodné jevy 2 Pravděpodobnost 3 Podmíněná

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

Pravděpodobnost (pracovní verze)

Pravděpodobnost (pracovní verze) Pravděpodobnost (pracovní verze) 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment) Akt vedoucí k jednomu výsledku - např. hod kostkou, zatočení ruletou, vytažení karty z balíčku, výběr osoby

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost

Více

2. PRAVDĚPODOBNOST JEVŮ

2. PRAVDĚPODOBNOST JEVŮ 2. PRAVDĚPODOBNOST JEVŮ Průvodce studiem V první kapitole jste se seznámili s kombinatorikou. Tyto znalosti použijeme v této kapitole, zavedeme pojem pravděpodobnost jevů a ukážeme základní metody výpočtu

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Matematika I 2a Konečná pravděpodobnost

Matematika I 2a Konečná pravděpodobnost Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už

Více

Množiny. množinové operace jsou mírně odlišné od

Množiny. množinové operace jsou mírně odlišné od Množiny Množina se dá chápat jako soubor prvků. ( Např. lidé na planetě zemi tvoří jednu velkou množinu.) Každá množina tedy obsahuje určitý počet prvků, který může být konečný (lze spočítat) nebo nekonečný

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv 42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Sbírka řešených příkladů z pravděpodobnosti: náhodný jev Vedoucí bakalářské práce:

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Definice pravděpodobnosti 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematických struktur a algoritmů procesy dvojího druhu. Jednodušší jsou deterministické procesy,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Opravná zkouška 2SD 2012-2013 (celý rok)

Opravná zkouška 2SD 2012-2013 (celý rok) Opravná zkouška SD 01-01 (celý rok) 1) Přímá železniční trať má stoupání 5 a délku,5 km. Vypočítej její celkové převýšení. b) ) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Vypočítej obsah vybarveného

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

7.2.1 Vektory. Předpoklady: 7104

7.2.1 Vektory. Předpoklady: 7104 7..1 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost, směr. Jak je znázornit? Jedno číslo (jako například pro hmotnost m = 55kg ) nestačí.

Více